## CSVTU Exams Questions Papers – Ist Year – Applied Mathematics-I –Nov-Dec- 2007

BE (1st Semester) Examination Nov-Dec, 2007 Applied Mathematics-II UNIT- I 1. (a) State De Moire’s theorem. (b) cos a + cos ? + cos ? = sin a + sin ? + sin ? = 0 Prove that (i) cos2 a + cos2 ? + cos2 ? = sin2 a + sin2 ? + sin2 ? (ii)cos2a + cos2 ? + cos 2 ? = sin2a + sin2 ? + sin 2 ? = 0 (c) If tan (? + i?) = eia, Show that: ? – (n +1)  ? and                 log tan(?  +  a) … Read more

## CSVTU Exams Questions Papers – Ist Year – Applied Mathematics-I – May-June- 2007

BE (1st Semester) Examination May-June, 2007 Applied Mathematics-II UNIT-I 1. (a) If x + 1 = 2 cos ? and y + 1= 2cos ? x                                x Show that one of the value of xmyn +        1        is 2cos(m ? + n?)                           xm + yn  (b) If (? + i?) ea show that ? = (n + 1/2)?/2                    and           ?=1 log tan (?  + a) 2               … Read more

## CSVTU Exams Questions Papers – Ist Year – Applied Mathematics-I – April-May- 2009

BE (2nd Semester) Examination April/May, 2009                                                                                           Applied Mathematics-II UNIT-I 1. (a) State the De-Moiver’s theorem. (b) Find all the roots of the equation (i) cos z=2 (ii) tanh z=2 (c) Separate sin-1 (cos? + I sin?) into real and imaginary parts, where ? is a positive acute angle. (d) Sum the series: n sin a +n (n+1) sin 2an (n+1) (n+2) sin 3a+………….?                                                         1.2                      … Read more