CSVTU Exam Papers – BE I Year – Engineering Graphics– 2006

BE (1st Semester) Examination – 2006 Engineering Graphics Q1  (a) On a map, the distance between two points is 14 cm. The real distance between them is 20 km. Draw a diagonal scale of the map to read kilometers and hectameters, and to measure up 25 km. Show a distance of 17.6 km. on this … Read more CSVTU Exam Papers – BE I Year – Engineering Graphics– 2006

CSVTU Exam Papers – BE I Year – Applied Mathematics-I –Nov-Dec- 2007

BE (1st Semester) Examination Nov-Dec, 2007 Applied Mathematics-II UNIT- I 1. (a) State De Moire’s theorem. (b) cos a + cos β + cos λ = sin a + sin β + sin λ = 0 Prove that (i) cos2 a + cos2 β + cos2 λ = sin2 a + sin2 β + sin2 … Read more CSVTU Exam Papers – BE I Year – Applied Mathematics-I –Nov-Dec- 2007

CSVTU Exam Papers – BE I Year – Applied Mathematics-Ii – Nov-Dec- 2006

BE (1st Semester) Examination Nov-Dec- 2006 Applied Mathematics-II UNIT-I 1. (a) If i………..∞ = A + iB∞ Prove that tan ∏A = B and A2 + B2= e-xB 2     A (b) Show that Sin2ө – 1 sin2өsin2 ө + 1 sin 3ө sin3 ө – 1  sin 4ө 2                         3                          4 Sin4ө +……….∞=tan-1(sin2 ө /(1 … Read more CSVTU Exam Papers – BE I Year – Applied Mathematics-Ii – Nov-Dec- 2006

CSVTU Exam Papers – BE I Year – Applied Mathematics-I – May-June- 2007

BE (1st Semester) Examination May-June, 2007 Applied Mathematics-II UNIT-I 1. (a) If x + 1 = 2 cos ө and y + 1= 2cos ө x                                x Show that one of the value of xmyn +        1        is 2cos(m ө + nф)                           xm + yn  (b) If (ө + iф) ea show that ө … Read more CSVTU Exam Papers – BE I Year – Applied Mathematics-I – May-June- 2007