PRACTICAL BOILER
OPERATION ENGINEERING
AND POWER PLANT
FOURTH EDITION

Amiya Ranjan Mallick
General Manager (Power Plant)
B.K. Birla Group of Industries
Maharashtra

PHI Learning Private Limited
Delhi-110092
2015
I dedicate this book to
my Godlike uncle

Sri Raghunath Mallick

who has brought me from darkness and illuminated my life.
Contents

Preface xix
Preface to the Third Edition xxi

1. Fundamentals 1–20
 1.1 Introduction 1
 1.2 Law of Conservation of Energy 1
 1.3 Temperature 1
 1.3.1 Absolute Temperature 3
 1.4 Pressure 3
 1.4.1 Gauge Pressure and Absolute Pressure 3
 1.5 Heat 4
 1.5.1 Specific Heat 5
 1.6 Work 5
 1.7 Power 5
 1.8 Energy 6
 1.9 Enthalpy 6
 1.10 Laws of Thermodynamics 6
 1.11 Specific Heat of Gas 8
 1.12 Thermodynamic Process of Perfect Gas 8
 1.12.1 Constant Volume or Isochoric Process 9
 1.12.2 Constant Pressure or Isobaric Process 9
 1.12.3 Constant Temperature or Isothermal Process 10
 1.12.4 Adiabatic Process or Isentropic Process 11
 1.12.5 Free Expansion Process 11
 1.12.6 Throttling Process 11
 1.13 Thermodynamic Cycle 12
 1.13.1 Carnot Cycle with Steam as Working Fluid 12
 1.13.2 Rankine Cycle 13
 1.13.3 Brayton Cycle 18

Exercises 20

 2.1 Introduction 21
 2.2 Heat Transfer by Conduction 21
 2.2.1 Fourier’s Law 22
 2.2.2 Thermal Conductivity 23
2.3 Heat Transfer by Convection 23
 2.3.1 Newton’s Law of Cooling 23
2.4 Heat Transfer by Radiation 24
 2.4.1 Absorption, Reflection and Transmission of Radiation 24
 2.4.2 Emissivity 26
 2.4.3 Stefan–Boltzmann Law 26
 2.4.4 Geometrical Factor or Configuration Factor 27
2.5 Heat Transfer Methods in a Boiler 27
Exercises 28

3. Fuel and Combustion 29–45

3.1 Introduction 29
3.2 Solid Fuel 30
 3.2.1 Wood 30
 3.2.2 Coal 31
 3.2.3 Coke 33
 3.2.4 Biomass Fuel 33
3.3 Liquid Fuel 34
3.4 Gaseous Fuel 35
 3.4.1 Blast Furnace Gas 35
 3.4.2 Coke Oven Gas 35
3.5 Proximate Analysis and Ultimate Analysis of Fuel 36
 3.5.1 Proximate Analysis 36
 3.5.2 Ultimate Analysis 37
3.6 Calorific value of Fuel 37
 3.6.1 Gross Calorific Value (GCV) or Higher Calorific Value (HCV) 37
 3.6.2 Net Calorific Value or Lower Calorific Value (NCV or LCV) 38
 3.6.3 Empirical Relationship of GCV, UHV, and NCV 38
3.7 Combustion 39
 3.7.1 Chemistry of Combustion 39
3.8 Some Important Properties of Coal 41
3.9 Gradation of Coal 42
3.10 Combustion of Coal 43
 3.10.1 Combustion of Pulverised Coal 44
3.11 Combustion of Liquid Fuel 44
3.12 Excess Air 44
Exercises 45

4. Properties of Steam 46–52

4.1 Introduction 46
4.2 Formation of Steam 46
4.3 Terms Associated with Steam 48
4.4 Steam Table 50
4.5 Mollier Diagram 52
Exercises 52
5. **Boiler Feedwater Chemistry** 53–74

5.1 Introduction 53
5.2 Removal of Undissolved Suspended Solid Materials from Water 53
5.2.1 Sedimentation 54
5.2.2 Filtration 54
5.2.3 Coagulation 55
5.3 Dissolved Salts and Minerals 55
5.4 Internal Boiler Water Treatment 56
5.4.1 Soda Ash (Sodium Carbonate or Na₂CO₃) Treatment 56
5.4.2 Phosphate Treatment or High Pressure (HP) Dosing 56
5.4.3 Colloidal Treatment 58
5.5 External Treatment of Feedwater 58
5.5.1 Softener 58
5.5.2 Demineralising (DM) Water Plant 59
5.5.3 Reverse Osmosis Plant 64
5.6 Removal of Dissolved Gases from Water 68
5.6.1 Low Pressure (LP) Dosing 68
5.7 Some Parameters of Boiler Feedwater 69
5.8 Water Treatment of Supercritical Boiler 73
Exercises 73

6. **Introduction to Boiler** 75–126

6.1 Introduction 75
6.2 Steam Generation in a Boiler 76
6.3 Different Types of Boiler 78
6.3.1 Fire Tube and Water Tube Boiler 79
6.3.2 Straight Tube, Bent Tube, Horizontal, Vertical and Inclined Boiler 79
6.3.3 Waste Heat Recovery Boiler (WHRB) 79
6.3.4 Package and Small Boilers 80
6.3.5 Subcritical and Supercritical Boiler 81
6.3.6 Fuel-fired Boiler 81
6.4 Travelling Grate-fired Boiler 82
6.5 Spreader Stoker-fired Boiler 83
6.6 Pulverised Coal (PC)–fired Boiler 84
6.6.1 Air System 84
6.6.2 Pressure Parts (Heat Transfer Surfaces) 86
6.6.3 Coal Feeding System 86
6.6.4 Ash Handling 94
6.7 Fluidised Bed Combustion (FBC) Boiler 98
6.7.1 Atmospheric Fluidised Bed Combustion (AFBC) Boiler 99
6.7.2 Circulating Fluidised Bed (CFBC) Boiler 106
6.8 Supercritical Boiler 116
6.8.1 Furnace Design 117
6.8.2 Water and Steam Circuit 120
6.8.3 Heat Recovery Area (HRA) 122
Contents

6.8.4 Start-up System 122
6.8.5 Wet Mode and Dry Mode Operation of Supercritical Boiler 123
6.8.6 Materials Used in Supercritical Boiler 123
6.9 Biomass-fired Boiler 124
Exercises 125

7. Fuel Handling System 127–143
7.1 Introduction 127
7.2 Handling of Liquid Fuels 127
7.2.1 Handling of LDO and HSD 127
7.2.2 Handling of HFO, FO and LSHS 128
7.3 Handling of Gaseous Fuel 129
7.4 Handling of Solid Fuel: Coal Handling Plant 130
7.4.1 Coal Transportation and Storage 130
7.4.2 Coal Preparation 131
7.4.3 Coal Pulverisation 140
7.5 Handling of Other Solid Fuels 142
Exercises 143

8. Air Path 144–155
8.1 Introduction 144
8.2 Basics of Fan 144
8.2.1 Affinity Laws 145
8.2.2 Fan Curve 146
8.2.3 System Resistance Curves 146
8.3 FD Fan 148
8.3.1 FD Fan Air Flow Control 149
8.4 Air Heater (or Air Preheater) 149
8.4.1 Steam Air Heater 152
8.5 Primary Air and Secondary Air 153
8.6 Excess Air 153
Exercises 154

9. Feedwater Path 156–187
9.1 Introduction 156
9.2 Deaerator 156
9.2.1 Tray Type, Direct Contact Deaerator 157
9.3 Basics of Pump 158
9.3.1 Centrifugal Pump 158
9.3.2 Positive Displacement Pump 164
9.4 Boiler Feed Pump 165
9.5 Boiler Drum Level Control 166
9.5.1 Drum Level Control in Larger Capacity Boiler 169
9.6 Feed Control Station 170
9.7 Economiser 171
9.8 Evaporator 172
 9.8.1 Water Wall 173
 9.8.2 Boiling Principle 174
9.9 Blowdown 176
9.10 Gauge Glass 177
9.11 Hydrastep 180
9.12 Waterside Scaling and Corrosion 180
 9.12.1 Scaling 181
 9.12.2 Corrosion 184
9.13 Priming, Foaming and Carryover 185

Exercises 186

10. Steam Path 188–205
10.1 Introduction 188
10.2 Steam Drum 188
 10.2.1 Drum Internals 190
10.3 Superheater 191
 10.3.1 Outlet Temperature at Various Loads for Different Types of Superheaters 193
10.4 Methods of Superheater Temperature Control 193
 10.4.1 Gas Bypass Method 194
 10.4.2 Excess Air Control Method 194
 10.4.3 Tilting/Adjustable Burner Control Method 194
 10.4.4 Separately-fired Superheater Method 195
 10.4.5 Flue Gas Recirculation Method 196
 10.4.6 Coil Immersion in Boiler Drum 196
 10.4.7 Desuperheating or Attemperation Method 197
10.5 Start-up Vent 199
10.6 Safety Valve 199
 10.6.1 Basic Operation of Safety Valve 201
 10.6.2 Electromatic Pressure Relief Value 202
10.7 Steam Vent Silencer 202
10.8 Pressure Reducing and Desuperheating (PRDS) Station 203

Exercises 205

11. Flue Gas Path 206–228
11.1 Introduction 206
11.2 Furnace 207
 11.2.1 Furnace Dimension 209
11.3 Different Zones of Flue Gas Path 211
11.4 Refractory and Insulation 212
 11.4.1 Refractory 212
 11.4.2 Insulating Material 215
11.5 ID Fan 216
11.6 Draft 217
 11.6.1 Natural Draft 218
 11.6.2 Artificial Draft (Mechanical Draft) 218
Practical Boiler Operation Engineering And Power Plant

Publisher: PHI Learning
ISBN: 9788120351394
Author: MALLICK, AMIYA RANJAN

Type the URL: http://www.kopykitab.com/product/7742

Get this eBook