Lean and Agile Manufacturing
Theoretical, Practical and Research Futurities

S.R. Devadasan
Professor
Production Engineering Department
PSG College of Technology, Coimbatore

V. Mohan Sivakumar
Workshop Superintendent
Mechanical Engineering Department
PSG Polytechnic College, Coimbatore

R. Murugesh
Principal
Darshan Institute of Engineering and Technology, Rajkot

P.R. Shalij
Assistant Professor
Production Engineering Department
Government Engineering College, Thrissur, Kerala

PHI Learning Private Limited
New Delhi-110001
2012
Contents

Preface .. ix
Acknowledgements .. xiii
List of Abbreviations ... xv

1. Introduction .. 1–13
 1.1 Impact of Competition: A Historical View 1
 1.2 Quality Control, Quality Gurus and Continuous Quality Improvement 2
 1.3 Twentieth Century Mission 3
 1.4 Emergence of Lean Manufacturing Paradigm 4
 1.5 Emergence of Agile Manufacturing Paradigm 5
 1.6 Twenty-first Century Mission 5
 1.7 Non-homogeneity of Practices in Contemporary Organisations 6
 1.7.1 Traditional Organisations 7
 1.7.2 Moderate Organisations 7
 1.7.3 Smart Organisations 7
 1.8 Organisation of the Book 8
Conclusion 8
References 9
Self-Test Questions 10

2. Lean Manufacturing through Waste Elimination 14–29
 2.1 Origin of Lean Manufacturing at Ford 14
 2.2 Lean Manufacturing from Toyota Production System 14
 2.3 Wastes to be Eliminated in Lean Manufacturing Paradigm 15
 2.3.1 Overproduction 15
 2.3.2 Unnecessary Inventory 15
 2.3.3 Delay 16
 2.3.4 Transportation 16
2.3.5 Processing 16
2.3.6 Unnecessary Motion 16
2.3.7 Defective Parts 17
2.3.8 Underutilisation of People 17
2.3.9 Underutilisation of Facilities 17

2.4 Tools and Techniques Applied to Eliminate Wastes 18
2.4.1 Tools and Techniques for Eliminating Overproduction 18
2.4.2 Tools and Techniques for Eliminating Unnecessary Inventory 18
2.4.3 Tools and Techniques for Eliminating Delay 19
2.4.4 Tools and Techniques for Eliminating Underutilisation of People 19
2.4.5 Tools and Techniques for Eliminating Underutilisation of Facilities 20
2.4.6 Tools and Techniques for Eliminating Transportation 20
2.4.7 Tools and Techniques for Eliminating Processing Wastes 21
2.4.8 Tools and Techniques for Eliminating Unnecessary Motion 21
2.4.9 Tools and Techniques for Eliminating Defective Parts 22

Conclusion 22
References 22
Self-Test Questions 23

3. Value Stream Mapping ..30–63

3.1 Introduction 30
3.2 Primary Icons 30
3.2.1 Customer and Supplier Icons 31
3.2.2 Production Control Icon 31
3.2.3 Data Box Icon 32
3.2.4 Truck Icon 32
3.2.5 Material Direction Arrow Icon 32
3.2.6 Process Icon 33
3.2.7 Push Icon 33
3.2.8 Pull Icon 34
3.2.9 Information and Communication Flow Icons 34
3.3 Secondary Icons 34
3.4 Developing the VSM 37
3.4.1 Example Illustrating the Development of VSM 37

Conclusion 48
References 51
Self-Test Questions 51
4. 5S Concepts ... 64–75
 4.1 Introduction 64
 4.2 Stages of 5S 64
 4.2.1 Seiri (Structurisation/Organisation) 65
 4.2.2 Seiton (System Utilisation—Neatness) 65
 4.2.3 Seiso (Sanitisation—Cleanliness) 66
 4.2.4 Seiketsu (Standardisation) 67
 4.2.5 Shitsuke (Self-discipline) 67
 4.3 5S for Waste Elimination 67
 Conclusion 71
 References 72
 Self-Test Questions 72

5. Kaizen in Lean Manufacturing Paradigm 76–90
 5.1 Introduction 76
 5.2 Steps of Kaizen 77
 5.3 Lean Manufacturing through Kaizen 79
 Conclusion 85
 References 86
 Self-Test Questions 86

 6.1 Introduction 91
 6.2 Theory of SMED 92
 6.3 Design for SMED 93
 6.4 Strategic SMED 95
 6.4.1 Teamwork 95
 6.4.2 Visual Control 95
 6.4.3 Performance Measurement 95
 6.4.4 Kaizen 96
 6.5 Waste Elimination through SMED 96
 Conclusion 99
 References 99
 Self-Test Questions 100

7. Pull Production through Kanban Card System 103–111
 7.1 Introduction 103
 7.2 Kanban Card Control 104
 7.2.1 Single Card Kanban System 105
 7.2.2 Two Card Kanban System 106
 7.3 Implementation Procedure 107
 Conclusion 109
 References 109
 Self-Test Questions 110
Contents

8. **One-Piece Flow Production System** ... 112–121

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Introduction</td>
<td>112</td>
</tr>
<tr>
<td>8.2 Fundamentals of One-Piece Flow Production System</td>
<td>113</td>
</tr>
<tr>
<td>8.3 Lean Manufacturing through One-Piece Flow</td>
<td>114</td>
</tr>
<tr>
<td>8.4 Implementation Procedure</td>
<td>114</td>
</tr>
<tr>
<td>Conclusion</td>
<td>117</td>
</tr>
<tr>
<td>References</td>
<td>118</td>
</tr>
<tr>
<td>Self-Test Questions</td>
<td>118</td>
</tr>
</tbody>
</table>

9. **Visual Management** ... 122–135

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Introduction</td>
<td>122</td>
</tr>
<tr>
<td>9.2 Fundamental Concepts</td>
<td>123</td>
</tr>
<tr>
<td>9.3 Visual Management Tools for Eliminating Overproduction</td>
<td>124</td>
</tr>
<tr>
<td>9.4 Visual Management Tools for Eliminating Inventory</td>
<td>124</td>
</tr>
<tr>
<td>9.5 Visual Management Tools for Eliminating Delay</td>
<td>124</td>
</tr>
<tr>
<td>9.6 Visual Management Tools for Eliminating Transportation</td>
<td>124</td>
</tr>
<tr>
<td>9.7 Visual Management Tools for Eliminating Processing</td>
<td>125</td>
</tr>
<tr>
<td>9.8 Visual Management Tools for Eliminating Unnecessary Motion</td>
<td>125</td>
</tr>
<tr>
<td>9.9 Visual Management Tools for Eliminating Defective Parts</td>
<td>126</td>
</tr>
<tr>
<td>9.10 Visual Management Tools for Eliminating Underutilisation of People</td>
<td>127</td>
</tr>
<tr>
<td>9.12 Implementation Procedure</td>
<td>128</td>
</tr>
<tr>
<td>Conclusion</td>
<td>131</td>
</tr>
<tr>
<td>References</td>
<td>131</td>
</tr>
<tr>
<td>Self-Test Questions</td>
<td>132</td>
</tr>
</tbody>
</table>

10. **Lean Manufacturing through Total Productive Maintenance** ... 136–155

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Introduction</td>
<td>136</td>
</tr>
<tr>
<td>10.2 Principles of TPM</td>
<td>137</td>
</tr>
<tr>
<td>10.2.1 Eight Pillars of TPM</td>
<td>137</td>
</tr>
<tr>
<td>10.2.2 Six Major Losses</td>
<td>141</td>
</tr>
<tr>
<td>10.2.3 Computation of OEE</td>
<td>142</td>
</tr>
<tr>
<td>10.3 Leanness through TPM</td>
<td>144</td>
</tr>
<tr>
<td>10.4 Procedure for Implementing TPM in Lean Manufacturing Paradigm</td>
<td>145</td>
</tr>
<tr>
<td>Conclusion</td>
<td>148</td>
</tr>
<tr>
<td>References</td>
<td>149</td>
</tr>
<tr>
<td>Self-Test Questions</td>
<td>148</td>
</tr>
</tbody>
</table>

11. **Implementation of Lean Manufacturing Paradigm in Traditional and Moderate Organisations** ... 156–163

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 Introduction</td>
<td>156</td>
</tr>
<tr>
<td>11.2 Roadmap</td>
<td>157</td>
</tr>
</tbody>
</table>
12. The Fundamental Structure of Agile Manufacturing Paradigm .. 164–175
 12.1 Agile Manufacturing: Origin, Definition and Meaning 164
 12.2 Twenty Criteria Agile Manufacturing Model 166
 Conclusion 170
 References 171
 Self-Test Questions 171

13. Agile Manufacturing through Management Driver 176–191
 13.1 Introduction 176
 13.2 Organisational Structure for Achieving Agility 177
 13.3 Devolution of Authority for Implementing Agile Manufacturing Practices 179
 13.4 Employee Status in Agile Manufacturing Environment 180
 13.5 Agile Manufacturing through Employee Involvement 180
 13.6 Nature of Management Required for Implementing Agile Manufacturing Practices 181
 13.7 Agile Manufacturing through Executing Changes in Business and Technical Processes 182
 13.8 Agile Manufacturing through Time Management 182
 Conclusion 184
 References 184
 Self-Test Questions 185

14. Agility through Technology Driver ...192–202
 14.1 Introduction 192
 14.2 Agile Manufacturing through Design Automation Technologies 192
 14.3 Agile Manufacturing through Advanced Production Technologies 194
 14.4 Integrated Manufacturing Technologies for Acquiring Agility 195
 14.5 Agile Manufacturing through IT Integration 197
 Conclusion 197
 References 198
 Self-Test Questions 198

15. Agility through Manufacturing Strategy Driver203–213
 15.1 Introduction 203
 15.2 Quick Manufacturing Set-ups for Achieving Agility 204
 15.3 Agility through Quick Response 205
 15.4 Agility through Product Life Cycle Management 205
 15.5 Agile Manufacturing through Product Service Elimination 206
 15.6 Automation Type for Achieving Agility 207
16. Agility through Competitive Driver ... 214–224
 16.1 Introduction 214
 16.2 Status of Quality in Agile Manufacturing Companies 215
 16.3 Status of Productivity in Agile Manufacturing Companies 216
 16.4 Agile Manufacturing Compatible Cost Accounting System 217
 16.5 Agile Manufacturing through Outsourcing 218
Conclusion 219
References 219
Self-Test Questions 219

17. Implementation of Agile Manufacturing Paradigm in Moderate and Smart Organisations 225–240
 17.1 Introduction 225
 17.2 Twenty Criteria Agile Measurement Model 226
 17.3 Agile Manufacturing Implementation in Moderate Companies 230
 17.4 Agile Manufacturing Implementation in Smart Companies 232
Conclusion 234
References 235
Self-Test Questions 235

18. Contemporary Scenario of Implementing Lean and Agile Manufacturing Paradigms 241–249
 18.1 Introduction 241
 18.2 Lean and Agile Manufacturing Paradigms for Academia 242
 18.3 Lean and Agile Manufacturing Paradigms for Consultants 242
 18.4 Lean and Agile Manufacturing Paradigms for Practising Engineers 243
 18.5 Lean and Agile Manufacturing Paradigms for Practising Managers 243
 18.6 Lean and Agile Manufacturing Paradigms for Researchers 244
 18.7 Decision on Implementing Lean or Agile Manufacturing Paradigm 244
References 245
Self-Test Questions 246

Appendix: Questionnaires to Assess Agility Index .. 251–267

Further Reading .. 269

Index ... 271–275
Producing products had been an important profession of mankind. Several factors triggered the mankind to become producers of products. In the ancient time, mankind became a producer of weapons due to the necessity of efficiently hunting the wild animals. This necessity further progressed to meet several requirements. This progression had been happening through several centuries which created thousands of producers of products. These producers confined their skills and knowledge within themselves and did not reveal these skills and knowledge to the fellow producers. This practice created specialised producers. These producers were recognised under the designations like Carpenters, Jewellers and Cobblers. These producers carried out all production operations under confined facilities. This kind of production paradigm is today called by the theorists as \textit{craft production}. Under this paradigm, one or a few persons worked to offer a product or service to the customers. While adopting this production paradigm, the technical know-how and business results were known only to a few persons who produced the product or offered the service.

The mankind was adopting craft production paradigm till the time industrial revolution occurred in the world. As a result of the occurrence of industrial revolution, companies employing a large number of people and facilities came into existence. These companies employed a paradigm called \textit{mass production}. Through the employment of mass production paradigm, large quantities of products and services were offered by the companies to the customers. Due to the availability of large quantities of products and services, the customers’ position got strengthened. This situation created competition among the companies. Subsequently, scientific tools and techniques emerged in the world to face the competition. In most cases, these scientific tools and techniques facilitated the companies to face the competition successfully and garner good profit.

The world was adopting mass production paradigm from the industrial revolution period to the middle part of the twentieth century. From the middle part of the twentieth century, quality gurus like Deming, Juran, Crosby and