Measurement, Instrumentation and Experiment Design in Physics and Engineering

MICHAEL SAYER
ABHAI MANSINGH
Measurement, Instrumentation and Experiment Design in Physics and Engineering

MICHAEL SAYER
Ph.D. FRS (Canada)
Professor Emeritus of Physics
Queen's University at Kingston
Ontario, Canada

ABHAI MANSINGH
Ph.D. FNASc (India)
Former Professor of Physics
University of Delhi
Delhi

PHI Learning Private Limited
Delhi-110092
2015
To
Anne Sayer and Sydney Southcott
and
Kalpana Mansingh
Contents

Preface xi

1. PHYSICAL MEASUREMENT 1-23
 1.1 Measurement 1
 1.2 The Result of a Measurement 2
 1.3 Sources of Uncertainty and Experimental Error 3
 1.4 Systematic Error 4
 1.5 Random Error 6
 1.6 Definition of the Uncertainty 7
 1.7 The Analysis of Repeated Measurements 8
 1.8 The Mathematical Description of Data Distribution Functions 11
 1.9 Derivation and Properties of the Distribution Functions 12
 1.10 Propagation of Error 17
 1.11 Analysis of Data 19
 1.12 Multi-parameter Experiments 20

References and Further Information 20
Answers to Questions 21
Design Problems 21

2. INSTRUMENTATION AND SYSTEM DESIGN 24-53
 2.1 Experiment Design 24
 2.2 Transducers 25
 2.3 Transducer Characteristics 27
 2.4 Selection of an Instrumentation Transducer 29
 2.5 The Transducer as an Electrical Element 31
 2.6 Modelling External Circuit Components 32
 2.7 Circuit Calculations 36
 2.8 Instrument Probes 42
 2.9 Power Measurements 43
 2.10 Measurement Methods 44
 2.11 DC and AC Bridge Measurements 47

References and Further Information 50
Answers to Questions 51
Design Problems 51
Contents

3. TRANSDUCER PROPERTIES

- 3.1 Temperature Measurements 54
- 3.2 Definition of Temperature 55
- 3.3 Temperature Transducers 56
- 3.4 Thermal Radiation Temperature Measurements 64
- 3.5 Low Temperature Thermometry 68
- 3.6 Optical Measurements and the Electromagnetic Spectrum 70
- 3.7 Linear Position Sensors 82
- 3.8 Summary and Conclusions 87

References and Further Information 87
Answers to Questions 88
Design Problems 88
Worked Example 92

4. SIGNAL TO NOISE CONSIDERATIONS

- 4.1 Fluctuations and Noise in Measurement Systems 96
- 4.2 Noise in the Frequency Domain 97
- 4.3 Sources of Noise 100
- 4.4 Signal to Noise and Experimental Design 105
- 4.5 Frequency and Bandwidth Considerations 109
- 4.6 Bandwidth Control 110
- 4.7 Signal to Noise Enhancement 116
- 4.8 Digital Correlation and Autocorrelation Methods 123

References and Further Information 129
Answers to Questions 130
Design Problems 131
Worked Examples 137

5. INSTRUMENTATION ELECTRONICS

- 5.1 Operational Amplifiers 141
- 5.2 Analog Signal Processing 145
- 5.3 High Speed Analog to Digital Conversion 147
- 5.4 Digital to Analog Conversion 148
- 5.5 Digital Logic Levels 149
- 5.6 Digital Instrumentation 150
- 5.7 Frequency Measurements 151
- 5.8 The Fast Fourier Transform 152
- 5.9 Sampling Time and Aliasing 154
- 5.10 Talking and Listening the IEEE 488 Interface Bus 158
- 5.11 Instrumentation Software-LabVIEW™ 161
- 5.12 Nuclear Instrumentation 161

References and Further Information 164
Answers to Questions 165
Design Problems 166
6. VACUUM TECHNIQUES

6.1 Units of Pressure Measurement 169
6.2 Characteristics of Vacuum 170
6.3 Applications of Vacuum 173
6.4 Vacuum Systems 174
6.5 Vacuum Pumps 176
6.6 Vacuum Gauges 180
6.7 Pumping Speed for a Vacuum System 183
6.8 Thin Film Techniques 187
6.9 Film Thickness Monitors 191
6.10 Film Thickness Measurements 192

References and Further Information 193
Answers to Questions 193
Design Problems 193

7. OPTICAL INSTRUMENTS

7.1 Spectroscopic Instrumentation 196
7.2 Visible and Infrared Spectroscopy 197
7.3 Spectrometer Design 198
7.4 Refraction and Diffraction 202
7.5 Lenses and Refractive Optics 203
7.6 Dispersive Elements 204
7.7 Spectrometer Design 210
7.8 Lasers 212
7.9 Fibre Optics 216

References and Further Information 222
Answers to Questions 223
Design Problems 223

8. X-RAY MEASUREMENTS

8.1 The Electron Structure of Atoms 227
8.2 Multi-electron Atoms 229
8.3 X-ray Fluorescence-Line Spectra 231
8.4 Fine Structure 233
8.5 Absorption and Emission Processes 233
8.6 Production of X-rays 235
8.7 X-ray Diffraction and Crystallography 238
8.8 Neutron Diffraction 250

References and Further Information 251
Answers to Questions 251
Design Problems 251
9. RADIOACTIVITY AND MATTER 253-274

9.1 Nuclear Properties 253
9.2 Nuclear and Atomic Particles 254
9.3 Radioactive Decay 254
9.4 Decay Modes for Radioactive Nuclei 257
9.5 Interaction of Radiation with Matter 262
9.6 Interaction of Charged Particles with Matter 266
9.7 The Interaction of Neutrons with Matter 270

References and Further Information 272
Answers to Questions 272
Design Problems 273

10. RADIATION DETECTION AND MEASUREMENT 275-304

10.1 General Principles of Radiation Detection 275
10.2 Types of Radiation Detectors 280
10.3 Radiation Dose 292

References and Further Information 300
Answers to Questions 301
Design Problems 301

11. ANALYTICAL INSTRUMENTATION 305-321

11.1 Transmission Electron Microscopy (TEM) 305
11.2 Scanning Electron Microscopy (SEM) 306
11.3 Environmental Scanning Electron Microscope (ESEM) 309
11.4 Surface Analytical Methods 309
11.5 Nuclear Techniques 312
11.6 Atomic Force and Tunneling Scanning Microscopes 318

References and Further Information 320
Design Problems 320

12. OCCUPATIONAL HEALTH AND SAFETY 322-334

12.1 Occupational Health and Safety 323
12.2 Chemical Substances 325
12.3 Radiation Safety 328
12.4 General Electrical and Testing Standards CSA Approval 330
12.5 General Laboratory and Workshop Practice 332

References and Further Information 333
Design Problems 334

Appendices 335-351
Index 353-360
Preface

The art of the physicist combines a broad theoretical understanding of phenomena with an ability to make careful measurements. Physicists and Engineering Physicists are adept as problem solvers, bringing novel theoretical and experimental insights into the problems encountered in other areas of science and technology.

The objectives of this book are to demonstrate the principles of experimental practice in physics and physics-related engineering, to show how measurement, experiment design, signal processing and modern instrumentation can be used most effectively, and to encourage the creative use of experimental and theoretical physics in areas which may be unfamiliar. A knowledge of basic electricity and magnetism and circuit theory is assumed along with some introduction to aspects of semiconductor and quantum physics. Extensive opportunities are provided to use spreadsheet methods in experimental design and evaluation.

The important topics dealt in the text are experiment design, signal to noise enhancement and the use of electronics, operational and phase sensitive amplifiers for the acquisition and processing of data. This includes computer-based instrumentation system with a particular emphasis on standard interfaces such as the IEEE488.

Primarily addressed to students at the advanced undergraduate and introductory graduate level in physics, applied and engineering physics, and engineering, the book will serve as background material for a wide range of experimental physics and engineering. It is not a compendium of all types of transducers and experimental measurements. The emphasis has been to review the background physics and experimental techniques in important areas of application so that a reader develops his or her own insight and knowledge to work with any instrument and its manual. Questions are provided throughout to assist in this end. Since most of the laboratory practices involve some aspects of temperature measurement, optical techniques, vacuum practice, electrical measurements and nuclear instrumentation, these areas are covered in detail.

In a world increasingly conscious of the potential effects of science and technology on the environment, laboratory safety and the safety of the public at large are of importance. International and national aspects of these matters are reviewed in Chapter 12.

Measurement and instrumentation is not a passive and isolated subject that can be defined in terms of specific experiments. Real experiments involve complex systems, considered approximations, and compromises between competing