GREENHOUSE
Technology and Applications

Vilas M. Salokhe Ajay K. Sharma
Published by:
Mrs. Geeta Somani
Agrotech Publishing Academy
11A-Vinayak Complex-B
Durga Nursery Road, Udaipur
Mob.: 9414169635, 9413763031
Email: agrotechbooks@rediffmail.com
Website: www.agrotechbooks.com

DISCLAIMER

Information contained in this book has been published by Agrotech Publishing Academy and has been obtained by its authors believed to be reliable and are correct to the best of their knowledge. However, the publisher and its authors shall in no event be liable for any errors, omissions or damage arising out of use of this information and specially disclaim any implied warranties or merchantability or fitness for any particular use. Disputes if any, are subjected to Udaipur jurisdiction only.

Price
AGROTech
Rs. 1600/-

First Edition 2006
© All Rights Reserved

Second Print 2012

ISBN: (10) 81-8321-057-0
ISBN: (13) 978-81-8321-057-7

Typeset by:
Image Print Media, Udaipur
imageprintmedia@rediffmail.com
Contact No.: 9413467622, 2413922

Printed in India
PREFACE

The world scenario has been changing from plentiful to limited resource applications; extensive to intensive farming practices; and indiscriminate use of chemicals to judicial applications. Increasing demands for non-seasonal fruits/vegetables and other agricultural products need a controlled environment where it is possible to grow them irrespective of the ambient seasonal conditions. The greenhouse technology satisfactorily answers the most of above-mentioned circumstances. Instead of being merely a sustainable practice, greenhouse technology empowers agriculture as a profession giving more marginal returns to the input. A widely accepted reason for growing plants, in greenhouses rather than outside is its ability to control the environment. A greenhouse protects crops inside from extreme temperatures, high winds, heavy rains, destructive storms, and insects and diseases. The greenhouse cultivation as the current trend, extends the growing and crop production season, which maximizes the equipment utilization, expands the export season span, increases the annual yield per unit area with efficient use of inputs supplied, and thus eventually increases profitability.

The greenhouse cultivation is an agro-system that presents important productive advantages in comparison with un-protected or open-air cultivation. Tropical conditions are favorable for vegetable production round the year if temperature and irradiation conditions are considered, but the process is greatly hindered due to frequent occurrence of unsuitable weather conditions. Greenhouse cultivation reduces these bottlenecks and thus helps providing higher yields and better fruit quality. Vegetable cultivation in tropics is a source of fresh food, nutrients, and livelihood especially for rural population and thus is very important. Many researchers have mentioned benefits of greenhouse cultivation of vegetables in tropics as extension of harvesting time, reduced water consumption, reduced susceptibility towards plant-diseases, higher yields, better quality, better use of fertilizer and other input resources, and higher returns. Moreover, adapted greenhouse constructions and fertigation systems with lower manufacturing and maintenance costs are getting important place in sustainable vegetable production. Greenhouse cultivation is being widely adopted in many developing countries of Asia and other parts of the world. It has benefited thousands of farmers by improving their crop yields and profitability.
The aim of this book is to provide in depth knowledge of the greenhouse technology and its applications to students and other readers about the greenhouse cultivation. This book written on this special topic considers the needs and requirements of the tropical situations. The book has been divided into eleven chapters. Chapter 1 details about the rationale for the protected cultivation, current practices and scope of this technology. The basic concepts and brief history of the developments of the greenhouse cultivation technology are included in the Chapter 2. The details of constituents of greenhouse environment and their effects on crop growth are enumerated in Chapter 3. The details of various types of greenhouses and the circumstances in which they are used are described in the Chapter 4. In the Chapter 5, the design details, the materials used for the constructions and their characteristics are given. The details of heating and cooling of the greenhouses are given in the Chapter 6. The root media is important in greenhouse cultivation and the details of which are included in the Chapter 7. The details of soil-water-plant relationships are given in the Chapter 8. This chapter also deals with irrigation systems and water quality requirements. Chapter 9 deals with various instrumentation and automations used in greenhouse cultivation. They are divided into climatic measurements and controls as well as soil and plant environment. The details about the insects and pests of the crops commonly grown in greenhouses are given in the Chapter 10. The final Chapter 11 gives details about important aspect of nutrient management for the greenhouse crops. In addition to above, in every chapter a number of solved examples are included for the practices of the students. At the end of each chapter a list of review questions is also included. A number of figures and tables are included in every chapter for the easy understanding of the readers.

We have tried to give all possible details about the increasingly popular technology but pointing out any misses is most welcome. We are quite confident that students at under graduate as well as graduate studies will be highly benefited by this book.

There are many people who directly or indirectly helped during writing of this book. We are grateful to Mr. Peeyush Soni for his help during manuscript preparations. In addition Mr. Jaisa Ram, Mr. Vikas Singh Atray and Mr. Rajesh Sharma of Apex Computing Centre, Udaipur helped in formatting and redrawing of some figures. Authors gratefully acknowledge their generous help.

The authors are also grateful to Agrotech Publishing Academy, Udaipur for agreeing to publish and distribute this book.

January 2006

Authors
Table of Contents

Preface

1. **Controlled Environment Agriculture: An introduction** 1-9
 1.1 Controlled environment agriculture 1
 1.2 Factors affecting plant growth 2
 1.3 Conventional versus protected cultivation 5
 1.4 Importance of protected cultivation 6
 1.5 Scope of greenhouse technology 8
 1.6 Economics of protected cultivation food production 9

 Review questions 9

2. **Greenhouse: Concept and Applications** 10-27
 2.1 The atmosphere 10
 2.2 Greenhouse concept 12
 2.3 Global greenhouse effect 12
 2.4 Brief history of controlled environment agriculture 14
 2.5 Geographical distribution of greenhouses 15
 2.6 Greenhouse applications 22

 Review questions 27

3. **Constituents of Greenhouse Environment** 28-52
 3.1 Greenhouse environment 28
 3.2 Light 28
 3.3 Air composition: carbon dioxide 36
 3.4 Temperature 45
 3.5 Humidity 50
 3.6 Root media 51

 Review questions 52

4. **Classification of Greenhouses** 53-86
 4.1 Classification on working principles 53
 4.2 Classification on the basis of shape 65
4.3 Classification on the basis of cost of construction or extent of environmental control 77
4.4 Classification on the basis of greenhouse cover material 79
4.5 Classification on the basis of utility 84
4.6 Classification based on season 84

Review questions 86

5. **Greenhouse Construction** 87-112
5.1 Climatic considerations 87
5.2 Problems and requirements of greenhouses 88
5.3 Factors to be considered for constructing a greenhouse 90
5.4 Standards for the construction 94
5.5 Different load factors for greenhouse construction 95
5.6 Materials and methods of construction 100
5.7 Properties of greenhouse coverings 109
5.8 Structural components of the greenhouse 111

Review questions 112

6. **Heating and Cooling of Greenhouses** 113-145
6.1 Units of heat 113
6.2 Modes of heat loss 113
6.3 Heating arrangements 114
6.4 Heat load calculations 122
6.5 Greenhouse cooling 125
6.6 Natural ventilation 130
6.7 Forced ventilation 130
6.8 Ventilation efficiency ratio 131
6.9 Greenhouse summer cooling systems 132
6.10 Calculations for fan-pad cooling system for a greenhouse 137
6.11 Greenhouse winter cooling systems 140
6.12 Combination of cooling and heating systems 142

Review questions 145

7. **Root-Media** 146-166
7.1 Functions of root media 146
7.2 Properties of root media 147
7.3 Components of root media 152
7.4 Soil based media 157
Chapter 1

CONTROLLED ENVIRONMENT AGRICULTURE: AN INTRODUCTION

The basic agricultural needs of a society, such as food, feed and fiber are fulfilled through agricultural productivity. There is no longer enough land available for agriculture, with the exception of few countries. Thus in order to meet the food requirements of the increasing population, productivity has to increase several times more than the present yield. Agriculture is a field, which is not generally preferred due to the drudgery while working in the field. Consequently, migration from rural to urban areas has become a common feature of our society. For this reason, agriculture should become more profitable and associated hard work should be minimized.

In many developing countries, agriculture has been a sustainable foreign exchange earner, which is necessary for national development. Enhancement of production of fresh fruits, vegetables, flowers and indoor plants for domestic as well as for export, therefore, becomes relevant. Export of horticultural produce requires high quality standards and assured availability. However, the traditional open field growing techniques are greatly constrained to meet export obligations resulting from the heavy use of chemicals and fertilizers. There is a need, therefore, to look for alternative technologies to increase agricultural yield. The use of efficient inputs must be improved and the latest technological developments should be incorporated as well in order to achieve the domestic as well as export food and nutritional targets.

1.1 Controlled Environment Agriculture

The adverse climatic conditions limit severely the plant growth all throughout the year or during parts of the year. To overcome this, the control of plant environment has become an essential strategy. The environmental factors over which some degree of control is required are illumination with regards to intensity, quality and photoperiod, air temperature, air moisture content (relative humidity), air composition on both the content of CO₂ and exclusion of impurities such as insects, fungus and spores.

The growth of crops is inhibited when any of these factors become restrictive. Therefore, the environment should be suitably regulated to trap the full potential of a given crop or plant type. It has been observed