Introduction to Measurements and Instrumentation

FOURTH EDITION

ARUN K GHOSH
Visiting Professor
Sir J.C. Bose School of Engineering, Hooghly
Formerly
Head, Instrumentation Centre, University of Kalyani
Principal, Murshidabad College of Engineering and Technology, Berhampore
Principal, Bengal College of Engineering and Technology, Durgapur

PHI Learning Private Limited
New Delhi-110001
2012
To
the memory of my elder brother
AMIYA
Contents

Foreword ix
Preface xi
Preface to the First Edition xiii
List of Abbreviations xv

1. INTRODUCTION 1–3
1.1 Measurements 1
1.2 Instruments 2

2. STATIC CHARACTERISTICS OF INSTRUMENTS 4–28
2.1 Desirable Characteristics 4
2.2 Undesirable Characteristics 9
Review Questions 24

3. ESTIMATION OF STATIC ERRORS AND RELIABILITY 29–79
3.1 Definition of Parameters 29
3.2 Limiting Error 31
3.3 Statistical Treatment 34
3.4 Error Estimates from the Normal (or Gaussian) Distribution 41
3.5 Chi-Square Test 49
3.6 Curve Fitting Methods 51
3.7 Reliability Principles 65
Review Questions 75

4. DYNAMIC CHARACTERISTICS OF INSTRUMENTS 80–112
4.1 Transfer Function 80
4.2 Standard Inputs to Study Time Domain Response 82
4.3 Dynamic Characteristics 84
4.4 Zero Order Instrument 85

v
4.5 First Order Instrument 86
4.6 Second Order Instrument 96
Review Questions 108

5. TRANSUCERS 113–169
5.1 Classification of Transducers 113
5.2 A Few Phenomena 116
5.3 Selection of Transducers 165
5.4 Smart Sensors and IEEE 1451 Standard 166
Review Questions 168

6. DISPLACEMENT MEASUREMENT 170–237
6.1 Pneumatic Transducers 170
6.2 Electrical Transducers 173
6.3 Optical Transducers 200
6.4 Ultrasonic Transducer 211
6.5 Magnetostrictive Transducer 215
6.6 Digital Displacement Transducers 216
6.7 Proximity Sensors 220
Review Questions 232

7. STRAIN MEASUREMENT 238–279
7.1 Stress-Strain Relations 238
7.2 Resistance Strain Gauges 241
7.3 Fibre-optic Strain Gauges 264
Review Questions 275

8. PRESSURE MEASUREMENT 280–329
8.1 Definitions 280
8.2 Pressure Units and Their Conversions 282
8.3 Comparison with Known Dead-weights 283
8.4 Force-summing Devices 291
8.5 Secondary Transducers 296
8.6 Vacuum Measurement 306
8.7 Accessories 318
Review Questions 324

9. ACCELERATION, FORCE AND TORQUE MEASUREMENT 330–371
9.1 Acceleration Measurement 330
9.2 Force Measurement 339
9.3 Industrial Weighing Systems 346
9.4 Torque Measurement 350
9.5 Tachometers 359
Review Questions 369
14.3 Mass Spectrometer 632
14.4 Infrared Analyser 653
14.5 Atomic Spectrometry 666
14.6 UV-visible Absorption Spectrophotometer 682
14.7 Nuclear Magnetic Resonance Spectroscopy 684
14.8 Electron Spin Resonance Spectrometer 690
14.9 X-ray Methods 695
14.10 Radiation Detectors 714
14.11 Sample Handling Systems 715
Review Questions 719

15. HAZARDOUS AREAS AND INSTRUMENTATION 725–741
15.1 Classification 725
15.2 Explosion Protection of Electrical Apparatus 728
15.3 Intrinsically Safe Instrumentation 730
Review Questions 740

16. SIGNAL CONDITIONING 742–819
16.1 Bridge Circuits 742
16.2 Conditioning Processes 754
16.3 Recovery of Signals 793
16.4 Signal Conversion 796
Review Questions 812

17. DISPLAY DEVICES AND RECORDING SYSTEMS 820–856
17.1 Classification and Comparison 820
17.2 Characteristics of Digital Display 821
17.3 Digital Display Elements 822
17.4 Recording 835
17.5 Data Acquisition Systems 847
17.6 Virtual Instrumentation 851
Review Questions 854

Appendix A Variance of Combinations 857
Appendix B Linear Time-invariant Systems 858–860
Appendix C Laplace Transform 861–864
Appendix D Statistical Tables 865–866
Appendix E Psychrometric Table 867
Appendix F Miscellaneous Data 868–873
Appendix G Solutions to Numerical Problems 874–907
Index 909–919
Metrology is the science and technology of measurement. Since time immemorial, reliable measurement of various commodities and quantities has been important for trade and commerce as well as for agricultural and industrial activities. The present-day drive towards globalisation of the economy has made this to be a priority task both at national and international levels. Modern engineering practices require sufficiently precise and fast measurements. Science is breaking new ground in measuring the very tiny and the very big. Therefore, an introductory course on instrumentation principles, with an appreciation of the possible errors in the measurements, constitutes an important part of learning for both science and engineering students.

Although many voluminous treatises on this subject are available, Dr Ghosh’s *Introduction to Instrumentation and Control* is a well-focussed textbook covering the physical principles rather than the engineering details, which can be taught in one semester of the undergraduate curriculum. The contents of the book cover most of the requirements of the students. Of course, each topic can become the subject of a detailed discussion. For example, the topic of signal conditioning is by itself a vast area of research work. Students specialising in various subjects will however find a common minimum amount of learning in this book.

Dr Ghosh’s presentation is lucid and the style is not verbose. I am sure that the book will be welcomed by the student community and become a success in its area.

Prof ES Raja Gopal
Emeritus Scientist
Department of Physics
Indian Institute of Science, Bangalore
Formerly, Director
National Physical Laboratory
New Delhi