Manual of Practical Biochemistry
for
Dental Students

By

DR. RITU MAHAJAN
Ph.D. (Biochemistry)
Associate Professor,
Department of Biotechnology
Kurukshetra University, Kurukshetra, Haryana (India)
Manual of Practical Biochemistry

for

Dental Students

Name: ...

Roll No.: ..

Session: ..

Class: ..

College/Institute/University..
This manual is written with an objective to provide brief, but complete and easily understandable, various aspects of Practical Biochemistry to Dental students.

The manual covers the syllabi of almost all the Indian Universities and also covers the practical syllabus as prescribed by Dental Council of India (DCI). This manual would be equally beneficial for the students who are pursuing their career in various branches of Dental Sciences.

The author has also included one chapter on the preparation of various types of solutions, buffers and the terms which are commonly used in this field, have been explained with suitable examples.

The manual is written in a students friendly language. Separate chapter "important points to remember" emphasizes on maintainence of accuracy during Biochemical experimentation, which is the backbone for biochemical work, has also been included.

For qualitative analysis, scheme for the identification of carbohydrates, proteins, lipids and biologically important compounds is given so that students can themselves perform experiments by following that scheme.

For quantitative analysis, observation tables are given along with complete procedure in a systematic manner. Method for the preparation of standard curve, calculations are given in a very simple, easily understandable manner and space has also been provided to record the readings and other data.

In each chapter, important points are highlighted separately and at the end of the manual, a list of important points has been summarized. This would be a ready reference for the students appearing for various entrance tests.

Some experiments have been modified keeping in mind the normal availability of the equipment facility in the laboratory. Our aim is to give the students, solid foundation for understanding the practical aspects of Bio-chemistry and make them understand each and every step in a clear way.
The author also wishes to thank her family members for their full support.

The author acknowledges with thanks to Dr. Rajiv K. Jain, Mr. Vijay Kumar Saini, Ms. Shahina, Mr. Kaushik and other members of *Vayu Education of India*, Daryaganj, New Delhi-110002, for their full support and dedication in bringing out this manual.

Suggestions for improvement of this manual from Dentists, research scholars, teachers, as well as students are most welcome.

Ritu Mahajan
Contents

Preface .. (vii)

1. Commonly used Instruments for Medical Biochemical Work .. 1
2. General Rules ... 7
3. Important Points to Remember .. 10
4. Terms In Common use For Bio-Chemical Work ... 12
5. Collection of Specimens for Analysis .. 19
6. Photometry (Colorimeter and Spectrophotometer) ... 21

QUALITATIVE ANALYSIS

7. General Reactions of Carbohydrates ... 31
8. Scheme for the Identification of Carbohydrates ... 49
9. General Reactions of Proteins and Amino Acids ... 51
10. Scheme for Identification of Proteins ... 66
11. General Reactions of Lipids ... 68
12. Urine Analysis .. 74
13. Analysis of Normal Urine .. 87
14. Analysis for Abnormal Constituents in Urine .. 91
15. Scheme for the Identification of Biologically Important Substances ... 96
16. Identification of Non-protein Nitrogenous Substances ... 98
17. Analysis of Milk .. 101
18. Analysis of Saliva ... 105
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Salivary Amylase-Mode of Action</td>
<td>108</td>
</tr>
<tr>
<td>20</td>
<td>To Separate Given Mixture of Amino Acids/Sugars</td>
<td>111</td>
</tr>
<tr>
<td>21</td>
<td>Separation of Lipids by Thin Layer Chromatography (TLC)</td>
<td>115</td>
</tr>
<tr>
<td>22</td>
<td>Paper Electrophoresis</td>
<td>118</td>
</tr>
<tr>
<td>23</td>
<td>Estimation of Blood Sugar</td>
<td>127</td>
</tr>
<tr>
<td>24</td>
<td>Estimation of Serum Proteins</td>
<td>138</td>
</tr>
<tr>
<td>25</td>
<td>Protein Fractionation (Albumin and Globulins)</td>
<td>145</td>
</tr>
<tr>
<td>26</td>
<td>Estimation of Blood Urea</td>
<td>149</td>
</tr>
<tr>
<td>27</td>
<td>Estimation of Serum Uric Acid</td>
<td>154</td>
</tr>
<tr>
<td>28</td>
<td>Estimation of Serum Creatinine</td>
<td>159</td>
</tr>
<tr>
<td>29</td>
<td>Estimation of Urine Creatinine</td>
<td>163</td>
</tr>
<tr>
<td>30</td>
<td>Estimation of Serum Bilirubin</td>
<td>167</td>
</tr>
<tr>
<td>31</td>
<td>Estimation of Serum Cholesterol</td>
<td>173</td>
</tr>
<tr>
<td>32</td>
<td>To Estimate the Level of Triglycerides in the Serum Sample</td>
<td>177</td>
</tr>
<tr>
<td>33</td>
<td>Lipid Profile</td>
<td>183</td>
</tr>
<tr>
<td>34</td>
<td>Estimation of Serum Calcium</td>
<td>185</td>
</tr>
<tr>
<td>35</td>
<td>Estimation of Serum Inorganic Phosphorus</td>
<td>191</td>
</tr>
<tr>
<td>36</td>
<td>Estimation of Titrable Acidity and Ammonia in Urine</td>
<td>195</td>
</tr>
<tr>
<td>37</td>
<td>Free and Total Acidity in Gastric Juice</td>
<td>201</td>
</tr>
<tr>
<td>38</td>
<td>Glucose Tolerance Test Profile</td>
<td>205</td>
</tr>
<tr>
<td>39</td>
<td>Serum Enzymes-SGPT, SGOT and Alkaline Phosphatase</td>
<td>210</td>
</tr>
<tr>
<td>40</td>
<td>Liver Function Test (LFT)</td>
<td>221</td>
</tr>
<tr>
<td>41</td>
<td>Kidney (Renal) Function Test</td>
<td>225</td>
</tr>
<tr>
<td>42</td>
<td>Blood Gas Analysis in Acidosis/Alkalosis</td>
<td>234</td>
</tr>
<tr>
<td>43</td>
<td>Basal Metabolic Rate (BMR)</td>
<td>237</td>
</tr>
</tbody>
</table>

Important Points | 241 |
Biochemistry deals with the chemical changes which take place in the living system (Here we are concerned with the human body) So whatever chemical reactions are taking place in the human body with the help of enzymes, all come under Biochemistry.

Clinical Biochemistry gives us status of various Components/Metabolites/Enzymes present in body fluids (Blood, Urine, CSF etc.) and hence helps in the diagnosis of the disease.

Accuracy during biochemical tests is very very important aspect because wrong diagnosis can be made if the results are not correct. So accuracy is required at every step.

(i) Weighing should be accurate.
(ii) Solutions of standards, reagents should be made properly.
(iii) Pipetting should also be accurate because all results depend upon the accuracy in weighing, pipetting and preparation of the solutions to the required volume.
(iv) Knowledge about the proper working of equipments is very essential.
(v) Protocol of various tests should be followed exactly in the same way as given for each test.
(vi) Calculations should be done very carefully.
(vii) Every test sample should be taken in duplicate. If more difference in the result in duplicate samples is observed, then repeat the test again in order to avoid wrong interpretation of the results.
QUALITATIVE ANALYSIS
GENERAL REACTIONS OF CARBOHYDRATES

CARBOHYDRATES ARE ALDEHYDE/KETONE DERIVATIVES OF POLYHYDROXY ALCOHOLS OR COMPOUNDS WHICH YIELD THESE DERIVATIVES ON HYDROLYSIS

- Sugars such as glucose are amongst the major sources of energy whereas starch and glycogen function as storage polysaccharides in plants and animals respectively.
- They are also constituents of vital molecules like nucleic acids, coenzymes such as NAD(P), FAD etc.
- \((\text{CH}_2\text{O})_n\) carbohydrates are referred to as saccharides (Greek: Sakcharon meaning sugar).

Three major classes:
1. **Monosaccharides**: They are simple sugars and consist of single polyhydroxy aldehyde or polyhydroxyketone unit. These can not be hydrolysed into simpler forms.

 General formula – \((\text{CH}_2\text{O})_n\)

 Reducing property is due to the presence of free aldehyde or keto groups

Most important monosaccharides are **hexoses** and **pentoses**. D-glucose, six carbon monosaccharide is the most common sugar found in nature. Examples of monosaccharides are glucose, fructose, ribose, galactose, arabinose etc.

2. **Oligosaccharides**: oligo (Greek word means few). Oligosaccharides consists of 2-10 units of monosaccharides linked to each other via glycosidic linkages.

 Disaccharides: Lactose, maltose, sucrose

 Sucrose \((\text{Cane sugar})\) \hspace{1cm} \text{Lactose} \hspace{1cm} \text{Maltose} \hspace{1cm} \text{(Malt sugar)}

 Table sugar \hspace{1cm} \downarrow \hspace{1cm} \downarrow \hspace{1cm} \downarrow

 Glucose + fructose \hspace{1cm} \text{Glucose + galactose} \hspace{1cm} \text{Two glucose units}
In Lactose – C-1 of galactose and C-4 of glucose is involved in glycosidic linkage. In Maltose – C-1 of glucose and C-4 of glucose is involved in glycosidic linkage.

Lactose and maltose are reducing sugars because of free aldehyde group of one of the monosaccharide residues. In sucrose, glycosidic linkage is between C-1 of glucose and C-2 of fructose so free aldehyde or keto group is not available that’s why sucrose is a non-reducing sugar.

3. **Polysaccharides**: Polysaccharides are made up of more than ten monosaccharide units, e.g., Dextrin, inulin, cellulose, starch, glycogen etc.

QUALITATIVE TESTS

Rapid tests are available to establish the presence or absence of a carbohydrate in a sample. These tests are based on specific colour reactions typical for their group.

<table>
<thead>
<tr>
<th>Name of Test</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Molisch Test</td>
<td>General Test for carbohydrates</td>
</tr>
<tr>
<td>2. Anthrone Test</td>
<td>General Test for carbohydrates</td>
</tr>
<tr>
<td>3. Iodine Test</td>
<td>For starch, glycogen</td>
</tr>
<tr>
<td>4. Barfoed Test</td>
<td>Distinguish between monosaccharide from reducing disaccharides.</td>
</tr>
<tr>
<td>5. Seliwanoff Test</td>
<td>For Ketohexoses</td>
</tr>
<tr>
<td>6. Fehling Test</td>
<td>For reducing sugars</td>
</tr>
<tr>
<td>7. Benedict Test</td>
<td></td>
</tr>
<tr>
<td>8. Picric Acid Test</td>
<td>For galactose</td>
</tr>
<tr>
<td>9. Tommer Test</td>
<td></td>
</tr>
<tr>
<td>10. Tollen Test</td>
<td>For pentoses</td>
</tr>
<tr>
<td>11. Bial’s Test</td>
<td></td>
</tr>
</tbody>
</table>

1. Molisch Test

It is a general test for all Carbohydrates. A positive test indicates the presence of carbohydrate in a test solution.

\[\text{Glucose} \xrightarrow{\text{Conc. } \text{H}_2\text{SO}_4} \text{Hydroxy methyl furfural} \xrightarrow{\alpha\text{-naphthol}} \text{Violet Colour Complex} \]

Carbohydrates when treated with concentrated H₂SO₄ (hydrolyses glycosidic bonds) and yield monosaccharides, which in the presence of an acid get dehydrated to form furfural or its derivatives which on condensation with α-naphthol form a violet colour complex. **All Carbohydrates except amino sugars give this test.**

Disaccharides and Polysaccharides are also hydrolysed by concentrated H₂SO₄ into monosaccharides which give a positive test.
Reagents:
1. Concentrated H_2SO_4
2. α-naphthol (5% w/v) in ethanol (prepare fresh)

Procedure: To 2 ml of sugar solution, add 2 drops of α-naphthol solution (Molisch’s reagent). Mix thoroughly. Add 2 ml of concentrated H_2SO_4 along the side of the test tube very gently by keeping the tube slightly in an inclined position so that two distinct layers are formed. Appearance of purple colour at the junction of two layers indicates the presence of carbohydrate in the sample.

Precautions
1. α-naphthol solution is unstable and should be prepared fresh.
2. Concentrated H_2SO_4 should be added along the sides of the test tube causing minimal disturbance to the contents in the tube.

2. Anthrone Test: This is also another general test for carbohydrates.

Reagents
1. Concentrated H_2SO_4
2. 0.2% w/v anthrone solution in concentrated H_2SO_4.

Procedure: Add 1 ml of test solution to 2 ml of anthrone reagent and mix thoroughly. Keep the tube in boiling water bath for 10 minutes. Bluish green colour would appear if test is positive.
3. **Iodine Test**: It is a test for polysaccharide which adsorb I$_2$ and form coloured complex. Starch gives blue colour, dextrin gives reddish purple colour, while glycogen gives reddish brown colour.

Reagents:
1. Iodine solution (0.1N)

 Dissolve 1.27 g I$_2$ and 3 gm KI crystals in 100 ml distilled water. Dilute 1:10 in distilled water before use.

Procedure: Take 1ml of sugar solution in a test tube, add a drop of dilute HCl to acidify the solution or 5 drops of glacial acetic acid. Add 4-5 drops of I$_2$ solution to it and mix the contents gently. Note the colour of the product. Gently warm the solution and then cool it. Note the change in colour.

4. **Benedict Test**: All reducing sugars give this test positive. Reducing sugars have a free aldehyde or keto group which undergoes tautomerisation into enediol forms under hot alkaline condition. The enediols are strong reducing agents and they convert cupric ions of the benedict's solution into cuprous ions which ultimately form cuprous oxide as a red precipitate.

 Common sugars like glucose, fructose, galactose, maltose, lactose are reducing sugars. Sucrose is non reducing sugar and does not give a positive Benedict test.

 - Benedict reagent give different coloured precipitate ranging from green, yellow, orange, red depending upon the amount of sugar present. This is due to the larger particle size of the Cu$_2$O with gradual increase in concentration of the sugar. A very fine particle size produces yellow precipitate while large coarse particles give red precipitate.

Reagents
1. **Benedict Reagent**: Dissolve 173 g of sodium citrate and 100 g of anhydrous Na$_2$CO$_3$ in about 600ml of hot water. Dilute to 800 ml with water.
2. Dissolve 17.3 g of CuSO$_4$$\cdot$5H$_2$O in 100 ml hot water. Cool and dilute to 150 ml.
3. Add reagent No. 2 to reagent No. 1 slowly with constant stirring. Make the final volume to 1.0 litre.
Procedure: To 1 ml of the test solution, add 2 ml of Benedict’s reagent. Keep the test tubes in boiling water bath for 3 minutes. Appearance of green, yellow, orange and brick red colour indicates the presence of reducing sugar.

Sodium citrate functions as a chelating agent (prevents the precipitation of cupric ions as cupric hydroxide by forming a loosely bound cupric-sodium citrate complex which on dissociation gives a continuous supply of cupric ions.

\[
\begin{align*}
\text{Na}_2\text{CO}_3 + 2\text{H}_2\text{O} & \quad \rightarrow \quad 2\text{NaOH} + \text{H}_2\text{CO}_3 \\
2\text{NaOH} + \text{CuSO}_4 & \quad \rightarrow \quad \text{Cu(OH)}_2 + \text{Na}_2\text{SO}_4 \\
\text{Cu(OH)}_2 & \quad \rightarrow \quad \text{CuO} + \text{H}_2\text{O} \\
\text{D-glucose} + 2\text{CuO} & \quad \rightarrow \quad \text{D-gluconic acid} + \text{Cu}_2\text{O} \quad \text{(red precipitate)}
\end{align*}
\]

5. **Fehling Test:** It is specific and highly sensitive for detection of reducing sugars. Formation of yellow or red precipitate of cuprous oxide indicates the presence of reducing sugars. Rochelle salt acts as the chelating agent in this reaction (it prevents the precipitation of cupric ions) in place of sodium citrate (which is used in Benedict test).

\[
\begin{align*}
\text{CuSO}_4 + 2\text{KOH} & \quad \rightarrow \quad \text{Cu(OH)}_2 + \text{K}_2\text{SO}_4 \\
\text{Cu(OH)}_2 & \quad \rightarrow \quad \text{CuO} + \text{H}_2\text{O} \\
\text{D-glucose} + 2\text{CuO} & \quad \rightarrow \quad \text{D-gluconic acid} + \text{Cu}_2\text{O}
\end{align*}
\]

Cuprous oxide
(red precipitate)

Reagents

1. Fehling’s solution A—Dissolve 35 g of CuSO₄·5H₂O in water and make the volume to 500 ml.
2. Fehling’s solution B—Dissolve 120 g of KOH and 173 g NaK tartarate (Rochelle salt) in water and make the volume to 500 ml.

3. Fehling reagent: Mix equal volumes of fehling’s solutions A and B. These solutions must be mixed immediately prior to use.

Procedure: Add 1 ml of fehling’s reagent (Reagent No. 3) to 1 ml of test solution. Mix thoroughly and place the test tubes in boiling water bath. Appearance of red precipitate of cuprous oxide indicates the presence of reducing sugar in the test solution.

6. Picric Acid Test

Picric acid → Picramic acid
(Red colour)

Reagents

1. 10% sodium carbonate
2. Saturated picric acid

Procedure: To 5 ml of test solution, add 2-3 ml of saturated picric acid solution and about 1 ml of 10% Na₂CO₃. Warm. Development of red colour indicates the presence of reducing sugar.

7. Tommer Test

Carbohydrates with carbonyl group or reducing sugars like glucose, fructose, lactose, maltose etc. have the ability to reduce the alkaline solution of CuSO₄ and form yellow to reddish brown precipitate of cuprous oxide (Cu₂O).

\[
\text{CuSO}_4 + 2 \text{NaOH} \rightarrow \text{Cu(OH)}_2 + \text{Na}_2\text{SO}_4
\]

\[
2\text{Cu(OH)}_2 + \text{reducing sugar} \xrightarrow{\text{heat}} \text{Cu}_2\text{O} + 2\text{H}_2\text{O} + [\text{O}] \rightarrow \text{Nascent oxygen taken up by Carbohydrate or sugar}
\]