Exercise 11C

Question 1:

```
∠BDC = ∠BAC = 40^\circ [angles in the same segment]

In∆BCD, we have

∠BCD + ∠BDC + ∠DBC = 180^\circ

∴ ∠BCD + 40^\circ + 60^\circ = 180^\circ

⇒ ∠BCD = 180^\circ - 100^\circ = 80^\circ

∴ ∠BCD = 80^\circ
```



```
(ii) Also \angle CAD = \angle CBD [angles in the same segment]

\angle CAD = 60^{\circ} [\therefore \angle CBD = 60^{\circ}]
```

Question 2:

In cyclic quadrilateral PQRS

Now in $\triangle PRQ$ we have

$$\angle PQR + \angle PRQ + \angle RPQ = 180^{\circ}$$

 $\Rightarrow 30^{\circ} + 90^{\circ} + \angle RPQ = 180^{\circ} [from (i) and(ii)]$
 $\Rightarrow \angle RPQ = 180^{\circ} - 120^{\circ} = 60^{\circ}$
 $\angle RPQ = 60^{\circ}$

Question 3:

In cyclic quadrilateral ABCD, AB | DC and \(\text{BAD} = 100° \)

Question 4:

Take a point D on the major arc CA and join AD and DC

Angle subtended by an arc is twice the angle subtended by it on the circumference in the alternate segment.

 $\angle PBC = \angle 1$

 $[\cdot \cdot \cdot \cdot]$ exterior angle of a cyclic quadrilateral interior opposite angle]

Question 5:

ABCD is a cyclic quadrilateral ∴ ∠ABC + ∠ADC = 180° ⇒ 92° + ∠ADC = 180° ⇒ ∠ADC = 180° - 92° = 88°

Also,
$$AE \parallel CD$$
 $\therefore \angle EAD = \angle ADC = 88^{\circ}$
 $\therefore \angle BCD = \angle DAF$
 $[\because exterior angle of a cyclic quadrilateral = int.opp.angle]$
 $\therefore \angle BCD = \angle EAD + \angle EAF$
 $= 88^{\circ} + 20^{\circ}$
 $= 108^{\circ}$
 $\therefore \angle BCD = 108^{\circ}$

Question 6:

In $\triangle BCD$, we have

The opposite angles of a cyclic quadrilateral are supplementary. ABCD is a cyclic quadrilateral and thus,

$$\angle CDB + \angle BAC = 180^{\circ}$$

= $180^{\circ} - 120^{\circ} [\because \angle CDB = 120^{\circ}]$
= 60°
 $\angle BAC = 60^{\circ}$

Question 7:

Angle subtended by an arc is twice the angle subtended by it on the circumference in the alternate segment. Here arc ABC makes ZAOC =100° at the centre of the circle

and ZADC on the circumference of the circle

∴∠AOC = 2∠ADC
⇒ ∠ADC =
$$\frac{1}{2}$$
(∠AOC)

$$\Rightarrow = \frac{1}{2} \times 100^{\circ} [\angle AOC = 100^{\circ}]$$

⇒∠ADC=50°

The opposite angles of a cyclic quadrilateral are supplementary ABCD is a cyclic quadrilateral and thus,

Question 8:

- Δ ABC is an equilateral triangle.
- ... Each of its angle is equal to 60°
- ⇒ ∠BAC = ∠ABC = ∠ACB = 60°

- (i) Angle's in the same segment of a circle are equal.
- ... ZBDC = ZBAC

- ⇒ ∠BDC = 60°
- (ii) The opposite angles of a cyclic quadrilateral are supplementary ABCE is a cyclic quadrilateral and thus,

Question 9:

ABCD is a cyclic quadrilateral.

opplangle of a cyclic quadrilateral are supplementary

$$\Rightarrow$$
 $\angle A + 100^{\circ} = 180^{\circ}$

Now in AABD, we have

O is the centre of the circle and
$$\angle BOD = 150^{\circ}$$

 \therefore Reflex $\angle BOD = (360^{\circ} - \angle BOD)$
 $= (360^{\circ} - 150^{\circ}) = 210^{\circ}$

Now,
$$x = \frac{1}{2} (\text{reflex} \angle BOD)$$

 $= \frac{1}{2} \times 210^{\circ} = 105^{\circ}$
 $\therefore \qquad \times = 105^{\circ}$
Again, $x + y = 180^{\circ}$
 $\Rightarrow \qquad 105^{\circ} + y = 180^{\circ}$
 $\Rightarrow \qquad y = 180^{\circ} - 105^{\circ} = 75^{\circ}$
 $\therefore \qquad y = 75^{\circ}$

Question 11:

O is the centre of the circle and $\angle DAB = 50^{\circ}$

$$OA = OB \qquad [Radii]$$

$$\Rightarrow \qquad \angle OBA = \angle OAB = 50^{\circ}$$

$$OX^{\circ}y^{\circ}$$

$$A = OB \qquad [Radii]$$

In △OAB we have

$$\angle$$
OAB + \angle OBA + \angle AOB = 180°
 \Rightarrow 50° + 50° + \angle AOB = 180°

Since, AOD is a straight line,

$$=180^{\circ} - 80^{\circ} = 100^{\circ}$$

 $\times =100^{\circ}$

The opposite angles of a cyclic quadrilateral are supplementary.

ABCD is a cyclic quadrilateral and thus,

$$\angle$$
DAB + \angle BCD = 180°
 \angle BCD = 180° − 50°[: \angle DAB = 50°, given]
=130°
⇒ y −130°
Thus, x =100° and y = 130°

Question 12:

ABCD is a cyclic quadrilateral.

We know that in a cyclic quadrilateral exterior angle = interior opposite angle.

Question 13:

AB is a diameter of a circle with centre O and DO || CB, \angle BCD = 120°

(i) Since ABCD is a cyclic quadrilateral $\therefore \qquad \angle$ BCD + \angle BAD = 180° $\Rightarrow \qquad 120^{\circ} + \angle$ BAD = 180° $\Rightarrow \qquad \angle$ BAD = 180° - 120° = 60°

(ii) $\angle BDA = 90^{\circ}$ [angle in a semi circle] In $\triangle ABD$ we have $\angle BDA + \angle BAD + \angle ABD = 180^{\circ}$

$$\Rightarrow 90^{\circ} + 60^{\circ} + \angle ABD = 180^{\circ}$$

$$\Rightarrow \angle ABD = 180^{\circ} - 150^{\circ} = 30^{\circ}$$
(iii) OD = OA.
$$\Rightarrow \angle ODA = \angle OAD = \angle BAD = 60^{\circ}$$

$$\angle ODB = 90^{\circ} - \angle ODA$$

= $90^{\circ} - 60^{\circ} = 30^{\circ}$

Since DO | CB, alternate angles are equal

= 90° + 30° = 120°

Also, In \triangle AOD, we have \angle ODA + \angle OAD + \angle AOD = 180° $\Rightarrow \qquad 60^{\circ} + 60^{\circ} + \angle$ AOD = 180° $- 120^{\circ} = 60^{\circ}$ $\Rightarrow \qquad \angle$ AOD = 180° $- 120^{\circ} = 60^{\circ}$

Since all the angles of $\triangle AOD$ are of 60° each

∴ Δ AOD is an equilateral triangle.

Question 14:

AB and CD are two chords of a circle which interect each other at P, outside the circle. AB = 6cm, BP = 2 cm and PD = 2.5 cm Therefore, AP \times BP = CP \times DP

Or,
$$8 \times 2 = (CD + 2.5) \times 2.5 \text{ cm}$$
 [as $CP = CD + DP$]

Let x = CD Thus, $8 \times 2 = (x + 2.5) \times 2.5$ $\Rightarrow 16 \text{ cm} = 2.5 \times + 6.25 \text{ cm}$ $\Rightarrow 2.5 \times = (16 - 6.25) \text{ cm}$

⇒ $2.5 \times = 9.75 \text{ cm}$ ⇒ $\times = \frac{9.75}{2.5} = 3.9 \text{ cm}$

x=3.9 cm

Therefore, CD = 3.9 cm

Question 15:

In
$$\triangle OBD$$
, we have $\angle BOD + \angle OBD + \angle ODB = 180^\circ$ $\Rightarrow \angle BOD + \angle OBD + \angle OBD = 180^\circ$ $[\because \angle OBD = \angle ODB]$ $\Rightarrow 40^\circ + 2\angle OBD = 180^\circ$ $[\because \angle BOD = 40^\circ]$ $\Rightarrow 2\angle OBD = 180^\circ - 40^\circ = 140^\circ$ $\Rightarrow 2\angle OBD = 2\triangle ODB = \frac{140}{2} = 70^\circ$ Also, $\angle CAB + \angle BDC = 180^\circ$ $[\because ABCD \text{ is cyclic}]$ $\Rightarrow \angle CAB + \angle ODB + \angle ODC = 180^\circ$ $\Rightarrow 50^\circ + 70^\circ + \angle ODC = 180^\circ$ $\Rightarrow 2\triangle ODC = 180^\circ - 120^\circ = 60^\circ$ $\angle ODC = 60^\circ$ $\angle CDDC = 60^\circ$ $\angle CDDC = 180^\circ - 120^\circ = 50^\circ$ $\Rightarrow 180^\circ - 130^\circ = 50^\circ$ (ii) $\angle CDDC = 180^\circ - 2\triangle ODD =$

Question 16:

Consider the triangles, ΔEBC and ΔEDA Side AB of the cyclic quadrilateral ABCD is produced to E

Again, side DC of the cyclic quadrilateral ABCD is produced to $\!E$

∴ ∠ECB=∠BAD

⇒ ∠ECB=∠EAD(ii)

and ∠BEC=∠DEA [each equal to ∠E]....(iii)

Thus from (i), (ii) and (iii), we have $\triangle EBC \cong \triangle EDA$

Question 17:

 Δ ABC is an isosceles triangle in which AB = AC and a circle passing through B and C intersects AB and AC at D and E.

Since AB = AC
∴ ∠ACB = ∠ABC

So, ext. ∠ADE = ∠ACB = ∠ABC
∴ ∠ADE = ∠ABC
⇒ DE || BC.

Question 18:

 Δ ABC is an isosceles triangle in which AB = AC. D and E are the mid points of AB and AC respectively.

DE || BC

⇒ ∠ADE = ∠ABC(i)

Also, AB = AC [Given]

⇒ ∠ABC = ∠ACB(ii)

∴ ∠ADE = ∠ACB [From (i) and (ii)]

Now, ∠ADE + ∠EDB = 180°

∴ ∠ACB + ∠EDB = 180°

∴ ∠ACB + ∠EDB = 180°

 \Rightarrow The opposite angles are supplementary.

⇒ D,B,C and E are concyclic

i.e. D,B,C and E is a cyclic quadrilateral.

Question 19:

Let ABCD be a cyclic quadrilateral and let O be the centre of the circle passing through A, B, C, D.

Then each of AB, BC, CD and DA being a chord of the circle, its right bisector must pass through O.

... the right bisectors of AB, BC, CD and DA pass through and are concurrent.

Question 20:

ABCD is a rhombus.

Let the diagonals AC and BD of the rhombus ABCD intersect at O.

But, we know, that the diagonals of a rhombus bisect each other at right angles.

So,∠BOC = 90°

∴ ∠BOC lies in a circle.

Thus the circle drawn with BC as diameter will pass through O

Similarly, all the circles described with AB, AD and CD as diameters will pass through O.

Question 21:

ABCD is a rectangle.

Let O be the point of intersection of the diagonals AC and BD of rectangle ABCD.

Since the diagonals of a rectangle are equal and bisecteach other.

:.OA = OB = OC = OD

Thus, O is the centre of the circle through A, B, C, D.

Question 22:

Let A, B, C be the given points.
With B as centre and radius equal to AC draw an arc.

With C as centre and AB as radius draw another arc, which cuts the previous arcat D.

Then D is the required point BD and CD.

In △ABC and △DCB

AB = DC

AC = DB

BC = CB

[common]

ΔABC ≅ ΔDCB

[by SSS]

⇒ ∠BAC = ∠CDB

[CP.C.T]

Thus, BC subtends equal angles, \angle BAC and \angle CDB on the same side of it.

.. Points A,B,C,D are concyclic.

Question 23:

ABCD is a cyclic quadrilateral

$$\angle B - \angle D = 60^{\circ}$$
(i)

and

$$\angle B + \angle D = 180^{\circ}$$
(ii)

Adding (i) and (ii) we get,

$$\angle B = \frac{240}{2} = 120^{\circ}$$

Substituting the value of $\angle B = 120^{\circ}$ in (i) we get

$$\Rightarrow \qquad \angle D = 120^{\circ} - 60^{\circ} = 60^{\circ}$$

The smaller of the two angles i.e. $\angle D = 60^{\circ}$

Question 24:

ABCD is a quadrilateral in which AD = BC and ∠ADC = ∠BCD Draw DE ⊥AB and CF ⊥ AB

Now, in \triangle ADE and \triangle BCF, we have

$$\angle AED = \angle BFC$$
 [each equal to 90°]
 $\angle ADE = \angle ADC - 90^\circ = \angle BCD - 90^\circ = \angle BCF$
 $AD = BC$ [given]

Thus, by Angle-Angle-Side criterionof congruence, we have Δ ADE ≅ ΔBCF [by AAS congruence]

The corresponding parts of the congruent triangles are equal.

$$\angle A = \angle B$$
Now, $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$

$$\Rightarrow 2\angle B + 2\angle D = 360^{\circ}$$

$$\Rightarrow 2(\angle B + \angle D) = 360^{\circ}$$

$$\Rightarrow \angle B + \angle D = \frac{360}{2} = 180^{\circ}$$

$$\Rightarrow ABCD \text{ is a cyclic quadrilateral.}$$

Question 25:

If one side of a cyclic quadrilateral is produced then the exterior angle is equal to the interior opposite angle.

The opposite angles of the opposite angles of a cyclic quadrilateral is 180°

⇒
$$\angle DCF + \angle DEF = 180^{\circ}$$

⇒ $75^{\circ} + \angle DEF = 180^{\circ}$
⇒ $\angle DEF = 180^{\circ} - 75^{\circ} = 105^{\circ}$
As $\angle DEF = y^{\circ} = 105^{\circ}$
∴ $x = 75^{\circ}$ and $y = 105^{\circ}$

Question 26:

Given: Let ABCD be a cyclic quadrilateral whose diagonals AC and BD intersect at O at right angles Let OL I AB such that LO produced meets CD at M.

Question 27:

Chord AB of a circle is produced to E.

If one side of a cyclic quadrilateral is produced then the exterior angle is equal to the interior opposite angle.

Chord CD of a circle is produced to E : Ext. ZDBE = ZACD = ZACE....(2) Consider the triangles \triangle EDB and \triangle EAC. $\angle BDE = \angle CAE \text{ [from(1)]}$

$$\angle DBE = \angle ACE \text{ [from(2)]}$$

 $\angle E = \angle E$ [common]

ΔEDB~ΔEAC.

Question 28:

Given: AB and CD are two parallel chords of a circle BDE and ACE are straight lines which intersect at E. If one side of a cyclic quadrilateral is produced then the exterior angle is equal to the interior opposite angle.

$$\therefore$$
 ExtZEDC = ZA and, ExtZDCE = ZB

Also, AB | CD

 $\angle EDC = \angle B$ and $\angle DCE = \angle A$ $\angle A = \angle B$

Δ AEB is isosceles.

Question 29:

AB is a diameter of a circle with centre O. ADE and CBE are straight lines, meeting at E, such that∠BAD = 35° and $\angle BED = 25^{\circ}$.

Join BD and AC.

angle in a semi circle (i) Now, ZBDA = 90° = ZEDB

(ii) Again, $\angle DCB = \angle BAD$ angle in the same segment Since, ZBAD = 35°

(iii)
$$\angle BDC = 180^{\circ} - (\angle DBC + \angle DCB)$$

= $180^{\circ} - (\angle DBC + \angle BAD)$
= $180^{\circ} - (115^{\circ} + 35^{\circ})$
= $180^{\circ} - 150^{\circ} = 30^{\circ}$

 $\angle BDC = 30^{\circ}$