Exercise - 13A

1. Draw a line segment AB of length 7 cm. Using ruler and compasses, find a point P on AB such that $\frac{AP}{AB} = \frac{3}{5}$.

Steps of Construction:

- Step 1: Draw a line segment $AB = 7 \ cm$
- Step 2: Draw a ray AX, making an acute angle $\angle BAX$.
- Step 3: Along AX, mark 5 points (greater of 3 and 5) A_1, A_2, A_3, A_4 and A_5 such that

 $AA_1 = A_1A_2 = A_2A_3 = A_3A_4 = A_4A_5$

Step 4: Join A_5B .

Step 5: From A_3 , draw A_3P parallel to A_5B (draw an angle equal to $\angle AA_5B$), meeting AB in P.

Here, P is the point on AB such that $\frac{AP}{PB} = \frac{3}{2}$ or $\frac{AP}{AB} = \frac{3}{5}$.

Draw a line segment of length 7.6 cm and divide it in the ratio 5:8. Measure the two parts.
Sol:

Steps of Construction:

Step 1: Draw a line segment AB = 7.6 cm

Step 2: Draw a ray AX, making an acute angle $\angle BAX$.

Step 3: Along AX, mark (5+8=)13 points $A_1, A_2, A_3, A_4, A_5, A_6, A_7, A_8, A_9, A_{10}, A_{11}, A_{12}$ and

 A_{13} such that

 $AA_1 = A_1A_2 = A_2A_3 = A_3A_4 = A_4A_5 = A_6A_7 = A_8A_9 = A_9A_{10} = A_{10}A_{11} = A_{11}A_{12} - A_{12}A_{13}.$ Step 4: Join $A_{13}B$.

Step 5: From A_5 , draw A_5P parallel to $A_{13}B$ (draw an angle equal to $\angle AA_{13}B$), meeting AB in P.

Here, P is the point on AB which divides it in the ratio 5:8. \therefore Length of $AP = 2.9 \ cm$ (Approx) Length of $BP = 4.7 \ cm$ (Approx)

3. Construct a $\triangle PQR$, in which PQ = 6 cm, QR = 7 cm and PR = 8 cm. Then, construct another triangle whose sides are $\frac{4}{5}$ times the corresponding sides of $\triangle PQR$

Sol:

Steps of Construction

Step 1: Draw a line segment QR = 7 cm.

Step 2: With Q as center and radius 6 cm, draw an arc.

Step 3: With R as center and radius 8cm, draw an arc cutting the previous arc at P

Step 4: Join *PQ* and *PR*. Thus, ΔPQR is the required triangle.

Step 5: Below QR, draw an acute angle $\angle RQX$.

Step 6: Along OX, mark five points R_1, R_2, R_3, R_4 and R_5 such that

 $QR_1 = R_1R_2 = R_2R_3 = R_3R_4 = R_4R_5.$

Step 7: Join RR_5 .

Step 8: From R_4 , draw $R_4R' \parallel RR_5$ meeting QR at R'. Step 9: From R', draw $P'R' \parallel PR$ meeting PQ in P'.

Here, $\Delta P'QR'$ is the required triangle, each of whose sides are $\frac{4}{5}$ times the corresponding sides of ΔPQR .

4. Construct a triangle with sides 5 cm, 6 cm, and 7 cm and then another triangle whose sides are $\frac{7}{5}$ of the corresponding sides of the first triangle.

Sol:

Steps of Construction :

Step 1: Draw a line segment BC = 4cm.

- Step 2: With B as center, draw an angle of 90°.
- Step 3: With B as center and radius equal to 3 cm, cut an arc at the right angle and name it A.

Step 4: Join *AB* and *AC*.

Thus, $\triangle ABC$ is obtained.

Step 5: Extend *BC* to *D*, such that $BD = \frac{7}{5}BC = 75(4)cm = 5.6cm$. Step 6: Draw *DE* || *C* (

Step 6: Draw $DE \parallel CA$, cutting AB produced to E.

3 cm 4 cm

Thus, ΔEBD is the required triangle, each of whose sides is $\frac{7}{5}$ the corresponding sides of $\triangle ABC.$

Construct a $\triangle ABC$ with BC = 7 cm, $\angle B = 60^{\circ}$ and AB = 6 cm. Construct another triangle 5. whose sides are $\frac{3}{4}$ times the corresponding sides of $\triangle ABC$

Sol:

Steps of Construction

Step 1: Draw a line segment BC = 7cm.

Step 2: At *B*, draw $\angle XBC = 60^{\circ}$.

Step 3: With B as center and radius 6 cm, draw an arc cutting the ray BX at A.

Step 4: Join AC. Thus, $\triangle ABC$ is the required triangle.

Step 5: Below *BC*, draw an acute angle $\angle YBC$.

Step 6: Along BY, mark four points B_1, B_2, B_3 and B_4 such that $BB_1 = B_1B_2 = B_2B_3 = B_3B_4$.

Step 8: From B_3 , draw $B_3C' || CB_4$ meeting BC at C''. Step 9: From C', Draw A'C' || AC meeting AB in A'.

Here. $\Delta A'BC'$ is the required triangle whose sides are $\frac{3}{4}$ times the corresponding sides of ΔABC .

6. Construct a $\triangle ABC$ in which AB = 6 cm, $\angle A = 30^{\circ}$ and $\angle AB = 60^{\circ}$. Construct another $\triangle AB'C'$ similar to $\triangle ABC$ with base AB' = 8 cm. Sol: Steps of Construction Step 1: Draw a line segment AB = 6cm. Step 2: At A, draw $\angle XAB = 30^{\circ}$. Step 3: At B, draw $\angle YBA = 60^{\circ}$. Suppose AX and BY intersect at C. Thus, $\triangle ABC$ is the required triangle. Step 4: Produce AB to B' such that AB' = 8cm. Step 5: From B', draw $B'C' \parallel BC$ meeting AX at C'.

Here. AB'C' is the required triangle similar to $\triangle ABC$.

7. Construct a $\triangle ABC$ in which BC = 8 cm, $\angle B = 45^{\circ}$ and $\angle C = 60^{\circ}$. Construct another triangle similar to $\triangle ABC$ such that its sides are $\frac{3}{5}$ of the corresponding sides of $\triangle ABC$.

Sol: Steps of Construction Step 1: Draw a line segment BC = 8 cm. Step 2: At *B*, draw $\angle XBC = 45^{\circ}$. Step 3: At *C*, draw $\angle YCB = 60^{\circ}$. Suppose *BX* and *CY* intersect at *A*. Thus, $\triangle ABC$ is the required triangle Step 4: Below *BC*, draw an acute angle $\angle ZBC$. Step 5: Along *BZ*, mark five points Z_1, Z_2, Z_3, Z_4 and Z_5 such that $BZ_1 = Z_1Z_2 = Z_2Z_3 = Z_3Z_4 = Z_4Z_5$. Step 6: Join *CZ*₅. Step 7: From *Z*₃, draw *Z*₃*C*' || *CZ*₅ meeting *BC* at C'. Step 8: From *C*', draw *A*'*C*' || *AC* meeting AB in A'.

Here, $\Delta A'BC'$ is the required triangle whose sides are $\frac{3}{5}$ of the corresponding sides of ΔABC .

P.K. 2142

8. To construct a triangle similar to $\triangle ABC$ in which BC = 4.5 cm, $\angle B = 45^{\circ}$ and $\angle C = 60^{\circ}$, using a scale factor of $\frac{3}{7}$, BC will be divided in the ratio

(a) 3 : 4 (b) 4 : 7 (c) 3 : 10 (d) 3 : 7 Answer: (a) 3 : 4 Sol:

To construct a triangle similar to $\triangle ABC$ in which $BC = 4.5 \, cm$, $\angle B = 45^\circ$ and $\angle C = 60^\circ$, using a scale factor of $\frac{3}{7}$, BC will be divided in the ratio 3:4.

Here, $\triangle ABC \sim \triangle A'BC'$ BC': C'C = 3:4 or BC': BC = 3:7 Hence, the correct answer is option A. 9. Construct an isosceles triangles whose base is 8 cm and altitude 4 cm and then another

triangle whose sides are $1\frac{1}{2}$ times the corresponding sides of the isosceles triangle.

Sol:

Steps of Construction

Step 1: Draw a line segment BC = 8cm.

Step 2: Draw the perpendicular bisector XY of BC, cutting BC at D.

Step 3: With D as center and radius 4 cm, draw an arc cutting XY at A.

Step 4: Join AB and AC. Thus, an isosceles $\triangle ABC$ whose base is 8 cm and altitude 4 cm is obtained.

Step 5: Extend *BC* to E such that $BE = \frac{3}{2}BC = \frac{3}{2} \times 8cm = 12cm$.

HCS MINCH BIND Step 6: Draw $EF \parallel CA$, cutting BA produced in F.

Here, ΔBEF is the required triangle similar to ΔABC such that each side of ΔBEF is $1\frac{1}{2}$

(or $\frac{3}{2}$) times the corresponding side of $\triangle ABC$.

10. Draw a right triangle in which the sides (other than hypotenuse) are of lengths 4 cm and 3 cm. Then, construct another triangle whose sides are $\frac{5}{3}$ times the corresponding sides of the given triangle. Sol: Steps of Construction Step 1: Draw a line segment BC = 3cm. Step 2: At *B*, draw $\angle XBC = 90^{\circ}$. Step 3: With *B* as center and radius 4 cm, draw an arc cutting *BX* at *A*. Step 4: Join AC. Thus, a right $\triangle ABC$ is obtained. Step 5: Extend BC to D such that $BD = \frac{5}{3}BC = \frac{5}{3} \times 3 cm = 5 cm$.

Step 6: Draw $DE \parallel CA$, cutting BX in E.

Here. $\triangle BDE$ is the required triangle similar to $\triangle ABC$ such that each side of $\triangle BDE$ is $\frac{5}{3}$ times the corresponding side of $\triangle ABC$.

Same textbooks where and