Rational Numbers Exercise 4F

Q1

Answer:

- (i) Multiplicative inverse of $18 = \frac{1}{18}$
- ii) Multiplicative inverse of $-16 = \frac{-1}{16}$
- iii) Multiplicative inverse of $\frac{13}{25} = \frac{25}{13}$
- iv) Multiplicative inverse of $\frac{-17}{12} = \frac{12}{-17}$
- v) Multiplicative inverse of $\frac{-6}{19} = \frac{19}{-6}$
- vi) Multiplicative inverse of $\frac{-3}{-5} = \frac{-5}{-3} = \frac{5}{3}$
- vii) Multiplicative inverse of $-1 = \frac{1}{-1} = -1$
- viii) Multiplicative inverse of $0 = \frac{1}{0} = infinity$

Hence, it does not exist.

Q2

Answer:

(i)
$$\frac{4}{9} \div \left(\frac{-5}{12}\right)$$

= $\frac{4}{9'_3} \times \frac{\frac{1-2^4}{2}}{(-5)}$
= $\frac{4\times 4}{3\times (-5)}$
= $\frac{-16}{15}$
(ii) $-8 \div \left(\frac{-5}{16}\right)$
= $-8 \times \frac{-16}{5}$
= $\frac{128}{5}$
(iii) $\frac{-12}{7} \div \left(-18\right)$
= $\frac{-1\cdot 2^2}{7} \times \left(\frac{-1}{1\cdot 8\cdot 3}\right)$

$$\begin{split} &(iv) \frac{-1}{10} \div \left(\frac{-8}{5}\right) \\ &= \frac{-1}{1 \cdot 0^2} \times \left(\frac{5}{-8}\right) \\ &= \frac{-1}{2} \times \frac{1}{(-8)} \\ &= \frac{-1}{-16} \\ &= \frac{1}{16} \\ &(v) \frac{-16}{35} \div \left(\frac{-15}{14}\right) \\ &= \frac{-16}{3 \cdot 5_5} \times \frac{1 \cdot \frac{1}{4}^2}{(-15)} \\ &= \frac{-32}{-75} \\ &= \frac{32}{75} \\ &(vi) \left(\frac{-65}{14}\right) \div \left(\frac{13}{-7}\right) \\ &= \left(\frac{-65}{14}\right) \times \frac{\left(-\frac{7}{14}\right)}{1 \cdot 3} \\ &= \left(\frac{-5}{2}\right) \times \left(\frac{-1}{1}\right) \end{split}$$

Answer:

$$\begin{aligned} (\mathrm{i})(\ldots?\ldots) &\div \frac{-7}{5} = \frac{10}{19} \\ &(\ldots?\ldots) = \frac{10}{19} \times \frac{-7}{5} \\ &(\ldots?\ldots) = \frac{-14}{19} \end{aligned}$$

(ii)
$$(..?..) \div (-3) = \frac{-4}{15}$$

 $(...?..) = \frac{-4}{15} \times (-3)$
 $(...?..) = \frac{4}{5}$

$$(iii) \frac{9}{8} \div \left(\dots?\dots\right) = \frac{-3}{2}$$

$$\frac{9}{8} \div \left(\dots?\dots\right) = \frac{(-3)}{2}$$

$$\left(\dots?\dots\right) = \frac{9}{8} \times \frac{2}{(-3)}$$

$$\left(\dots?\dots\right) = \frac{-3}{4}$$

(iv)
$$(-12) \div (\dots?\dots) = \frac{-6}{5}$$

 $(\dots?\dots) = (-12) \times \left(\frac{5}{-6}\right)$
 $(\dots?\dots) = 10$

Answer:

(..?..) =
$$(-12) \times \left(\frac{3}{-6}\right)$$

(..?..) = 10
Answer:
Sum = $\frac{65}{12} + \frac{8}{3} = \frac{65+32}{12} = \frac{97}{12}$
Difference = $\frac{65}{12} - \frac{8}{3} = \frac{65-32}{12} = \frac{33}{12}$
 $\frac{97}{12} \div \frac{33}{12}$
= $\frac{97}{+2} \times \frac{\div 2^{1}}{33}$
= $\frac{97}{33}$
Q5
Answer:
Let the required number be x .
 $\frac{-44}{9} \div x = \frac{-11}{3}$
=> $x = \frac{-4+\frac{1}{9}}{9} \times \frac{3}{-11}$
=> $x = \frac{4}{3}$
Q6
Answer:
Let the required number be x .

Q5

Answer:

Let the required number be x.

$$\frac{-44}{9} \div x = \frac{-11}{3} \\
=> x = \frac{-4 \cdot 4^4}{9_3} \times \frac{3}{-11} \\
=> x = \frac{4}{2}$$

Q6

Answer:

Let the required number be x.

$$x \times \left(\frac{-8}{15}\right) = 24$$

$$x = 24 \div \frac{-8}{15}$$

$$= \frac{2}{2} + \frac{4}{3} \times \left(\frac{15}{-8}\right)$$

$$= \frac{45 \times (-1)}{-1 \times (-1)}$$

$$= -45$$

Q7

Answer:

Let the other number be x.

$$x \times -8 = 10$$

$$= x = 10 \div (-8)$$

$$= 10 \times \frac{1}{-8}$$

$$= \frac{1}{-8} \times \frac{1}{-8}$$

 \therefore Other number $=\frac{-5}{4}$

Answer:

Let the other number be x.

$$x \times (-12) = -9$$

$$=> x = -9 \div (-12)$$

$$= -9 \times \left(\frac{1}{-12}\right)$$

$$= -9 \times \left(\frac{-1}{12}\right)$$

$$= -9 \times \left(\frac{-1}{12}\right)$$

Hence, the other number is $\frac{3}{4}$.

Q9

Answer:

Let the other number be x.

$$x \times \left(\frac{-4}{3}\right) = \frac{-16}{9}$$

$$=> x = \frac{-16}{9} \div \left(\frac{-4}{3}\right)$$

$$= \frac{-16}{9} \times \left(\frac{3}{3}\right)$$

$$= \frac{4}{3}$$

Hence, the other number is $\frac{4}{3}$.

Q10

Answer:

Let the required number be x.

$$x \times \left(\frac{-8}{39}\right) = \frac{5}{26}$$

$$=> x = \frac{5}{26} \div \left(\frac{-8}{39}\right)$$

$$= \frac{5}{\frac{2-6}{2}} \times \left(\frac{-3-9^3}{-8}\right)$$

$$= \frac{15 \times -1}{16 \times -1} = \frac{-15}{16}$$

Hence, the required number is $\frac{-15}{16}$

Q11

Answer:

Length of the cloth required to prepare 24 trousers = 54 mLength of the cloth required for each pair of trouser $s = 54 \div 24$

$$= \frac{\frac{5-4}{2-4}}{\frac{2-4}{4}}$$
$$= \frac{9}{4} = 2\frac{1}{4} \,\mathrm{m}$$

Hence, $2\frac{1}{4}$ m length of cloth is required for each pair of trousers.

Q12

Answer:

Length of a rope = 30 m
Number of pieces = 30
$$\div$$
 3 $\frac{3}{4}$ = 30 \div $\frac{15}{4}$
= $\frac{2}{3} \cdot 0 \times \frac{4}{4 \cdot 5}$
= 8

Hence, the number of pieces would be 8.

Q13

Answer:

Cost of
$$2\frac{1}{2}$$
 m cloth = Rs $78\frac{3}{4}$
Cost of cloth per meter = $78\frac{3}{4} \div 2\frac{1}{2}$
= $\frac{315}{4} \div \frac{5}{2}$
= $\frac{3 + 5^{63}}{\cancel{1}_{2}} \times \frac{\cancel{1}_{2}}{\cancel{1}_{1}}$
= Rs $\frac{63}{2} = Rs \ 31\frac{1}{2}$

 \therefore Cost of the cloth (per metre) = Rs $31\frac{1}{2}$