Rational Numbers Exercise 4A

Q1

Answer:

The numbers that are in the form of $\frac{p}{q}$, where p and q are integers and q $\neq 0$, are called rational numbers

For example:

Five positive rational numbers:

$$\frac{5}{7}$$
, $\frac{-3}{-4}$, $\frac{7}{8}$, $\frac{-14}{-15}$, $\frac{5}{9}$

Five negative rational numbers:

$$\frac{-3}{7}$$
, $\frac{-3}{8}$, $\frac{8}{-9}$, $\frac{-19}{25}$, $\frac{8}{-25}$

Yes, there is a rational number that is neither positive nor negative, i.e. zero (0)

Q3

Answer:

(i)
$$\frac{8}{19}$$

Numerator = 8

Denominator =19

$$(ii)\frac{5}{-8}$$

Numerator = 5

Denominator = -8

(iii)
$$\frac{-13}{5}$$

Numerator = -13

Denominator =15

```
(iv)^{\frac{-8}{-11}}
Numerator = -8
Denominator = -11
(v)9
i.e \frac{9}{1}
Numerator = 9
Denominator = 1
Q4
Answer:
(i) 5
The rational number will be \frac{5}{1}.
Numerator = 5
Denominator = 1
(ii) -3
The rational number will be \frac{-3}{1}
Numerator = -3
Denominator = 1
                  (iii)1
The rational number will be \frac{1}{1}
Numerator = 1
Denominator = 1
The rational number will be \frac{0}{1}
Numerator =0
Denominator = 1
(v) -23
The rational number will be
Numerator = -23
Denominator = 1
Q5
Answer:
Positive rational numbers:
(iii) \frac{-5}{-8}
```

(iv)
$$\frac{37}{53}$$

(vi) 8 because 8 can be written as $\frac{8}{1}$, where $1 \neq 0$.

0 is neither positive nor negative.

Q6

Answer:

Negative rational numbers:

(iii)
$$\frac{-5}{7}$$

(iv)
$$\frac{4}{-9}$$

(Vi)
$$\frac{1}{-2}$$

(i) Following are the four rational numbers that are equivalent to $\frac{6}{11}$. $\frac{6\times2}{11\times2}$, $\frac{6\times3}{11\times3}$, $\frac{6\times4}{11\times4}$ and $\frac{6\times5}{11\times5}$

i.e.
$$\frac{12}{22}$$
, $\frac{18}{33}$, $\frac{24}{44}$ and $\frac{30}{55}$

(ii) Following are the four rational numbers that are equivalent to $\frac{-3}{8}$. $\frac{-3\times2}{8\times2}$, $\frac{-3\times3}{8\times3}$, $\frac{-3\times4}{8\times4}$ and $\frac{-3\times5}{8\times5}$

i.e.
$$\frac{-6}{16}$$
, $\frac{-9}{24}$, $\frac{-12}{32}$ and $\frac{-15}{40}$

(iii) Following are the four rational numbers that are equivalent to $\frac{7}{-15}$. $\frac{7\times2}{-15\times2}\,,~\frac{7\times3}{-15\times3}\,,~\frac{7\times4}{-15\times4}$ and $\frac{7\times5}{-15\times5}$

(iv) Following are the four rational numbers that are equivalent to 8, i.e. $\frac{8}{1}$ $\frac{8\times 2}{1\times 2}$, $\frac{8\times 3}{1\times 3}$, $\frac{8\times 4}{1\times 4}$ and $\frac{8\times 5}{1\times 5}$

i.e.
$$\frac{16}{2}$$
, $\frac{24}{3}$, $\frac{32}{4}$ and $\frac{40}{5}$

(v) Following are the four rational numbers that are equivalent to -1, i.e. $\frac{1}{1}$. $\frac{1\times2}{1\times2}$, $\frac{1\times3}{1\times3}$, $\frac{1\times4}{1\times4}$ and $\frac{1\times5}{1\times5}$

i.e. $\frac{2}{2}, \frac{3}{3}, \frac{4}{4}$ and $\frac{5}{5}$

i. e. $\frac{2}{2}$, $\frac{3}{3}$, $\frac{4}{4}$ and $\frac{5}{5}$ (vi) Following are the four rational numbers that are equivalent to -1, i.e. $\frac{-1}{1}$. $\frac{-1\times2}{1\times2}$, $\frac{-1\times3}{1\times3}$, $\frac{-1\times4}{1\times4}$ and $\frac{-1\times5}{1\times5}$ i. e. $\frac{-2}{2}$, $\frac{-3}{3}$, $\frac{-4}{4}$ and $\frac{-5}{5}$ Q8

Answer:

(i) $\frac{12\times(-1)}{(-17)\times(-1)} = \frac{-12}{17}$ (ii) $\frac{4\times(-1)}{(-2)\times(-1)} = \frac{-1}{2}$ (iii) $\frac{-8}{-19} = \frac{-8\times(-1)}{(-19)\times(-1)} = \frac{8}{19}$

i.e.
$$\frac{-2}{2}$$
, $\frac{-3}{3}$, $\frac{-4}{4}$ and $\frac{-5}{5}$

(i)
$$\frac{12 \times (-1)}{(-17) \times (-1)} = \frac{-12}{17}$$

(ii)
$$\frac{4 \times (-1)}{(-2) \times (-1)} = \frac{-1}{2}$$

(iii)
$$\frac{-8}{-19} = \frac{-8 \times (-1)}{(-19) \times (-1)} = \frac{8}{19}$$

(iv)
$$\frac{11 \times (-1)}{-6 \times (-1)} = \frac{-11}{6}$$

Q9

Answer:

(i) Numerator of $\frac{5}{8}$ is 5.

5 should be multiplied by 3 to get 15.

Multiplying both the numerator and the denominator by 3

$$\frac{5\times3}{8\times3} = \frac{15}{24}$$

$$\frac{5}{8} = \frac{15}{24}$$

(ii) Numerator of $\frac{5}{8}$ is 5.

5 should be multiplied by -2 to get -10.

Multiplying both the numerator and the denominator by -2:

$$\frac{5 \times (-2)}{8 \times (-2)} = \frac{-10}{-16}$$

$$\frac{5}{8} = \frac{-10}{-16}$$

(i) Denominator of $\frac{4}{7}$ is 7.

7 should be multiplied by 3 to get 21.

Multiplying both the numerator and the denominator by 3:

$$\frac{4\times3}{7\times3} = \frac{12}{21}$$

$$\frac{4\times3}{7\times3} = \frac{4}{7}$$

(ii)

Denominator of $\frac{4}{7}$ is 7.

7 should be multiplied by -5 to get -35.

Multiplying both the numerator and the denominator by -5:

$$\frac{4 \times (-5)}{7 \times (-5)} = \frac{-20}{-35}$$

$$\frac{4}{7} = \frac{-20}{-35}$$

Q11

Answer:

(i) Numerator of $\frac{-12}{13}$ is -12.

-12 should be multiplied by 4 to get 48.

.rby.-53 Multiplying both the numerator and the denominator by 4:

$$\frac{-12 \times 4}{13 \times 4} = \frac{-48}{52}$$

$$\frac{-12}{13} = \frac{-48}{52}$$

(ii) Numerator of $\frac{-12}{13}$ is -12.

-12 should be multiplied by -5 to get 60

Multiplying its numerator and denominator by -5

$$\frac{-12 \times (-5)}{13 \times (-5)} = \frac{60}{-65}$$

$$\frac{-12}{13} = \frac{60}{-65}$$

Q12

Answer:

(i) Denominator of $\frac{-8}{11}$ is 11

Clearly, 11×2= 22

Multiplying both the numerator and the denominator by 2:

$$\frac{-8\times2}{11\times2} = \frac{-16}{22}$$

$$\frac{-8}{11} = \frac{-16}{22}$$

(ii) Denominator of $\frac{-8}{11}$ is 11.

Clearly, 11×5=55

Multiplying both the numerator and the denominator by 5:

$$\frac{-8 \times 5}{11 \times 5} = \frac{-40}{55}$$

$$\frac{-8}{11} = \frac{-40}{55}$$

(i) Numerator of $\frac{14}{-5}$ is 14.

Clearly, 14×4=56

Multiplying both the numerator and the denominator by 4:

$$\frac{14\times4}{-5\times4} = \frac{56}{-20}$$

$$\frac{14}{-5} = \frac{56}{-20}$$

Numerator of $\frac{14}{-5}$ is 14.

Clearly, $14 \times (-5) = -70$

Multiplying both the numerator and the denominator by -5:

$$\frac{14 \times (-5)}{(-5) \times (-5)} = \frac{-70}{25}$$

$$\frac{14}{-5} = \frac{-70}{25}$$

Q14

Answer:

(i) Denominator of $\frac{13}{-8}$ is -8.

Clearly, $(-8) \times 5 = -40$

aominator by -4. Multiplying both the numerator and the denominator by 5: $\frac{13\times5}{-8\times5}=\frac{65}{-40}$

$$\frac{13\times5}{-8\times5} = \frac{65}{-40}$$

$$\frac{13}{-8} = \frac{65}{-40}$$

(ii) Denominator of $\frac{13}{-8}$ is -8. Clearly, $(-8)\times(-4)=32$

Multiplying both the numerator and the denominator by -4.

$$\frac{13 \times (-4)}{-8 \times (-4)} = \frac{-52}{32}$$

$$\frac{13}{-8} = \frac{-52}{32}$$

Q15

(i) Numerator of $\frac{-36}{24}$ is -36.

Clearly, $(-36) \div 4 = (-9)$

Dividing both the numerator and the denominator by 4:

$$\frac{-36 \div 4}{24 \div 4} = \frac{-9}{6}$$

(ii) Numerator of $\frac{-36}{24}$ is -36. Clearly, (-36) ÷ (-6) = 6

Clearly,
$$(-36) \div (-6) = 6$$

Dividing both the numerator and the denominator by -6:

$$\frac{-36 \div (-6)}{24 \div (-6)} = \frac{6}{-4}$$

$$\frac{-36}{24} = \frac{6}{-4}$$

(i) Denominator of $\frac{84}{-147}$ is -147.

Dividing both the numerator and the denominator by -21:

$$\frac{84 \div (-21)}{-147 \div (-21)} = \frac{-4}{7}$$

$$\frac{84}{-147} = \frac{-4}{7}$$

(ii)Denominator of $\frac{84}{-147}$ is -147.

$$-147 \div 3 = -4$$

Dividing both the numerator and the denominator by 3:

$$\frac{84 \div 3}{-147 \div 3} = \frac{28}{-49}$$

$$\frac{84}{-147} = \frac{28}{-49}$$

Q17

Answer:

(i)
$$\frac{35}{45}$$

(i) $\frac{35}{49}$ H.C.F. of 35 and 49 is 7.

$$35\frac{39}{49}\sqrt{1}$$

$$-35\frac{14}{35}\sqrt{2}$$

$$-28\frac{7}{7}\sqrt{14}\sqrt{2}$$
Dividing the numerator and the denominator by 7:

$$\frac{35:7}{49:77} = \frac{5}{7}$$
So, $\frac{35}{49}$ is equal to $\frac{5}{7}$ in the standard form.

$$(ii) \frac{8}{-36}$$
Denominator is -36, which is negative.

Multiplying both the numerator and the denominator by -1:

$$\frac{8\times(-1)}{-36\times(-1)} = \frac{-8}{36}$$

$$8\frac{36}{-32}\sqrt{4} \times 8\sqrt{2}$$
H.C.F. of 8 and 36 is 4.

Dividing its numerator and denominator by 4:

$$\frac{35 \div 7}{49 \div 7} = \frac{5}{7}$$

$$(ii)\frac{8}{-36}$$

$$\frac{8 \times (-1)}{-36 \times (-1)} = \frac{-8}{36}$$

Dividing its numerator and denominator by 4:

$$\frac{-8 \div 4}{36 \div 4} = \frac{-2}{9}$$

So, $\frac{8}{-36}$ is equal to $\frac{-2}{9}$ in the standard form.

(iii)
$$\frac{-27}{45}$$

H.C.F. of 27 and 45 is 9.

Dividing its numerator and denominator by 9:

$$\frac{-27 \div 9}{45 \div 9} = \frac{-3}{5}$$

 $\frac{-27 \div 9}{45 \div 9} = \frac{-3}{5}$ Hence, $\frac{-27}{45}$ is equal to $\frac{-3}{5}$ in the standard form.

$$\left(iv\right) \frac{-14}{-49}$$

The denominator is negative.

Multiplying its numerator and denominator by -1:

$$\frac{-14 \times (-1)}{-49 \times (-1)} = \frac{14}{49}$$

$$\frac{14\div7}{49\div7} = \frac{2}{7}$$

The denominator is negative.

Multiplying its denominator and denominator by 1: $\frac{91\times(-1)}{-78\times(-1)} = \frac{-91}{78}$ $78\overline{\smash)91 \left(1\right)}{13\overline{\smash)78} \left(6\right)}{13\overline{\smash)78} \left(6\right)}$ C.F. of 91 and 78 is 13. iding both the num- $\frac{1+13}{13} = -7$

$$\left(\mathbf{v}\right) \frac{91}{-78}$$

$$\frac{91 \times (-1)}{-78 \times (-1)} = \frac{-91}{78}$$

$$\frac{-91 \div 13}{78 \div 13} = \frac{-7}{6}$$

Dividing both the numerator and the denominator by 13: $\frac{-91\div13}{78\div13} = \frac{-7}{6}$ Hence, $\frac{91}{-78}$ is equal to $\frac{-7}{6}$ in the standard form.

$$\left(vi\right) \frac{-68}{119}$$

$$\begin{array}{r}
68)\overline{119} \left(1 \\
\underline{-68} \\
51\right) \underline{68} \left(1 \\
\underline{-51} \\
17\right) \underline{51} \left(3 \\
\underline{-51} \\
\times
\end{array}$$

H.C.F. of 68 and 119 is 17.

Dividing both the numerator and the denominator by 17:

$$\frac{-68 \div 17}{119 \div 17} = \frac{-4}{7}$$

Hence, $\frac{-68}{119}$ is equal to $\frac{-4}{7}$ in the standard form.

$$\left(vii
ight) rac{-87}{116}$$

$$87)\frac{116}{116} \left(1 - \frac{87}{29}\right) 87 \left(3 - \frac{87}{29}\right) 87 \left(3 - \frac{87}{29}\right) 87 \left(3 - \frac{87}{29}\right) 87 \left(3 - \frac{1}{29}\right) 87 \left(3$$

H.C.F. of 87 and 116 is 29.

Dividing both the numerator and the denominator by 29:

$$\frac{-87 \div 29}{116 \div 29} = \frac{-3}{4}$$

Hence, $\frac{-87}{116}$ is equal to $\frac{-3}{4}$ in the standard form.

$$\left(\text{viii}\right) \frac{299}{-161}$$

The denominator is negative.

Multiplying both the numerator and denominator by -1:

$$\frac{299 \times (-1)}{-161 \times (-1)} = \frac{-299}{161}$$

H.C.F. of 299 and 161 is 23.

$$\frac{-299 \div 23}{161 \cdot 22} = \frac{-13}{7}$$

 $\frac{2}{3} = \frac{27}{-15} = \frac{-45}{25}$ Dividing both the numerator and the denominator by 23: $\frac{-299 \div 23}{161 \div 23} = \frac{-13}{7}$ Hence, $\frac{299}{-161}$ is equal to $\frac{-13}{7}$ in the standard form.

Q18

Answer:

(i)

$$\frac{-9 \times 4}{5 \times 4} = \frac{-36}{20}$$

$$\frac{-9 \times (-3)}{5 \times (-3)} = \frac{27}{-15}$$

$$\frac{-9 \times 5}{5 \times 5} = \frac{-45}{25}$$

$$\cdot \quad -9 \quad -36 \quad 2$$

(ii)
$$\frac{-6 \times 3}{11 \times 3} = \frac{-18}{33}$$

$$\frac{-6 \times 4}{11 \times 4} = \frac{-24}{44}$$

$$\therefore \frac{-6}{11} = \frac{-18}{22} = \frac{-24}{44}$$

(i)
$$\frac{-13}{7}$$
, $\frac{39}{-21}$
We have:

$$(-13)\times(-21) = 273$$

And 7×39=273

$$(-13) \times (-21) = 7 \times 39$$

or
$$\frac{-13}{7} = \frac{39}{-21}$$

Hence, $\frac{-13}{7}$ and $\frac{39}{21}$ are equivalent rational numbers.

(ii)
$$\frac{3}{-8}$$
, $\frac{-6}{16}$
We have:

And
$$(-8) \times (-6) = 48$$

$$3 \times 16 = (-8) \times (-6)$$

$$\frac{3}{-8} = \frac{-6}{16}$$

$$\frac{3}{-8} = \frac{-6}{16}$$

(iii)
$$\frac{9}{4}$$
 , $\frac{-36}{-16}$

We have:

$$9 \times (-16) = -144$$

And
$$4\times(-36) = -144$$

$$9 \times (-16) = 4 \times (-36)$$

$$\frac{9}{4} = \frac{-36}{16}$$

al numbers. $\frac{9}{4} = \frac{-36}{-16}$ Therefore, they are equivalent rational numbers.

$$(iv)\frac{7}{15}, \frac{-28}{60}$$

We have:

$$7 \times 60 = 420$$

And
$$15 \times (-28) = -420$$

Therefore, the rational numbers are not equivalent.

(v)
$$\frac{3}{12}$$
, $\frac{-1}{4}$

We have:

3 ×4=12

And $12 \times (-1) = -12$

 $12 \neq -12$

Therefore, the rational numbers are not equivalent.

(vi)
$$\frac{2}{3}$$
, $\frac{3}{2}$

We have:

 $2 \times 2 = 4$

And 3×3=9

 $2\times2\neq3\times3$

Therefore, the rational numbers are not equivalent.

Q20

Answer:

$$(i)\frac{-1}{5} = \frac{8}{x}$$

$$=> x = -40$$

$$(ii)\frac{7}{3} = \frac{2}{3}$$

(ii)
$$\frac{7}{-3} = \frac{x}{6}$$

=> $(-3)x=7\times6$

=>
$$x = \frac{(7 \times 6)}{(-3)}$$

=> $x = -14$

$$(iii) \frac{3}{5} = \frac{x}{-25}$$

$$=>$$
 $5x=3\times(-25)$

$$\Rightarrow x = \frac{3 \times (-2)}{5}$$

$$=>x = (-15)$$

$$(iv)\frac{13}{6} = \frac{-65}{x}$$

$$=> x = \frac{6 \times (-65)}{13}$$

$$=> x = 6 \times (-5)$$

$$=> x = -30$$

(v)
$$\frac{16}{x} = -4$$

=> $x = \frac{16}{(-4)}$
=> $x = (-4)$

$$vi) \frac{-48}{x} = 2$$

$$\Rightarrow \frac{-48}{2} = \frac{x}{1}$$

$$\Rightarrow 2x = (-48) \times 1$$

$$\Rightarrow x = \frac{-48}{2}$$

$$x = (-24)$$

(i)
$$\frac{8}{-12}$$
 and $\frac{-10}{15}$

$$8 \times 15 = (-10) \times (-12)$$

$$\therefore \frac{8}{-12} = \frac{-10}{15}$$

Therefore, the rational numbers are equal.

ii)
$$\frac{-3}{9}$$
, $\frac{7}{-21}$

$$(-3)\times(-21)=63$$

$$\frac{-3}{9} = \frac{7}{-21}$$

Therefore, the rational numbers are equal.

(iii)
$$\frac{-8}{-14}$$
, $\frac{15}{21}$

$$(-8) \times 21 = -168$$

And
$$15 \times (-14) = -210$$

$$(-8) \times 21 \neq 15 \times 14$$

Therefore, the rational numbers are not equal

Q22

Answer:

(i) False

For example, -1 is smaller than zero and is a rational number.

All integers can be written with the denominator 1.

Though 0 is an integer, when the denominator is 0, it is not a rational number.

For example, $\frac{1}{0}$ is not a rational number.

(iv)True

(v) False

-1 is a rational number but not a fraction.