Exercise - 12A

1. Find the length of tangent drawn to a circle with radius 8 cm form a point 17 cm away from the center of the circle
Sol:

Let O be the center of the given circle.
Let P be a point, such that
$O P=17 \mathrm{~cm}$.
Let $O T$ be the radius, where
$O T=5 \mathrm{~cm}$
Join $T P$, where $T P$ is a tangent.
Now, tangent drawn from an external point is perpendicular to the radius at the point of contact.
$\therefore O T \perp P T$
In the right $\triangle O T P$, we have:
$O P^{2}=O T^{2}+T P^{2} \quad[$ By Pythagoras' theorem: $]$
$T P=\sqrt{O P^{2}-O T^{2}}$
$=\sqrt{17^{2}-8^{2}}$
$=\sqrt{289-64}$
$=\sqrt{225}$
$=15 \mathrm{~cm}$
\therefore The length of the tangent is 15 cm .
2. A point P is 25 cm away from the center of a circle and the length of tangent drawn from P to the circle is 24 cm . Find the radius of the circle.

Sol:

Draw a circle and let P be a point such that $O P=25 \mathrm{~cm}$.
Let $T P$ be the tangent, so that $T P=24 \mathrm{~cm}$
Join $O T$ where $O T$ is radius.

Now, tangent drawn from an external point is perpendicular to the radius at the point of contact.
$\therefore O T \perp P T$
In the right $\triangle O T P$, we have:
$O P^{2}=O T^{2}+T P^{2} \quad$ [By Pythagoras' theorem:]
$O T^{2}=\sqrt{O P^{2}-T P^{2}}$
$=\sqrt{25^{2}-24^{2}}$
$=\sqrt{625-576}$
$=\sqrt{49}$
$=7 \mathrm{~cm}$
\therefore The length of the radius is 7 cm .
3. Two concentric circles are of radii 6.5 cm and 2.5 cm . Find the length of the chord of the larger circle which touches the smaller circle.

Sol:

We know that the radius and tangent are perpendicular at their point of contact In right triangle AOP

$$
\begin{aligned}
& A O^{2}=O P^{2}+P A^{2} \\
& \Rightarrow(6.5)^{2}=(2.5)^{2}+P A^{2} \\
& \Rightarrow P A^{2}=36 \\
& \Rightarrow P A=6 \mathrm{~cm}
\end{aligned}
$$

Since, the perpendicular drawn from the center bisects the chord.

$$
\therefore P A=P B=6 \mathrm{~cm}
$$

Now, $A B=A P+P B=6+6=12 \mathrm{~cm}$
Hence, the length of the chord of the larger circle is 12 cm .
4. In the given figure, a circle inscribed in a triangle $A B C$, touches the sides $A B, B C$ and $A C$ at points D, E and F Respectively. If $\mathrm{AB}=12 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$ and $\mathrm{AC}=10 \mathrm{~cm}$, find the length of $A D, B E$ and $C F$.

Sol:

We know that tangent segments to a circle from the same external point are congruent. Now, we have
$A D=A F, B D=B E$ and $C E=C F$
Now, $A D+B D=12 \mathrm{~cm}$
$\mathrm{AF}+\mathrm{FC}=10 \mathrm{~cm}$
$\Rightarrow \mathrm{AD}+\mathrm{FC}=10 \mathrm{~cm}$
$\mathrm{BE}+\mathrm{EC}=8 \mathrm{~cm}$
$\Rightarrow \mathrm{BD}+\mathrm{FC}=8 \mathrm{~cm}$
Adding all these we get
$\mathrm{AD}+\mathrm{BD}+\mathrm{AD}+\mathrm{FC}+\mathrm{BD}+\mathrm{FC}=30$
$\Rightarrow 2(\mathrm{AD}+\mathrm{BD}+\mathrm{FC})=30$
$\Rightarrow \mathrm{AD}+\mathrm{BD}+\mathrm{FC}=15 \mathrm{~cm}$
Solving (1) and (4), we get
$\mathrm{FC}=3 \mathrm{~cm}$
Solving (2) and (4), we get $\mathrm{BD}=5 \mathrm{~cm}$
Solving (3) and (4), we get
and $A D=7 \mathrm{~cm}$
$\therefore \mathrm{AD}=\mathrm{AF}=7 \mathrm{~cm}, \mathrm{BD}=\mathrm{BE}=5 \mathrm{~cm}$ and $\mathrm{CE}=\mathrm{CF}=3 \mathrm{~cm}$
5. In the given figure, a circle touches all the four sides of a quadrilateral ABCD whose three sides are $A B=6 \mathrm{~cm}, B C=7 \mathrm{~cm}$ and $C D=4 \mathrm{~cm}$. Find $A D$.

Sol:

Let the circle touch the sides of the quadrilateral $A B, B C, C D$ and $D A$ at P, Q, R and S respectively.

Given, $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=7 \mathrm{~cm}$ and $\mathrm{CD}=4 \mathrm{~cm}$.
Tangents drawn from an external point are equal.
$\therefore A P=A S, B P=B Q, C R=C Q$ and $D R=D S$
Now, $A B+C D(A P+B P)+(C R+D R)$
$\Rightarrow A B+C D=(A S+B Q)+(C Q+D S)$
$\Rightarrow A B+C D=(A S+D S)+(B Q+C Q)$
$\Rightarrow A B+C D=A D+B C$
$\Rightarrow A D=(A B+C D)-B C$
$\Rightarrow A D=(6+4)-7$
$\Rightarrow A D=3 \mathrm{~cm}$.
\therefore The length of $A D$ is 3 cm .
6. In the given figure, the chord AB of the larger of the two concentric circles, with center O , touches the smaller circle at C . Prove that $\mathrm{AC}=\mathrm{CB}$.

Sol:

Construction: Join OA, OC and OB

We know that the radius and tangent are perpendicular at their point of contact
$\therefore \angle O C A=\angle O C B=90^{\circ}$
Now, In $\triangle O C A$ and $\triangle O C B$

$$
\begin{aligned}
& \angle O C A=\angle O C B=90^{\circ} \\
& O A=O B(\text { Radii of the larger circle }) \\
& O C=O C(\text { Common })
\end{aligned}
$$

By RHS congruency
$\triangle O C A \cong \triangle O C B$
$\therefore C A=C B$
7. From an external point P , tangents PA and PB are drawn to a circle with center O . If CD is the tangent to the circle at a point E and $\mathrm{PA}=14 \mathrm{~cm}$, find the perimeter of $\triangle P C D$.

Sol:

Given, PA and PB are the tangents to a circle with center O and CD is a tangent at E and $P A=14 \mathrm{~cm}$.
Tangents drawn from an external point are equal.
$\therefore P A=P B, C A=C E$ and $D B=D E$
Perimeter of $\triangle P C D=P C+C D+P D$
$=(P A-C A)+(C E+D E)+(P B-D B)$
$=(P A-C E)+(C E+D E)+(P B-D E)$
$=(P A+P B)$
$=2 P A(\because P A=P B)$
$=(2 \times 14) \mathrm{cm}$
$=28 \mathrm{~cm}$
$=28 \mathrm{~cm}$
\therefore Perimeter of $\triangle P C D=28 \mathrm{~cm}$.
8. A circle is inscribed in a $\triangle A B C$ touching $A B, B C$ and $A C$ at P, Q and R respectively. If $\mathrm{AB}=10 \mathrm{~cm}, \mathrm{AR}=7 \mathrm{~cm}$ and $\mathrm{CR}=5 \mathrm{~cm}$, find the length of BC .

Sol:

Given, a circle inscribed in triangle ABC , such that the circle touches the sides of the triangle
Tangents drawn to a circle from an external point are equal.
$\therefore A P=A R=7 \mathrm{~cm}, C Q=C R=5 \mathrm{~cm}$.
Now, $B P=(A B-A P)=(10-7)=3 \mathrm{~cm}$
$\therefore B P=B Q=3 \mathrm{~cm}$
$\therefore B C=(B Q+Q C)$
$\Rightarrow B C=3+5$
$\Rightarrow B C=8$
\therefore The length of $B C$ is 8 cm .
9. In the given figure, PA and PB are the tangent segemtns to a circle with centre O . Show that he points $\mathrm{A}, \mathrm{O}, \mathrm{B}$ and P are concyclic.

Sol:

Here, $O A=O B$
And $O A \perp A P, O A \perp B P$ (Since tangents drawn from an external point are perpendicular to the radius at the point of contact)
$\therefore \angle O A P=90^{\circ}, \angle O B P=90^{\circ}$
$\therefore \angle O A P+\angle O B P=90^{\circ}+90^{\circ}=180^{\circ}$
$\therefore \angle A O B+\angle A P B=180^{\circ}$ (Since, $\left.\angle O A P+\angle O B P+\angle A O B+\angle A P B=360^{\circ}\right)$
Sum of opposite angle of a quadrilateral is 180°.
Hence A, O, B and P are concyclic.
10. In the given figure, an isosceles triangle $A B C$, with $A B=A C$, circumscribes a circle. Prove that point of contact P bisects the base $B C$.

Sol:

We know that tangent segments to a circle from the same external point are congruent Now, we have
$A R=A O, B R=B P$ and $C P=C Q$
Now, $A B=A C$
$\Rightarrow A R+R B=A Q+Q C$
$\Rightarrow A R+R B=A R+O C$
$\Rightarrow R B=Q C$
$\Rightarrow B P=C P$
Hence, P bisects BC at P .
11. In the given figure, O is the centre of the two concentric circles of radii 4 cm and 6 cm respectively. AP and PB are tangents to the outer and inner circle respectively. If $\mathrm{PA}=$ 10 cm , find the length of PB up to one place of the decimal.

Sol:

Given, O is the center of two concentric circles of radii $O A=6 \mathrm{~cm}$ and $O B=4 \mathrm{~cm}$.
$P A$ and $P B$ are the two tangents to the outer and inner circles respectively and $P A$ $=10 \mathrm{~cm}$.
Now, tangent drawn from an external point is perpendicular to the radius at the point of contact.
$\therefore \angle O A P=\angle O B P=90^{\circ}$
\therefore From right - angled $\triangle O A P, O P^{2}=O A^{2}+P A^{2}$
$\Rightarrow O P=\sqrt{O A^{2}+P A^{2}}$
$\Rightarrow O P=\sqrt{6^{2}+10^{2}}$
$\Rightarrow O P=\sqrt{136} \mathrm{~cm}$.
\therefore From right - angled $\triangle O A P, O P^{2}=O B^{2}+P B^{2}$
$\Rightarrow P B=\sqrt{O P^{2}-O B^{2}}$
$\Rightarrow P B=\sqrt{136-16}$
$\Rightarrow P B=\sqrt{120} \mathrm{~cm}$
$\Rightarrow P B=10.9 \mathrm{~cm}$.
\therefore The length of $P B$ is 10.9 cm .
12. In the given figure, a triangle $A B C$ is drawn to circumscribe a circle of radius 3 cm such that the segments $B C$ and $D C$ into which $B C$ is divided by the point of contact D, are of lengths 6 cm and 9 cm respectively. If the area of $\triangle A B C=54 \mathrm{~cm}^{2}$ then find the lengths of sides AB and AC .

Sol:

Construction: Join $O A, O B, O C, O E \perp A B$ at E and $O F \perp A C$ at F

We know that tangent segments to a circle from me same external point are congruent
Now, we have
$A E=A F, B D=B E=6 \mathrm{~cm}$ and $C D=C F=9 \mathrm{~cm}$
Now,
$\operatorname{Area}(\triangle A B C)=\operatorname{Area}(\triangle B O C)+\operatorname{Area}(\triangle A O B)+\operatorname{Area}(\triangle A O C)$
$\Rightarrow 54=\frac{1}{2} \times B C \times O D+\frac{1}{2} \times A B \times O E+\frac{1}{2} \times A C \times O F$
$\Rightarrow 108=15 \times 3+(6+x) \times 3+(9+x) \times 3$
$\Rightarrow 36=15+6+x+9+x$
$\Rightarrow 36=30+2 x$
$\Rightarrow 2 x=6$
$\Rightarrow x=3 \mathrm{~cm}$
$\therefore A B=6+3=9 \mathrm{~cm}$ and $A C=9+3=12 \mathrm{~cm}$
13. $P Q$ is a chord of length 4.8 cm of a circle of radius 3 cm . The tangents at P and Q intersect at a point T as shown in the figure. Find the length of TP.

Sol:

Let $T R=\mathrm{y}$ and $\mathrm{TP}=\mathrm{x}$
We know that the perpendicular drawn from the center to me chord bisects It.
$\therefore P R=R Q$
Now, $P R+R Q=4.8$
$\Rightarrow P R+P R=4.8$
$\Rightarrow P R=2.4$

Now, in right triangle POR
By Using Pythagoras theorem, we have
$P O^{2}=O R^{2}+P R^{2}$
$\Rightarrow 3^{2}=O R^{2}+(2.4)^{2}$
$\Rightarrow O R^{2}=3.24$
$\Rightarrow O R=1.8$
Now, in right triangle TPR
By Using Pythagoras theorem, we have
$T P^{2}=T R^{2}+P R^{2}$
$\Rightarrow x^{2}=y^{2}+(2.4)^{2}$
$\Rightarrow x^{2}=y^{2}+5.76$
Again, In right triangle TPQ
By Using Pythagoras theorem, we have
$T O^{2}=T P^{2}+P O^{2}$
$\Rightarrow(y+1.8)^{2}=x^{2}+3^{2}$
$\Rightarrow y^{2}+3.6 y+3.24=x^{2}+9$
$\Rightarrow y^{2}+3.6 y=x^{2}+5.76$
Solving (1) and (2), we get
$x=4 \mathrm{~cm}$ and $y=3.2 \mathrm{~cm}$
$\therefore T P=4 \mathrm{~cm}$
14. Prove that the line segment joining the points of contact of two parallel tangents of a circle, passes through its centre.

Sol:

Suppose CD and AB are two parallel tangents of a circle with center O
Construction: Draw a line parallel to CD passing through O i.e. OP
We know that the radius and tangent are perpendicular at their point of contact.

$$
\angle O Q C=\angle O R A=90^{\circ}
$$

Now, $\angle O Q C+\angle P O Q=180^{\circ} \quad$ (co-interior angles)
$\Rightarrow \angle P O Q=180^{\circ}-90^{\circ}=90^{\circ}$
Similarly, Now, $\angle O R A+\angle P O R=180^{\circ}$ (co-interior angles)
$\Rightarrow \angle P O Q=180^{\circ}-90^{\circ}=90^{\circ}$
Now, $\angle P O R+\angle P O Q=90^{\circ}+90^{\circ}=180^{\circ}$
Since, $\angle P O R$ and $\angle P O Q$ are linear pair angles whose sum is 180°
Hence, QR is a straight line passing through center O .
15. In the given figure, a circle with center O, is inscribed in a quadrilateral $A B C D$ such that it touches the side $B C, A B, A D$ and $C D$ at points P, Q, R and S respectively. If $A B=29 \mathrm{~cm}$, $\mathrm{AD}=23 \mathrm{~cm}, \angle B=90^{\circ}$ and $\mathrm{DS}=5 \mathrm{~cm}$ then find the radius of the circle.

Sol:

We know that tangent segments to a circle from the same external point are congruent
Now, we have
$\mathrm{DS}=\mathrm{DR}, \mathrm{AR}=\mathrm{AQ}$
Now $A D=23 \mathrm{~cm}$
$\Rightarrow A R+R D=23$
$\Rightarrow A R=23-R D$
$\Rightarrow A R=23-5[\therefore D S=D R=5]$
$\Rightarrow A R=18 \mathrm{~cm}$
Again, $\mathrm{AB}=29 \mathrm{~cm}$
$\Rightarrow A Q+Q B=29$
$\Rightarrow Q B=29-A Q$
$\Rightarrow Q B=29-18 \quad[\because A R=A Q=18]$
$\Rightarrow Q B=11 \mathrm{~cm}$
Since all the angles are in a quadrilateral BQOP are right angles and $O P=B Q$
Hence, BQOP is a square.
We know that all the sides of square are equal.
Therefore, $\mathrm{BQ}=\mathrm{PO}=11 \mathrm{~cm}$
16. In the given figure, O is the centre of the circle and $T P$ is the tangent to the circle from an external point T . If $\angle P B T=30^{\circ}$, prove that $\mathrm{BA}: \mathrm{AT}=2: 1$.

Sol:

$A B$ is the chord passing through the center
So, AB is the diameter
Since, angle in a semicircle is a right angle
$\therefore \angle A P B=90^{\circ}$
By using alternate segment theorem
We have $\angle A P B=\angle P A T=30^{\circ}$
Now, in $\triangle A P B$
$\angle B A P+\angle A P B+\angle B A P=180^{\circ}$ (Angle sum property of triangle)
$\Rightarrow \angle B A P=180^{\circ}-90^{\circ}-30^{\circ}=60^{\circ}$
Now, $\angle B A P=\angle A P T+\angle P T A$ (Exterior angle property)
$\Rightarrow 60^{\circ}=30^{\circ}+\angle P T A$
$\Rightarrow \angle P T A=60^{\circ}-30^{\circ}=30^{\circ}$
We know that sides opposite to equal angles are equal
$\therefore A P=A T$
In right triangle $A B P$
$\sin \angle A B P=\frac{A P}{B A}$
$\Rightarrow \sin 30^{\circ}=\frac{A T}{B A}$
$\Rightarrow \frac{1}{2}=\frac{A T}{B A}$
$\therefore B A: A T=2: 1$

Exercise - 12B

1. In the adjoining figure, a circle touches all the four sides of a quadrilateral $A B C D$ whose sides are $A B=6 \mathrm{~cm}, B C=9 \mathrm{~cm}$ and $C D=8 \mathrm{~cm}$. Find the length of side $A D$.

Sol:

We know that when a quadrilateral circumscribes a circle then sum of opposites sides is equal to the sum of other opposite sides.
$\therefore A B+C D=A D+B C$
$\Rightarrow 6+8=A D=9$
$\Rightarrow A D=5 \mathrm{~cm}$
2. In the given figure, PA and PB are two tangents to the circle with centre O . If $\angle A P B=50^{\circ}$ then what is the measure of $\angle O A B$.

Sol:

Construction: Join OB

We know that the radius and tangent are perpendicular at their point of contact
$\because \angle O B P=\angle O A P=90^{\circ}$
Now, In quadrilateral AOBP
$\angle A O B+\angle O B P+\angle A P B+\angle O A P=360^{\circ} \quad$ [Angle sum property of a quadrilateral]
$\Rightarrow \angle A O B+90^{\circ}+50^{\circ}+90^{\circ}=360^{\circ}$
$\Rightarrow 230^{\circ}+\angle B O C=360^{\circ}$
$\Rightarrow \angle A O B=130^{\circ}$
Now, In isosceles triangle AOB

$$
\begin{array}{lc}
\angle A O B+\angle O A B+\angle O B A=180^{\circ} & \text { [Angle sum property of a triangle }] \\
\Rightarrow 130^{\circ}+2 \angle O A B=180^{\circ} & {[\because \angle O A B=\angle O B A]} \\
\Rightarrow \angle O A B=25^{\circ} &
\end{array}
$$

3. In the given figure, O is the centre of a circle. PT and PQ are tangents to the circle from an external point P . If $\angle T P Q=70^{\circ}$, find the $\angle T R Q$.

Sol:

Construction: Join OQ and OT

We know that the radius and tangent are perpendicular at their point of contact
$\because \angle O T P=\angle O Q P=90^{\circ}$
Now, In quadrilateral OQPT
$\angle Q O T+\angle O T P+\angle O Q P+\angle T P O=360^{\circ} \quad$ [Angle sum property of a quadrilateral]
$\Rightarrow \angle Q O T+90^{\circ}+90^{\circ}+70^{\circ}=360^{\circ}$
$\Rightarrow 250^{\circ}+\angle Q O T=360^{\circ}$
$\Rightarrow \angle Q O T=110^{\circ}$
We know that the angle subtended by an arc at the center is double the angle subtended by the arc at any point on the remaining part of the circle.
$\therefore \angle T R Q=\frac{1}{2}(\angle Q O T)=55^{\circ}$
4. In the given figure common tangents AB and CD to the two circles with centres O_{1} and O_{2} intersect at E. Prove that $A B=C D$.

Sol:

We know that tangent segments to a circle from the same external point are congruent.
So, we have
$E A=E C$ for the circle having center O_{1}
and
$E D=E B$ for the circle having center O_{1}
Now, Adding ED on both sides in EA = EC. we get
$E A+E D=E C+E D$
$\Rightarrow E A+E B=E C+E D$
$\Rightarrow A B=C D$
5. If PT is a tangent to a circle with center O and PQ is a chord of the circle such that $\angle Q P T=70^{\circ}$, then find the measure of $\angle P O Q$.

Sol:

We know that the radius and tangent are perpendicular at their point of contact.
$\therefore \angle O P T=90^{\circ}$
Now, $\angle O P Q=\angle O P T-\angle T P Q=90^{\circ}-70^{\circ}=20^{\circ}$
Since, $\mathrm{OP}=\mathrm{OQ}$ as both are radius
$\therefore \angle O P Q=\angle O Q P=20^{\circ} \quad$ (Angles opposite to equal sides are equal)
Now, In isosceles $\triangle \mathrm{POQ}$
$\angle P O Q+\angle O P Q+\angle O Q P=180^{\circ} \quad$ (Angle sum property of a triangle)
$\Rightarrow \angle P O Q=180^{\circ}-20^{\circ}=140^{\circ}$
6. In the given figure, a triangle ABC is drawn to circumscribe a circle of radius 2 cm such that the segments BD and DC into which BC is divided by the point of contact D , are of lengths 4 cm and 3 cm respectively. If the area of $\triangle A B C=21 \mathrm{~cm}^{2}$ then find the lengths of sides $A B$ and $A C$.

Sol:
Construction: Join $\mathrm{OA}, \mathrm{OB}, \mathrm{OC}, \mathrm{OE} \perp \mathrm{AB}$ at E and $\mathrm{OF} \perp \mathrm{AC}$ at F

We know that tangent segments to a circle from the same external point are congruent
Now, we have
$A E=A F, B D=B E=4 \mathrm{~cm}$ and $C D=C F=3 \mathrm{~cm}$
Now,
$\operatorname{Area}(\triangle A B C)=\operatorname{Area}(\triangle B O C)+\operatorname{Area}(\triangle A O B)+\operatorname{Area}(\triangle A O C)$
$\Rightarrow 21=\frac{1}{2} \times B C \times O D+\frac{1}{2} \times A B \times O E+\frac{1}{2} \times A C \times O F$
$\Rightarrow 42=7 \times 2+(4+x) \times 2+(3+x) \times 2$
$\Rightarrow 21=7+4+x+3+x$
$\Rightarrow 21=14+2 x$
$\Rightarrow 2 x=7$
$\Rightarrow x=3.5 \mathrm{~cm}$
$\therefore A B=4+3.5=7.5 \mathrm{~cm}$ and $A C=3+3.5=6.5 \mathrm{~cm}$
7. Two concentric circles are of radii 5 cm and 3 cm . Find the length of the chord of the larger circle (in cm) which touches the smaller circle.

Sol:

Given Two circles have the same center O and $A B$ is a chord of the larger circle touching the smaller circle at C ; also. $O A=5 \mathrm{~cm}$ and $O C=3 \mathrm{~cm}$
In $\triangle O A C, O A^{2}=O C^{2}+A C^{2}$
$\therefore A C^{2}=O A^{2}-O C^{2}$
$\Rightarrow A C^{2}=5^{2}-3^{2}$
$\Rightarrow A C^{2}=25-9$
$\Rightarrow A C^{2}=16$
$\Rightarrow A C=4 \mathrm{~cm}$
$\therefore A B=2 A C$ (Since perpendicular drawn from the center of the circle bisects the chord)
$\therefore A B=2 \times 4=8 \mathrm{~cm}$
The length of the chord of the larger circle is 8 cm .
8. Prove that the perpendicular at the point of contact of the tangent to a circle passes through the centre.
Sol:

Let AB be the tangent to the circle at point P with center O .
To prove: PQ passes through the point O .
Construction: Join OP.
Through O , draw a straight line CD parallel to the tangent AB .
Proof: Suppose that PQ doesn't passes through point O.
$P Q$ intersect $C D$ at R and also intersect $A B$ at P
$\mathrm{AS}, \mathrm{CD} \| \mathrm{AB} . \mathrm{PQ}$ is the line of intersection.
$\angle O R P=\angle R P A$ (Alternate interior angles)
but also.
$\angle R P A=90^{\circ}(O P \perp A B)$
$\Rightarrow \angle O R P=90^{\circ}$
$\angle R O P+\angle O P A=180^{\circ}$ (Co interior angles)
$\Rightarrow \angle R O P+90^{\circ}=180^{\circ}$
$\Rightarrow \angle R O P=90^{\circ}$
Thus, the $\triangle O R P$ has 2 right angles i.e., $\angle O R P$ and $\angle R O P$ which is not possible Hence, our supposition is wrong
$\therefore \mathrm{PQ}$ passes through the point O .
9. In the given figure, two tangents $R Q$, and $R P$ and $R P$ are drawn from an external point R to the circle with centre O. If $\angle P R Q=120^{\circ}$, then prove that $\mathrm{OR}=\mathrm{PR}+\mathrm{RQ}$.

Sol:

Construction Join PO and OQ
In $\triangle P O R$ and $\triangle Q O R$

$$
O P=O Q(\text { Radii })
$$

$R P=R Q$ (Tangents from the external point are congruent)
$O R=O R$ (Common)
By SSS congruency, $\triangle P O R \cong \triangle Q O R$
$\angle P R O=\angle Q R O$ (С.P.C.T)

Now, $\angle P R O+\angle Q R O=\angle P R Q$
$\Rightarrow 2 \angle P R O=120^{\circ}$
$\Rightarrow \angle P R O=60^{\circ}$
Now. In $\triangle P O R$
$\cos 60^{\circ}=\frac{P R}{O R}$
$\Rightarrow \frac{1}{2}=\frac{P R}{O R}$
$\Rightarrow O R=2 P R$
$\Rightarrow O R=P R+P R$
$\Rightarrow O R=P R+R Q$
10. In the given figure, a cradle inscribed in a triangle $A B C$ touches the sides $A B, B C$ and $C A$ at points D, E and F respectively. If $\mathrm{AB}=14 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$ and $\mathrm{CA}=12 \mathrm{~cm}$. Find the length AD, BE and CF .

Sol:

We know that tangent segments to a circle from the same external point are congruent Now, we nave
$A D=A F, B D=B E$ and $C E=C F$
Now $A D+B D=14 \mathrm{~cm}$
$A F+F C=12 \mathrm{~cm}$
$\Rightarrow A D+F C=12 \mathrm{~cm}$
$B E+E C=8 \mathrm{~cm}$
$\Rightarrow B D+F C=8 \mathrm{~cm}$
Adding all these we get

$$
\begin{align*}
& A D+B D+A D+F C+B D+F C=342 \\
& \Rightarrow 2(A D+B D+F C)=34 \\
& \Rightarrow A D+B O+F C=17 \mathrm{~cm} \tag{4}
\end{align*}
$$

Solving (1) and (4), we get
$F C=3 \mathrm{~cm}$
Solving (2) and (4), we get
$B D=5 \mathrm{~cm}=B E$
Solving (3) and (4), we get
and $A D=9 \mathrm{~cm}$
11. In the given figure, O is the centre of the circle. $P A$ and $P B$ are tangents. Show that $A O B P$ is cyclic quadrilateral.

Sol:

We know that the radius and tangent are perpendicular at their point of contact
$\because \angle O B P=\angle O A P=90^{\circ}$
Now, In quadrilateral AOBP
$\angle A P B+\angle A O B+\angle O B P+\angle O A P=360^{\circ} \quad$ [Angle sum property of a quadrilateral]
$\Rightarrow \angle A P B+\angle A O B+90^{\circ}+90^{\circ}=360^{\circ}$
$\Rightarrow \angle A P B+\angle A O B=180^{\circ}$
Since, the sum of the opposite angles of the quadrilateral is 180°
Hence, AOBP is a cyclic quadrilateral
12. In two concentric circles, a chord of length 8 cm of the large circle touches he smaller circle. If the radius of the larger circle is 5 cm then find the radius of the smaller circle.
Sol:

We know that the radius and tangent are perpendicular at their point of contact Since, the perpendicular drawn from the centre bisect the chord
$\therefore A P=P B=\frac{A B}{2}=4 \mathrm{~cm}$
In right triangle AOP

$$
\begin{aligned}
& A O^{2}=O P^{2}+P A^{2} \\
& \Rightarrow 5^{2}=O P^{2}+4^{2} \\
& \Rightarrow O P^{2}=9 \\
& \Rightarrow O P=3 \mathrm{~cm}
\end{aligned}
$$

Hence, the radius of the smaller circle is 3 cm .
13. In the given figure, PQ is chord of a circle with centre O an PT is a tangent. If $\angle Q P T=60^{\circ}$, find the $\angle P R Q$.

Sol:

We know that the radius and tangent are perpendicular at their point of contact
$\therefore \angle O P T=90^{\circ}$
Now, $\angle O P Q=\angle O P T-\angle Q P T=90^{\circ}-60^{\circ}=30^{\circ}$
Since, $O P=O Q$ as born is radius
$\therefore \angle O P Q=\angle O Q P=30^{\circ}$ (Angles opposite to equal sides are equal)
Now, In isosceles, POQ
$\angle P O Q+\angle O P Q+\angle O Q P=180^{\circ}$ (Angle sum property of a triangle)
$\Rightarrow \angle P O Q=180^{\circ}-30^{\circ}-30^{\circ}=120^{\circ}$
Now, $\angle P O Q+$ reflex $\angle P O Q=360^{\circ}$ (Complete angle)
\Rightarrow reflex $\angle P O Q=360^{\circ}-120^{\circ}=240^{\circ}$
We know that the angle subtended by an arc at the centre double the angle subtended by the arc at any point on the remaining part of the circle
$\therefore \angle P R Q=\frac{1}{2}($ reflex $\angle P O Q)=120^{\circ}$
14. In the given figure, PA and PB are two tangents to the circle with centre O . If $\angle A P B=60^{\circ}$, then find the measure of $\angle O A B$.

Sol:

Construction: Join OB

We know that the radius and tangent are perpendicular at their point of contact
$\because \angle O B P=\angle O A P=90^{\circ}$
Now, In quadrilateral AOBP
$\angle A O B+\angle O B P+\angle A P B+\angle O A P=360^{\circ} \quad$ [Angle sum property of a quadrilateral]
$\Rightarrow \angle A O B+90^{\circ}+60^{\circ}+90^{\circ}=360^{\circ}$
$\Rightarrow 240^{\circ}+\angle A O B=360^{\circ}$
$\Rightarrow \angle A O B=120^{\circ}$
Now, In isosceles triangle AOB
$\angle A O B+\angle O A B+\angle O B A=180^{\circ}$
[Angle sum property of a triangle]
$\Rightarrow 120^{\circ}+2 \angle O A B=180^{\circ}$
$[\because \angle O A B=\angle O B A]$
$\Rightarrow \angle O A B=30^{\circ}$

Exercise - Multiple Choice Questions

1. The number of tangents that can be drawn form an external point to a circle is
(a) 1 (b) 2 (3) (d) 4

Answer: (b) 2

Sol:

We can draw only two tangents from an external point to a circle.

2. In the given figure, $R Q$ is a tangent to the circle with centre O, If $S Q=6 \mathrm{~cm}$ and $Q R=4$ cm . then OR is equal to

(a) 2.5 cm
(b) 3 cm
(c) 5 cm (d) 8 cm

Answer: (c) 5 cm

Sol:

We know that the radius and tangent are perpendicular at their point of contact $O Q=\frac{1}{2} Q S=3 \mathrm{~cm} \quad[\because$ Radius is half of diameter $]$
Now, in right triangle OQR
By using Pythagoras theorem, we have
$O R^{2}=R Q^{2}+O Q^{2}$
$=4^{2}+3^{2}$
$=16+9$
$=25$
$\therefore O R^{2}=25$
$\Rightarrow O R=5 \mathrm{~cm}$
3. In a circle of radius 7 cm , tangent PT is drawn from a point P such that $\mathrm{PT}=24 \mathrm{~cm}$. If O is the centre of the circle, then length $\mathrm{OP}=$?

(a) 30 cm
(b) 28 cm
(c) 25 cm
(d) 18 cm

Answer: (c) 25 cm
Sol:
The tangent at any point of a circle is perpendicular to the radius at the point of contact
$\therefore O T \perp P T$
From right - angled triangle $P T O$,
$\therefore O P^{2}=O T^{2}+P T^{2} \quad$ [Using Pythagoras' theorem]
$\Rightarrow O P^{2}=(7)^{2}+(24)^{2}$
$\Rightarrow O P^{2}=49+576$
$\Rightarrow O P^{2}=625$
$\Rightarrow O P=\sqrt{625}$
$\Rightarrow O P=25 \mathrm{~cm}$
4. Which of the following pairs of lines in a circle cannot be parallel?
(a) two chords (b) a chord and tangent (c) two tangents (d) two diameters

Answer: (d) two diameters
Sol:
Two diameters cannot be parallel as they perpendicularly bisect each other.
5. The chord of a circle of radius 10 cm subtends a right angle at its centre. The length of the chord (in cm) is
(a) $\frac{5}{\sqrt{2}}$ (b) $5 \sqrt{2}$ (c) $10 \sqrt{2}$ (d) $10 \sqrt{3}$
Answer: (c) $10 \sqrt{2}$

Sol:

In right triangle AOB
By using Pythagoras theorem, we have

$$
\begin{aligned}
& A B^{2}=B O^{2}+O A^{2} \\
& =10^{2}+10^{2} \\
& =100+100 \\
& =200 \\
& \therefore O R^{2}=200 \\
& \Rightarrow O R=10 \sqrt{2} \mathrm{~cm}
\end{aligned}
$$

6. In the given figure, PT is tangent to the circle with centre O . If $\mathrm{OT}=6 \mathrm{~cm}$ and $\mathrm{OP}=10 \mathrm{~cm}$ then the length of tangent PT is

(a) 8 cm (b) 10 cm (c) 12 cm (d) 16 cm

Answer: (a) 8 cm

Sol:

In right triangle PTO
By using Pythagoras theorem, we have

$$
\begin{aligned}
& P O^{2}=O T^{2}+T P^{2} \\
& \Rightarrow 10^{2}=6^{2}+T P^{2} \\
& \Rightarrow 100=36+T P^{2} \\
& \Rightarrow T P^{2}=64 \\
& \Rightarrow T P=8 \mathrm{~cm}
\end{aligned}
$$

7. In the given figure, point P is 26 cm away from the center O of a circle and the length PT of the tangent drawn from P to the circle is 24 cm . Then, the radius of the circle is

(a) 10 cm (b) 12 cm (c) 13 cm (d) 15 cm

Answer: (a) 10 cm
Sol:
Construction: Join OT.

We know that the radius and tangent are perpendicular at their point of contact
In right triangle PTO
By using Pythagoras theorem, we have
$P O^{2}=O T^{2}+T P^{2}$
$\Rightarrow 26^{2}=O T^{2}+24^{2}$
$\Rightarrow 676=O T^{2}+576$
$\Rightarrow T P^{2}=100$
$\Rightarrow T P=10 \mathrm{~cm}$
8. PQ is a tangent to a circle with centre O at the point P . If $\triangle O P Q$ is an isosceles triangle, then $\angle O Q P$ is equal to
(a) 30°
(b) 45° (c) 60°
(d) 90°

Answer: (b) 45°
Sol:

We know that the radius and tangent are perpendicular at their point of contact Now, In isosceles right triangle POQ
$\angle P O Q+\angle O P Q+\angle O Q P=180^{\circ} \quad$ [Angle sum property of a triangle]
$\Rightarrow 2 \angle O Q P+90^{\circ}=180^{\circ}$
$\Rightarrow \angle O Q P=45^{\circ}$
9. In the given figure, AB and AC are tangents to the circle with center O such that $\angle B A C=40^{\circ}$. Then, $\angle B O C=40^{\circ}$.
(d) 90°

(a) 80°
(b) 100° (c) 120°
(d) 140°

Answer: (d) 140°

Sol:

We know that the radius and tangent are perpendicular at their point of contact
$\because \angle O B A=\angle O C A=90^{\circ}$
Now, In quadrilateral ABOC
$\angle B A C+\angle O C A+\angle O B A+\angle B O C=360^{\circ} \quad$ [Angle sum property of quadrilateral]
$\Rightarrow 40^{\circ}+90^{\circ}+90^{\circ}+\angle B O C=360^{\circ}$
$\Rightarrow 220^{\circ}+\angle B O C=360^{\circ}$
$\Rightarrow \angle B O C=140^{\circ}$
10. If a chord AB subtends an angle of 60° at the center of a circle, then he angle between the tangents to the circle drawn form A and B is
(a) 30°
(b) 60° (c) 90°
(d) 120°

Answer: (d) 120°
Sol:

We know that the radius and tangent are perpendicular at their point of contact
$\because \angle O B C=\angle O A C=90^{\circ}$
Now, In quadrilateral ABOC
$\angle A C B+\angle O A C+\angle O B C+\angle A O B=360^{\circ}$ [Angle sum property of a quadrilateral]
$\Rightarrow \angle A C B+90^{\circ}+90^{\circ}+60^{\circ}=360^{\circ}$
$\Rightarrow \angle A C B+240^{\circ}=360^{\circ}$
$\Rightarrow \angle A C B=120^{\circ}$
11. In the given figure, O is the centre of two concentric circles of radii 6 cm and $10 \mathrm{~cm} . A B$ is a chord of outer circle which touches the inner circle. The length of chord $A B$ is

(a) 8 cm (b) 14 cm (c) 16 cm (d) $\sqrt{136} \mathrm{~cm}$

Answer: (c) 16 cm

Sol:

We know that the radius and tangent are perpendicular at their point of contact In right triangle AOP

$$
A O^{2}=O P^{2}+P A^{2}
$$

$\Rightarrow 10^{2}=6^{2}+P A^{2}$
$\Rightarrow P A^{2}=64$
$\Rightarrow P A=8 \mathrm{~cm}$
Since, the perpendicular drawn from the center bisect the chord
$\therefore P A=P B=8 \mathrm{~cm}$
Now, $A B=A P+P B=8+8=16 \mathrm{~cm}$
12. In the given figure, $A B$ and $A C$ are tangents to a circle with centre O and radius 8 cm . If $\mathrm{OA}=17 \mathrm{~cm}$, then the length of $\mathrm{AC}(\mathrm{in} \mathrm{cm})$ is

(a) 9 (b) 15 (c) $\sqrt{353}$ (d) 25

Answer: (b) 15
Sol:
We know that the radius and tangent are perpendicular at their point of contact In right triangle AOB
By using Pythagoras theorem, we have
$O A^{2}=A B^{2}+O B^{2}$
$\Rightarrow 17^{2}=A B^{2}+8^{2}$
$\Rightarrow 289=A B^{2}+64$
$\Rightarrow A B^{2}=225$
$\Rightarrow A B=15 \mathrm{~cm}$
The tangents drawn from the external point are equal
Therefore, the length of AC is 15 cm
13. In the given figure, 0 is the centre of a circle, AOC is its diameter such that $\angle A C B=50^{\circ}$. If AT is the tangent to the circle at the point A , then $\angle B A T=$?

(a) 40°
(b) 50°
(c) 60°
(d) 65°

Answer: (b) 50°

Sol:

$\angle A B C=90^{\circ}$ (Angle in a semicircle)
In $\triangle A B C$, we have: $\angle A C B+\angle C A B+\angle A B C=180^{\circ}$
$\Rightarrow 50^{\circ}+\angle C A B+90^{\circ}=180^{\circ}$
$\Rightarrow \angle C A B=\left(180^{\circ}-140^{\circ}\right)$
$\Rightarrow \angle C A B=40^{\circ}$
Now, $\angle C A T=90^{\circ}$ (Tangents drawn from an external point are perpendicular to the radius at the point of contact)
$\therefore \angle C A B+\angle B A T=90^{\circ}$
$\Rightarrow 40^{\circ}+\angle B A T=90^{\circ}$
$\Rightarrow \angle B A T=\left(90^{\circ}-40^{\circ}\right)$
$\Rightarrow \angle B A T=50^{\circ}$
14. In the given figure, O is the center of a circle, $P Q$ is a chord and $P t$ is the tangent at P. If $\angle P O Q=70^{\circ}$, then $\angle T P Q$ is equal to

(a) 35°
(b) 45°
(c) 55°
(d) 70°

Answer: (a) 35°
Sol:
We know that the radius and tangent are perpendicular at their point of contact
Since, $O P=O Q$
$\because P O Q$ is a isosceles right triangle
Now, In isosceles right triangle POQ
$\angle P O Q+\angle O P Q+\angle O Q P=180^{\circ} \quad$ [Angle sum proper of a triangle]
$\Rightarrow 70^{\circ}+2 \angle O P Q=180^{\circ}$
$\Rightarrow \angle O P Q=55^{\circ}$
Now, $\angle T P Q+\angle O P Q=90^{\circ}$
$\Rightarrow \angle T P Q=35^{\circ}$
15. In the given figure, $A T$ is a tangent to the circle with center O such that $O T=4 \mathrm{~cm}$ and $\angle O T A=30^{\circ}$, Then, $A T=$?

(a) 4 cm
(b) 2 cm
(c) $2 \sqrt{3} \mathrm{~cm}$
(d) $4 \sqrt{3} \mathrm{~cm}$

Answer: (c) $2 \sqrt{3} \mathrm{~cm}$

Sol:

$O A \perp A T$
So, $\frac{A T}{O T}=\cos 30^{\circ}$
$\Rightarrow \frac{A T}{4}=\frac{\sqrt{3}}{2}$
$\Rightarrow A T=\left(\frac{\sqrt{3}}{2} \times 4\right)$
$\Rightarrow A T=2 \sqrt{3}$
16. If PA and PB are two tangents to a circle with centre O such that $\angle A O B=110^{\circ}$ then $\angle A P B$ is equal to

17. In the given figure, the length of BC is

(a) 7 cm (b) 10 cm (c) 14 cm (d) 15 cm

Answer: (b) 10 cm
Sol:
We know that tangent segments to a circle from the same external point are congruent Therefore, we have
$A F=A E=4 \mathrm{~cm}$
$B F=B D=3 \mathrm{~cm}$
$E C=A C-A E=11-4=7 \mathrm{~cm}$
$C D=C E=7 \mathrm{~cm}$
$\therefore B C=B D+D C=3+7=10 \mathrm{~cm}$
18. In the given figure, If $\angle A O D=135^{\circ}$ then $\angle B O C$ equal to

(a) 25°
(b) 45°
(c) 52.5°
(d) 62.5°

Answer: (b) 45°

Sol:

We know that the sum of angles subtended by opposite sides of a quadrilateral having a circumscribed circle is 180 degrees
$\therefore \angle A O D+\angle B O C=180^{\circ}$
$\Rightarrow \angle B O C=180^{\circ}-135^{\circ}=45^{\circ}$
19. In the given figure, O is the centre of a circle and PT is the tangent to the circle. If PQ is a chord such that $\angle Q P T=50^{\circ}$ then $\angle P O Q=$?

(a) 100°
(b) 90°
(c) 80°
(d) 75°

Answer: (a) 100°
Sol:
Given, $\angle Q P T=50^{\circ}$
And $\angle O P T=90^{\circ}$ (Tangents drawn from an external point are perpendicular to the radius at the point of contact)
$\therefore \angle O P Q=(\angle O P T-\angle Q P T)=\left(90^{\circ}-50^{\circ}\right)=40^{\circ}$
$O P=O Q \quad$ (Radius of the same circle)
$\Rightarrow \angle O Q P=\angle O P Q=40^{\circ}$
In $\triangle P O Q, \angle P O Q+\angle O Q P+\angle O P Q=180^{\circ}$
$\therefore \angle P O Q=180^{\circ}-\left(40^{\circ}+40^{\circ}\right)=100^{\circ}$
20. In the given figure, PA and PB are two tangents to th4e circle with centre O . If
$\angle A P B=60^{\circ}$ then $\angle O A B$ is

(a) 15°
(b) 30°
(c) 60°
(d) 90°

Answer: (b) 30°
Sol:
Construction: Join OB

We know that the radius and tangent are perpendicular at the point of contact
$\therefore \angle O B P=\angle O A P=90^{\circ}$
Now, In quadrilateral AOBP
$\angle A O B+\angle O B P+\angle A P B+\angle O A P=360^{\circ} \quad$ [Angle sum property of a quadrilateral]
$\Rightarrow \angle A O B+90^{\circ}+60^{\circ}+90^{\circ}=360^{\circ}$
$\Rightarrow 240^{\circ}+\angle A O B=360^{\circ}$
$\Rightarrow \angle A O B=120^{\circ}$
Now, In isosceles triangles AOB
$\angle A O B+\angle O A B+\angle O B A=180^{\circ} \quad$ [Angle sum property of a triangle]
$\Rightarrow 120^{\circ}+2 \angle O A B=180^{\circ}$

$$
[\because \angle O A B=\angle O B A]
$$

$\Rightarrow \angle O A B=30^{\circ}$
21. If two tangents inclined at an angle of 60° are drawn to a circle of a radius 3 cm then the length of each tangent is
(a) 3 cm (b) $\frac{3 \sqrt{3}}{2} \mathrm{~cm}$ (c) $3 \sqrt{3} \mathrm{~cm}$ (d) 6 cm

Answer: (c) $3 \sqrt{3} \mathrm{~cm}$

Sol:

Given, PA and PB are tangents to circle with center O and radius 3 cm and $\angle A P B=60^{\circ}$.
Tangents drawn from an external point are equal; so, $\mathrm{PA}=\mathrm{PB}$.
And OP is the bisector of $\angle A P B$, which gives $\angle O P B=\angle O P A=30^{\circ}$.
$O A \perp P A$. So, from right - angled $\triangle O P A$, we have:
$\frac{O A}{A P}=\tan 30^{\circ}$
$\Rightarrow \frac{O A}{A P}=\frac{1}{\sqrt{3}}$
$\Rightarrow \frac{3}{A P}=\frac{1}{\sqrt{3}}$
$=A P=3 \sqrt{3} \mathrm{~cm}$
22. In the given figure, PQ and PR are tangents to a circle with centre A . If $\angle Q P A=27^{\circ}$ then $\angle Q A R$ equals

(a) 63° (b) 117° (c)
(c) 126°
(d) 153°

Answer: (c) 126°
Sol:
We know that the radius and tangent are perpendicular at the point of contact
Now, In $\triangle P Q A$
$\angle P Q A+\angle Q A P+\angle A P Q=180^{\circ} \quad$ [Angle sum property of a triangle]
$\Rightarrow 90^{\circ}+\angle Q A P+27^{\circ}=180^{\circ} \quad[\because \angle O A B=\angle O B A]$
$\Rightarrow \angle Q A P=63^{\circ}$
In $\triangle P Q A$ and $\triangle P R A$
$P Q=P R \quad$ (Tangents draw from same external point are equal)
$Q A=R A \quad$ (Radio of the circle)
$A P=A P \quad$ (common)
By SSS congruency
$\triangle P Q A \cong \triangle P R A$
$\angle Q A P=\angle R A P=63^{\circ}$
$\therefore \angle Q A R=\angle Q A P+\angle R A P=63^{\circ}+63^{\circ}=126^{\circ}$
23. In the given figure, PQ and PR are tangents to a circle with centre A . If $\angle Q P A=27^{\circ}$ then
$\angle Q A R$ equals

(a) 63°
(b) 117° (c) 126°
(d) 153°

Answer: (b) 117°
Sol:
Construction: Join CA and CB

We know that the radius and tangent are perpendicular at their point of contact
$\because \angle C A P=\angle C B P=90^{\circ}$
Since, in quadrilateral ACBP all the angles are right angles
$\therefore A C P B$ is a rectangle
Now, we know that the pair of opposite sides are equal in rectangle
$\therefore C B=A P$ and $C A=B P$
Therefore, $C B=A P=4 \mathrm{~cm}$ and $C A=B P=4 \mathrm{~cm}$
24. If PA and PB are two tangents to a circle with centre O such that $\angle A P B=80^{\circ}$. Then, $\angle A O P=$?

(a) 40° (b) 50° (c) 60° (d) 70°

Answer: (b) 50°

Sol:

Given, PA and PB are two tangents to a circle with center O and $\angle A P B=80^{\circ}$
$\therefore \angle A P O=\frac{1}{2} \angle A P B=40^{\circ}$
[Since they are equally inclined to the line segment joining the center to that point and $\angle O A P=90^{\circ}$]
[Since tangents drawn from an external point are perpendicular to the radius at the point of contact]
Now, in triangle $A O P$:
$\angle A O P+\angle O A P+\angle A P O=180^{\circ}$
$\Rightarrow \angle A O P+90^{\circ}+40^{\circ}=180^{\circ}$
$\Rightarrow \angle A O P=180^{\circ}-130^{\circ}$
$\Rightarrow \angle A O P=50^{\circ}$
25. In the given figure, O is the centre of the circle. AB is the tangent to the circle at the point P. If $\angle A P Q=58^{\circ}$ then the measure of $\angle P Q B$ is

(a) 32° (b) 58° (c) 122° (d) 132°

Answer: (a) 32°

Sol:

We know that a chord passing through the center is the diameter of the circle.
$\because \angle Q P R=90^{\circ}$ (Angle in a semi circle is 90°)
By using alternate segment theorem
We have $\angle A P Q=\angle P R Q=58^{\circ}$
Now, In $\triangle \mathrm{PQR}$
$\angle P Q R+\angle P R Q+\angle Q P R=180^{\circ} \quad$ [Angle sum properly of a triangle]
$\Rightarrow \angle P Q R+58^{\circ}+90^{\circ}=180^{\circ}$
$\Rightarrow \angle P Q R=32^{\circ}$
26. In the given figure, O is the centre of the circle. $A B$ is the tangent to the circle at the point P. If $\angle P A O=30^{\circ}$ then $\angle C P B+\angle A C P$ is equal to

(a) 60°
(b) 90° (c) 120°
(d) 150°

Answer: (b) 90°
Sol:
We know that a chord passing through the center is the diameter of the circle.
$\because \angle D P C=90^{\circ} \quad$ (Angle in a semicircle is 90°)
Now, In $\triangle C D P$
$\angle C D P+\angle D C P+\angle D P C=180^{\circ} \quad$ [Angle sum property of a triangle]
$\Rightarrow \angle C D P+\angle D C P+90^{\circ}=180^{\circ}$
$\Rightarrow \angle C D P+\angle D C P=90^{\circ}$
By using alternate segment theorem
We have $\angle C D P=\angle C P B$
$\therefore \angle C P B+\angle A C P=90^{\circ}$
27. In the given figure, PQ is a tangent to a circle with centre O, A is the point of contact. If $\angle P A B=67^{\circ}$, then the measure of $\angle A Q B$ is
(a) 73° (b) 64° (c) 53° (d) 44°

Answer: (d) 44°

Sol:

We know that a chord passing through the center is the diameter of the circle.
$\because B A C=90^{\circ} \quad$ (Angle in a semicircle is 90°)
By using alternate segment theorem
We have $\angle P A B=\angle A C B=67^{\circ}$
Now, In ABC
$\angle A B C+\angle A C B+\angle B A C=180^{\circ} \quad$ [Angle sum property of a triangle]
$\Rightarrow \angle A B C+67^{\circ}+90^{\circ}=180^{\circ}$
$\Rightarrow \angle A B C=23^{\circ}$
Now, $\angle B A Q=180^{\circ}-\angle P A B \quad$ [Linear pair angles]
$=180^{\circ}-67^{\circ}$
$=113^{\circ}$
Now, In $\triangle A B Q$
$\angle A B Q+\angle A Q B+\angle B A Q=180^{\circ} \quad$ [Angle sum property of a triangle]
$\Rightarrow 23^{\circ}+\angle A Q B+113^{\circ}=180^{\circ}$
$\Rightarrow \angle A Q B=44^{\circ}$
28. In the given figure, two circles touch each other at C and $A B$ is a tangent to both the circles. The measure of $\angle A C B$ is

(a) 45° (b) 60° (c) 90°
(d) 120°

Answer: (c) 90°
Sol:

We know that tangent segments to a circle from the same external point are congruent Therefore, we have
$N A=N C$ and $N C=N B$
We also know that angle opposite to equal sides is equal
$\therefore \angle N A C=\angle N C A$ and $\angle N B C=\angle N C B$
Now, $\angle A N C+\angle B N C=180^{\circ}$
[Linear pair angles]
$\Rightarrow \angle N B C+\angle N C B+\angle N A C+\angle N C A=180^{\circ}$ [Exterior angle property]
$\Rightarrow 2 \angle N C B+2 \angle N C A=180^{\circ}$
$\Rightarrow 2(\angle N C A+\angle N C A)=180^{\circ}$
$\Rightarrow \angle A C B=90^{\circ}$
29. O is the centre of a circle of radius 5 cm . At a distance of 13 cm form O , a point P is taken. From this point, two tangents PQ and PR are drawn to the circle. Then, the area of quad. PQOR is

(a) $60 \mathrm{~cm}^{2}$ (b) $32.5 \mathrm{~cm}^{2}$ (c) $65 \mathrm{~cm}^{2}$ (d) $30 \mathrm{~cm}^{2}$

Answer: (a) $60 \mathrm{~cm}^{2}$

Sol:

Given,
$O Q=O R=5 \mathrm{~cm}, O P=13 \mathrm{~cm}$.
$\angle O Q P=\angle O R P=90^{\circ}$ (Tangents drawn from an external point are perpendicular to the radius at the point of contract)

From right - angled $\triangle P O Q$:

$$
\begin{aligned}
& P Q^{2}=\left(O P^{2}-O Q^{2}\right) \\
& \Rightarrow P Q^{2}=\left(O P^{2}-O Q^{2}\right) \\
& \Rightarrow P Q^{2}=13^{2}-5^{2} \\
& \Rightarrow P Q^{2}=169-25 \\
& \Rightarrow P Q=144 \\
& \Rightarrow P Q=\sqrt{144} \\
& \Rightarrow P Q=12 \mathrm{~cm} \\
& \therefore \operatorname{ar}(\triangle O Q P)=\frac{1}{2} \times P Q \times O Q \\
& \Rightarrow \operatorname{ar}(\triangle O Q P)=\left(\frac{1}{2} \times 12 \times 5\right) \mathrm{cm}^{2} \\
& \Rightarrow \operatorname{ar}(\triangle O Q P)=30 \mathrm{~cm}^{2}
\end{aligned}
$$

Similarly, $\operatorname{ar}(\triangle O R P)=30 \mathrm{~cm}^{2}$
$\therefore \operatorname{ar}($ quad. $P Q O R)=(30+30) \mathrm{cm}^{2}=60 \mathrm{~cm}^{2}$
30. In the given figure, PQR is a tangent to the circle at Q , whose centre is O and AB is a chord parallel to PR such that $\angle B Q R=70^{\circ}$. Then, $\angle A Q B=$?
(a) 20° (b) 35° (c) 40° (d) 45°

Answer: (c) 40°

Sol:

Since, $A B \| P R, B Q$ is transversal
$\angle B Q R=\angle A B Q=70^{\circ} \quad$ [Alternative angles]
$O Q \perp P Q R$ (Tangents drawn from an external point are perpendicular to the radius at the
point of contract)
and $A B \| P Q R$
$\therefore Q L \perp A B ;$ so,$O L \perp A B$
$\therefore O L$ bisects chord $A B$ [Perpendicular drawn from the center bisects the chord]
From $\triangle Q L A$ and $Q L B$:
$\angle Q L A=\angle Q L B=90^{\circ}$
$L A=L B \quad(O L$ bisects chord $A B)$
$Q L$ is the common side.
$\therefore \triangle Q L A \cong \triangle Q L B \quad$ [By SAS congruency]
$\therefore \angle Q A L=\angle Q B L$
$\Rightarrow \angle Q A B=\angle Q B A$
$\therefore \triangle A Q B$ is isosceles
$\therefore \angle L Q A=\angle L Q R$
$\angle L Q P=\angle L Q R=90^{\circ}$
$\angle L Q B=\left(90^{\circ}-70^{\circ}\right)=20^{\circ}$
$\therefore \angle L Q A=\angle L Q B=20^{\circ}$
$\Rightarrow \angle L Q A=\angle L Q B=20^{\circ}$
$\Rightarrow \angle A Q B=\angle L Q A+\angle L Q B$
$=40^{\circ}$
31. The length of the tangent form an external point P to a circle of radius 5 cm is 10 cm . The distance of the point from the centre of the circle is
(a) 8 cm (b) $\sqrt{104} \mathrm{~cm}$ (c) 12 cm (d) $\sqrt{125} \mathrm{~cm}$

Answer: (b) $\sqrt{104} \mathrm{~cm}$
Sol:

We know that the radius and tangent are perpendicular at their point of contact In right triangle $P T O$
By using Pythagoras theorem, we have

$$
\begin{aligned}
& P O^{2}=O T^{2}+T P^{2} \\
& \Rightarrow P O^{2}=5^{2}+10^{2} \\
& \Rightarrow P O^{2}=25+100 \\
& \Rightarrow P O^{2}=125 \\
& \Rightarrow P O=\sqrt{125 \mathrm{~cm}}
\end{aligned}
$$

32. In the given figure, O is the centre of a circle, BOA is its diameter and the tangent at the point P meets BA extended at T . If $\angle P B O=30^{\circ}$ then $\angle P T A=$?

(a) 60°
(b) 30°
(c) 15°
(d) 45°

Answer: (b) 30°
Sol:
We know that a chord passing through the center is the diameter of the circle
$\because \angle B P A=90^{\circ} \quad$ (Angle in a semicircle is 90°)
By using alternate segment theorem
We have $\angle A P T=\angle A B P=30^{\circ}$
Now, In $\triangle A B P$
$\angle P B A+\angle B P A+\angle B A P=180^{\circ} \quad$ [Angle sum property of a triangle]
$\Rightarrow 30^{\circ}+90^{\circ}+\angle B A P=180^{\circ}$
$\Rightarrow \angle B A P=60^{\circ}$
Now, $\angle B A P=\angle A P T+\angle P T A$
$\Rightarrow 60^{\circ}=30^{\circ}+\angle P T A$
$\Rightarrow \angle P T A=30^{\circ}$
33. In the given figure, a circle touches the side DF of $\triangle E D F$ at H and touches ED and EF produced at K and M respectively. If $E K=9 \mathrm{~cm}$ then the perimeter of $\triangle E D F$ is

(a) 9 cm (b) 12 cm (c) 13.5 cm (d) 18 cm

Answer: (d) 18 cm

Sol:

We know that tangent segments to a circle from the same external point are congruent. Therefore, we have
$E K=E M=9 \mathrm{~cm}$
Now, $E K+E M=18 \mathrm{~cm}$
$\Rightarrow E D+D K+E F+F M=18 \mathrm{~cm}$
$\Rightarrow E D+D H+E F+H F=18 \mathrm{~cm} \quad(\because D K=D H$ and $F M=F H)$
$\Rightarrow E D+D F+E F=18 \mathrm{~cm}$
\Rightarrow Perimeter of $\triangle E D F=18 \mathrm{~cm}$
34. To draw a pair of tangents to a circle, which are inclined to each other at an angle of 45°, we have to draw tangents at the end points of those two radii, the angle between which is
(a) 105°
(b) 135°
(c) 140°
(d) 145°

Answer: (b) 135°
Sol:

Suppose PA and PB are two tangents we want to draw which inclined at an angle of 45°
We know that the radius and tangent are perpendicular at their point of contact
$\because \angle O B P=\angle O A P=90^{\circ}$
Now, in quadrilateral AOBP
$\angle A O B+\angle O B P+\angle O A P+\angle A P B=360^{\circ} \quad$ [Angle sum property of a quadrilateral]
$\Rightarrow \angle A O B+90^{\circ}+90^{\circ}+45^{\circ}=360^{\circ}$
$\Rightarrow \angle A O B+225^{\circ}=360^{\circ}$
$\Rightarrow \angle A O B=135^{\circ}$
35. In the given figure, O is the centre of a circle; $P Q L$ and $P R M$ are the tangents at the points Q and R respectively and S is a point on the circle such that $\angle S Q L=50^{\circ}$ and
$D E \perp D F O Q \perp B C$ and $O R \perp A C$.
$5 \sqrt{3} \mathrm{~cm}$
Then, $\angle Q S R=$?

(a) 40° (b) 50° (c) 60° (d) 70°

Answer: (d) 70°

Sol:

$P Q L$ is a tangent $O Q$ is the radius; so, $\angle O Q L=90^{\circ}$
$\therefore \angle O Q S=\left(90^{\circ}-50^{\circ}\right)=40^{\circ}$
Now, $O Q=O S$ (Radius of the same circle)
$\Rightarrow \angle O S Q=\angle O Q S=40^{\circ}$
Similarly, $\angle O R S=\left(90^{\circ}-60^{\circ}\right)=30^{\circ}$,
And, $O R=O S$ (Radius of the same circle)
$\Rightarrow \angle O S R=\angle O R S=30^{\circ}$
$\therefore \angle Q S R=\angle O S Q+\angle O S R$
$\Rightarrow \angle Q S R=\left(40^{\circ}+30^{\circ}\right)$
$\Rightarrow \angle Q S R=70^{\circ}$
36. In the given figure, a triangle PQR is drawn to circumscribe a circle of radius 6 cm such that the segments QT and TR into which QR is divided by the point of contact T , are of lengths 12 cm and 9 cm respectively. If the area of $\triangle P Q R=189 \mathrm{~cm}^{2}$ then the length of side of $P Q$ is
(a) 17.5 cm (b) 20 cm (c) 22.5 cm (d) 25 cm

Answer: (c) 22.5 cm
Sol:

We know that tangent segments to a circle from the same external point are congruent.
Therefore, we have
$P S=P U=x$
$Q T=Q S=12 \mathrm{~cm}$
$R T=R U=9 \mathrm{~cm}$
Now,
$\operatorname{Ar}(\triangle P Q R)=\operatorname{Ar}(\triangle P O R)+\operatorname{Ar}(\triangle Q O R)+\operatorname{Ar}(\triangle P O Q)$
$\Rightarrow 189=\frac{1}{2} \times O U \times P R+\frac{1}{2} \times O T \times Q R+\frac{1}{2} \times O S \times P Q$
$\Rightarrow 378=6 \times(x+9)+6 \times(21)+6 \times(12+x)$
$\Rightarrow 63=x+9+21+x+12$
$\Rightarrow 2 x=21$
$\Rightarrow x=10.5 \mathrm{~cm}$
Now, $P Q=Q S+S P=12+10.5+10.5=22.5 \mathrm{~cm}$
37. In the given figure, QR is a common tangent to the given circles, touching externally at the point T. The tangent at T meets QR at P . If $\mathrm{PT}=3.8 \mathrm{~cm}$ then the length of QR is

(a) 1.9 cm (b) 3.8 cm (c) 5.7 cm (d) 7.6 cm

Answer: (d) 7.6 cm
Sol:
We know that tangent segments to a circle from the same external point are congruent.
Therefore, we have
$P T=P O=3.8 \mathrm{~cm}$ and $P T=P R 3.8 \mathrm{~cm}$
$\therefore Q R=Q P+P R=3.8+3.8=7.6 \mathrm{~cm}$
38. In the given figure, quad. $A B C D$ is circumscribed touching the circle at P, Q, R and S. If $\mathrm{AP}=5 \mathrm{~cm}, \mathrm{BC}=7 \mathrm{~cm}$ and $\mathrm{CS}=3 \mathrm{~cm}$. Then, the length of $\mathrm{AB}=$?

(a) 9 cm (b) 10 cm (c) 12 cm (d) 8 cm

Answer: (a) 9 cm

Sol:

Tangents drawn from an external point to a circle are equal.
So, $A Q=A P=5 \mathrm{~cm}$
$C R=C S=3 \mathrm{~cm}$
And $B R=(B C-C R)$
$\Rightarrow B R=(7-3) \mathrm{cm}$
$\Rightarrow B R=4 \mathrm{~cm}$
$B Q=B R=4 \mathrm{~cm}$
$\therefore A B=(A Q+B Q)$
$\Rightarrow A B=(5+4) \mathrm{cm}$
$\Rightarrow A B=9 \mathrm{~cm}$
39. In the given figure, quad. $A B C D$ is circumscribed, touching the circle at P, Q, R and S. If $\mathrm{AP}=6 \mathrm{~cm}, \mathrm{BP}=5 \mathrm{~cm}, \mathrm{CQ}=3 \mathrm{~cm}$ and $\mathrm{DR}=4 \mathrm{~cm}$ then perimeter of quad. ABCD is

(a) 18 cm
(b) 27 cm
(c) 36 cm (d) 32 cm

Answer: (c) 36 cm
Sol:
Given, $A P=6 \mathrm{~cm}, B P=5 \mathrm{~cm}, C Q=3 \mathrm{~cm}$ and $D R=4 \mathrm{~cm}$
Tangents drawn from an external point to a circle are equal
So, $A P=A S=6 \mathrm{~cm}, B P=B Q=5 \mathrm{~cm}, C Q=C R=3 \mathrm{~cm}, D R=D S=4 \mathrm{~cm}$.
$\therefore A B=A P+B P=6+5=11 \mathrm{~cm}$
$B C=B Q+C Q=5+3=8 \mathrm{~cm}$
$C D=C R+D R=3+4=7 \mathrm{~cm}$
$A D=A S+D S=6+4=10 \mathrm{~cm}$
\therefore Perimeter of quadrilateral $A B C D=A B+B C+C D+D A$
$=(11+8+7+10) \mathrm{cm}$
$=36 \mathrm{~cm}$
40. In the given figure, O is the centre of a circle, AB is a chord and AT is the tangent at A . If $\angle A O B=100^{\circ}$ then $\angle B A T$ is equal to

(a) 40° (b) 50° (c) 90° (d) 100°

Answer: (b) 50°

Sol:

Given: AO and BC are the radius of the circle
Since, $A O=B O$
$\therefore \triangle A O B$ is an isosceles triangle
Now, in $\triangle A O B$
$\angle A O B+\angle O B A+\angle O A B=180^{\circ}$
(Angle sum property of triangle)
$\Rightarrow 100^{\circ}+\angle O A B+\angle O A B=180^{\circ} \quad(\angle O B A=\angle O A B)$
$\Rightarrow 2 \angle O A B=80^{\circ}$
$\Rightarrow \angle O A B=40^{\circ}$
We know that the radius and tangent are perpendicular at their point of contact
$\because \angle O A T=90^{\circ}$
$\Rightarrow \angle O A B+\angle B A T=90^{\circ}$
$\Rightarrow \angle B A T=90^{\circ}-40^{\circ}=50^{\circ}$
41. In a right triangle ABC , right angled at $\mathrm{B}, \mathrm{BC}=12 \mathrm{~cm}$ and $\mathrm{AB}=5 \mathrm{~cm}$. The radius of the circle inscribed in the triangle is
(a) 1 cm (b) 2 cm (c) 3 cm (d) 4 cm

Answer: (b) 2 cm
Sol:

In right triangle ABC
By using Pythagoras theorem we have
$A C^{2}=A B^{2}+B C^{2}$
$=5^{2}+12^{2}$
$=25+144$
$=169$
$\therefore A C^{2}=169$
$\Rightarrow A C=13 \mathrm{~cm}$
Now,
$\operatorname{Ar}(\triangle A B C)=\operatorname{Ar}(\triangle A O B)+\operatorname{Ar}(\triangle B O C)+\operatorname{Ar}(\triangle A O C)$
$\Rightarrow \frac{1}{2} \times A B \times B C=\frac{1}{2} \times O P \times A B+\frac{1}{2} \times O Q \times B C+\frac{1}{2} \times O R \times A C$
$\Rightarrow 5 \times 12=x \times 5+x \times 12+x \times 13$
$\Rightarrow 60=30 x$
$\Rightarrow x=2 \mathrm{~cm}$
42. In the given figure, a circle is inscribed in a quadrilateral $A B C D$ touching its sides $A B, B C$, $C D$ and $A D$ at P, Q, R and S respectively. If the radius of the circle is $10 \mathrm{~cm}, \mathrm{BC}=38 \mathrm{~cm}$, $\mathrm{PB}=27 \mathrm{~cm}$ and $A D \perp C D$ then the length of CD is

(a) 11 cm (b) 15 cm (c) 20 cm (d) 21 cm

Answer: (d) 21 cm
Sol:
Construction: Join OR

We know that tangent segments to a circle from the same external point are congruent.
Therefore, we have
$B P=B Q=27 \mathrm{~cm}$
$C Q=C R$
Now, $B C=38 \mathrm{~cm}$
$\Rightarrow B Q+Q C=38$
$\Rightarrow Q C=38-27=11 \mathrm{~cm}$
Since, all the angles in quadrilateral DROS are right angles.
Hence, DROS is a rectangle.
We know that opposite sides of rectangle are equal
$\therefore O S=R D=10 \mathrm{~cm}$
Now, $C D=C R+R D$
$=C Q+R D$
$=11+10$
$=21 \mathrm{~cm}$
43. In the given figure, $\triangle A B C$ is right-angled at B such that $\mathrm{BC}=6 \mathrm{~cm}$ and $\mathrm{AB}=8 \mathrm{~cm}$. A circle with centre O has been inscribed the triangle. $O P \perp A B, O Q \perp B C$ and $O R \perp A C$. If $\mathrm{OP}=\mathrm{OQ}=\mathrm{OR}=\mathrm{xcm}$ then $\mathrm{x}=$?

(a) 2 cm (b) 2.5 cm (c) 3 cm (d) 3.5 cm

Answer: (a) 2 cm

Sol:

Given, $A B=8 \mathrm{~cm}, B C=6 \mathrm{~cm}$
Now, in $\triangle A B C$:

$$
A C^{2}=A B^{2}+B C^{2}
$$

$$
\Rightarrow A C^{2}=\left(8^{2}+6^{2}\right)
$$

$$
\Rightarrow A C^{2}=(64+36)
$$

$$
\Rightarrow A C^{2}=100
$$

$$
\Rightarrow A C=\sqrt{100}
$$

$$
\Rightarrow A C=10 \mathrm{~cm}
$$

$P B Q O$ is a square
$C R=C Q$ (Since the lengths of tangents drawn from an external point are equal)
$\therefore C Q=(B C-B Q)=(6-x) c m$
Similarly, $A R=A P=(A B=B P)=(8-x) \mathrm{cm}$
$\therefore A C=(A R+C R)=[(8-x)+(6-x)] \mathrm{cm}$
$\Rightarrow 10=(14-2 x) \mathrm{cm}$
$\Rightarrow 2 x=4$
$\Rightarrow x=2 \mathrm{~cm}$
\therefore The radius of the circle is 2 cm .
44. Quadrilateral $A B C D$ is circumscribed to a circle. If $A B=6 \mathrm{~cm}, B C=7 \mathrm{~cm}$ and $C D=4 \mathrm{~cm}$ then the length of AD is
(a) 3 cm (b) 4 cm (c) 6 cm (d) 7 cm

Answer: (a) 3 cm
Sol:

We know that when a quadrilateral circumscribes a circle then sum of opposes sides is equal to the sum of other opposite sides

$$
\begin{aligned}
& \therefore A B+D C=A D+B C \\
& \Rightarrow 6+4=A D+7 \\
& \Rightarrow A D=3 \mathrm{~cm}
\end{aligned}
$$

45. In the given figure, PA and PB are tangents to the given circle such that $\mathrm{PA}=5 \mathrm{~cm}$ and $\angle A P B=60^{\circ}$. The length of chord $A B$ is

(a) $5 \sqrt{2} \mathrm{~cm}$ (b) 5 cm (c) $5 \sqrt{3} \mathrm{~cm}$ (d) 7.5 cm

Answer: (b) 5 cm

Sol:

The lengths of tangents drawn from a point to a circle are equal
So, $P A=P B$ and therefore, $\angle P A B=\angle P B A=x$ (say).
Then, in $\triangle P A B$:
$\angle P A B+\angle P B A+\angle A P B=180^{\circ}$
$\Rightarrow x+x+60^{\circ}=180^{\circ}$
$\Rightarrow 2 x=180^{\circ}-60^{\circ}$
$\Rightarrow 2 x=120^{\circ}$
$\Rightarrow x=60^{\circ}$
\therefore Each angle of $\triangle P A B$ is 60° and therefore, it is an equilateral triangle.
$\therefore A B=P A=P B=5 \mathrm{~cm}$
\therefore The length of the chord $A B$ is 5 cm .
46. In the given figure, DE and DF are tangents from an external point D to a circle with centre A. If $D E=5 \mathrm{~cm}$ and $D E \perp D F$ then the radius of the circle is
(a) 3 cm (b) 4 cm (c) 5 cm (d) 6 cm

Answer: (c) 5 cm

Sol:

Construction: Join AF and AE

We know that the radius and tangent are perpendicular at their point of contact
$\because \angle A E D=\angle A F D=90^{\circ}$
Since, in quadrilateral AEDF all the angles are right angles
$\therefore A E D F$ is a rectangle
Now, we know that the pair of opposite sides is equal in rectangle
$\therefore A F=D E=5 \mathrm{~cm}$
Therefore, the radius of the circle is 5 cm
47. In the given figure, three circles with centres $\mathrm{A}, \mathrm{B}, \mathrm{C}$ respectively touch each other externally. If $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=7 \mathrm{~cm}$ and $\mathrm{CA}=6 \mathrm{~cm}$ then the radius of the circle with centre A is

(a) 1.5 cm (b) 2 cm (c) 2.5 cm (d) 3 cm

Answer: (b) 2 cm

Sol:

Given, $A B=5 \mathrm{~cm}, B C=7 \mathrm{~cm}$ and $C A=6 \mathrm{~cm}$.
Let, $A R=A P=x \mathrm{~cm}$.
$B Q=B P=y \mathrm{~cm}$
$C R=C Q=z \mathrm{~cm}$
(Since the length of tangents drawn from an external point arc equal)
Then, $A B=5 \mathrm{~cm}$
$\Rightarrow A P+P B=5 \mathrm{~cm}$
$\Rightarrow x+y=5$
Similarly, $y+z=7$
and $z+x=6$
Adding (i), (ii) and (iii), we get:
$(x+y)+(y+z)+(z+x)=18$
$\Rightarrow 2(x+y+z)=18$
$\Rightarrow(x+y+z)=9$
Now, (iv) - (ii):
$\Rightarrow x=2$
\therefore The radius of the circle with center A is 2 cm .
48. In the given figure, AP, AQ and BC are tangents to the circle. If $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=6 \mathrm{~cm}$ and $\mathrm{BC}=4 \mathrm{~cm}$ then the length of AP is

(a) 15 cm (b) 10 cm (c) 9 cm (d) 7.5 cm

Answer: (d) 7.5 cm

Sol:

We know that tangent segments to a circle from the same external point are congruent
Therefore, we have

$$
A P=A Q
$$

$B P=B D$
$C Q=C D$
Now, $A B+B C+A C=5+4+6=15$
$\Rightarrow A B+B D+D C+A C=15 \mathrm{~cm}$
$\Rightarrow A B+B P+C Q+A C=15 \mathrm{~cm}$
$\Rightarrow A P+A Q=15 \mathrm{~cm}$
$\Rightarrow 2 A P=15 \mathrm{~cm}$
$\Rightarrow A P=7.5 \mathrm{~cm}$
49. In the given figure, O is the centre of two concentric circles of radii 5 cm and 3 cm . From an external point p tangents PA and PB are drawn to these circles. If $\mathrm{PA}=12 \mathrm{~cm}$ then PB is equal to

(a) $5 \sqrt{2} \mathrm{~cm}$ (b) $3 \sqrt{5} \mathrm{~cm}$ (c) $4 \sqrt{10} \mathrm{~cm}$ (d) $5 \sqrt{10} \mathrm{~cm}$

Answer: (c) $4 \sqrt{10} \mathrm{~cm}$
Sol:

Given, $O P=5 \mathrm{~cm}, P A=12 \mathrm{~cm}$
Now, join O and B

Then, $O B=3 \mathrm{~cm}$.
Now, $\angle O A P=90^{\circ}$ (Tangents drawn from an external point are perpendicular to the radius at the point of contract)
Now, in $\triangle O A P$:
$O P^{2}=O A^{2}+P A^{2}$
$\Rightarrow O P^{2}=5^{2}+12^{2}$
$\Rightarrow O P^{2}=25+144$
$\Rightarrow O P^{2}=169$
$\Rightarrow O P=\sqrt{169}$
$\Rightarrow O P=13$
Now, in $\triangle O B P$:
$P B^{2}=O P^{2}-O B^{2}$
$\Rightarrow P B^{2}=13^{2}-3^{2}$
$\Rightarrow P B^{2}=169-9$
$\Rightarrow P B^{2}=160$
$\Rightarrow P B=\sqrt{160}$
$\Rightarrow P B=4 \sqrt{10} \mathrm{~cm}$
50. Which of the following statements in not true?
(a) If a point P lies inside a circle, not tangent can be drawn to the circle, passing through p .
(b) If a point P lies on the circle, then one and only one tangent can be drawn to the circle at P .
(c) If a point P lies outside the circle, then only two tangents can be drawn to the circle form P.
(d) A circle can have more than two parallel tangents. parallel to a given line.

Answer: (d) A circle can have more than two parallel tangents. parallel to a given line.

Sol:

A circle can have more than two parallel tangents. parallel to a given line.
This statement is false because there can only be two parallel tangents to the given line in a circle.
51. Which of the following statements is not true?
(a) A tangent to a circle intersects the circle exactly at one point.
(b) The point common to the circle and its tangent is called the point of contact.
(c) The tangent at any point of a circle is perpendicular to the radius of the circle through the point of contact.
(d) A straight line can meet a circle at one point only.

Answer: (d) A straight line can meet a circle at one point only.

Sol:

A straight be can meet a circle at one point only
This statement is not true because a straight line that is not a tangent but a secant cuts the circle at two points.
52. Which of the following statement is not true?
(a) A line which intersect a circle in tow points, is called secant of the circle.
(b) A line intersecting a circle at one point only, is called a tangent to the circle.
(c) The point at which a line touches the circle, is called the point of contact.
(d) A tangent to the circle can be drawn form a point inside the circle.

Answer: (d) A tangent to the circle can be drawn form a point inside the circle.

Sol:

A tangent to the circle can be drawn from a point Inside the circle.
This statement is false because tangents are the lines drawn from an external point to the circle that touch the circle at one point.

Assertion-and-Reason Type

Each question consists of two statements, namely, Assertion (A) and Reason (R). For selecting the correct answer, use the following code:
(a) Both Assertion (A) and Reason (R) are true and Reason (R) is a correct explanation of Assertion (A).
(b) Both Assertion (A) and Reason (R) are true but Reason (R) is not a correct explanation of Assertion (A).
(c) Assertion (A) is true and Reason (R) is false.
(d) Assertion (A) is false and Reason (R) is true.
53.

Assertion (A)	Reason (R)
At a point P of a circle with center O and radius 12 cm, a tangent PQ of length 16 cm is drawn., Then, $\mathrm{OQ}=20 \mathrm{~cm}$.	The tangent at any point of a circle is perpendicular to the radius through the point of contact.

The correct answer is (a)/(b)/(c)/(d).
Answer: (a) Both Assertion (A) and Reason (R) are true and Reason (R) is a correct explanation of Assertion (A).
Sol:

(a) Both Assertion (A) and Reason (R) are true and Reason (R) s a correct explanation of Assertion (A)
In $\triangle O P Q, \angle O P Q=90^{\circ}$
$\therefore O Q^{2}=O P^{2}+P Q^{2}$
$\Rightarrow O Q=\sqrt{O P^{2}+P Q^{2}}$
$=\sqrt{12^{2}+16^{2}}$
$=\sqrt{144+256}$
$=\sqrt{400}$
$=20 \mathrm{~cm}$
54.

Assertion (A)	Reason (R)
If two tangents are drawn to a circle from an external point then they subtend equal angles at the centre.	A parallelogram circumscribing a circle is rhombus.

The correct answer is (a) / (b) / (c) / (d).
Answer: (b) Both Assertion (A) and Reason (R) are true but Reason (R) is not a correct explanation of Assertion (A).

Sol:

Assertion -
We know that It two tangents are drawn to a circle from an external pout, they subtend equal angles at the center
Reason:

Given, a parallelogram $A B C D$ circumscribes a circle with center O
$A B=B C=C D=A D$
We know that the tangents drawn from an external point to circle are equal
$\therefore A P=A S$
(i) [tangents from $A]$
$B P=B Q$
...........(ii) [tangents from B]
$C R=C Q$ \qquad (iii) [tangents from C]
$D R=D S$
............(iv) [tangents from D]
$\therefore A B+C D=A P+B P+C R+D R$
$=A S+B Q+C Q+D S$
[from (i), (ii), (iii) and (iv)]
$=(A S+D S)+(B Q+C Q)$
$=A D+B C$

Thus, $(A B+C D)=(A D+B C)$

$$
\begin{aligned}
& \Rightarrow 2 A B=2 A D \\
& \Rightarrow A B=A D \\
& \therefore C D=A B=A D=B C \\
& \text { Hence, } A B C D \text { is a rhombus. }
\end{aligned}
$$

55.

Assertion (A)	Reason (R)
In the given figure a quad. ABCD is drawn to circumscribe a given circle, as shown Then, $\mathrm{AB}+\mathrm{BC}=\mathrm{AD}+\mathrm{DC}$.In two concentric circles, the chord of the larger circle, which touches the smaller circle, is bisected at the point of contact.	

The correct answer is (a) / (b) / (c) / (d).
Answer: (d) Assertion (A) is false and Reason (R) is true,

Exercise - Formative Assessment

1. In the given figure, O is the center of a circle, $P Q$ is a chord and the tangent $P T$ at P makes an angle of 50° with PQ . Then, $\angle P O Q=$?

(a) 130°
(b) 100°
(c) 90°
(d) 75°

Answer: (b) 100°

Sol:

Given, $\angle Q P T=50^{\circ}$
Now, $\angle O P T=90^{\circ}$ (Since tangents drawn from an external point are perpendicular to the radius at point of contact)
$\therefore \angle O P Q=(\angle O P T-\angle Q P T)=\left(90^{\circ}-50^{\circ}\right)=40^{\circ}$
$O P=O Q \quad$ (Radii of the same circle)
$\Rightarrow \angle O P Q=\angle O Q P=40^{\circ}$
In $\triangle P O Q$
$\angle P O Q+\angle O P Q+\angle O Q P=180^{\circ}$
$\Rightarrow \angle P O Q+40^{\circ}+40^{\circ}=180^{\circ}$
$\Rightarrow \angle P O Q=180^{\circ}-\left(40^{\circ}+40^{\circ}\right)$
$\Rightarrow \angle P O Q=180^{\circ}-80^{\circ}$
$\Rightarrow \angle P O Q=100^{\circ}$
2. If the angles between two radii of a circle is 130°, then the angle between the tangents at the ends of the radii is
(a) 65°
(b) 40°
(c) 50°
(d) 90°

Answer: (c) 50°
Sol:

$O A$ and $O B$ are the two radii of a circle with center O.
Also, $A P$ and $B P$ are the tangents to the circle.
Given, $\angle A O B=130^{\circ}$
Now, $\angle O A B=\angle O B A=90^{\circ}$ (Since tangents drawn from an external point are perpendicular to the radius at point of contact)
In quadrilateral $O A P B$,

$$
\begin{aligned}
& \angle A O B+\angle O A B+\angle O B A+\angle A P B=360^{\circ} \\
& \Rightarrow 130^{\circ}+90^{\circ}+90^{\circ}+\angle A P B=360^{\circ} \\
& \Rightarrow \angle A P B=360^{\circ}-\left(130^{\circ}+90^{\circ}+90^{\circ}\right) \\
& \Rightarrow \angle A P B=360^{\circ}-310^{\circ} \\
& \Rightarrow \angle A P B=50^{\circ}
\end{aligned}
$$

3. If tangents PA and PB from a point P to a circle with center O are drawn so that $\angle A P B=80^{\circ}$, then, $\angle P O A$?

(a) 40°
(b) 50°
(c) 80°
(d) 60°

Answer: (b) 50°

Sol:

From $\triangle O P A$ and $\triangle O P B$
$O A=O B \quad$ (Radii of the same circle)
$O P \quad$ (Common side)
$P A=P B \quad$ (Since tangents drawn from an external point to a circle are equal)
$\therefore \triangle O P A \cong \triangle O P B \quad$ (SSS rule)
$\therefore \angle A P O=\angle B P O$
$\therefore \angle A P O=\frac{1}{2} \angle A P B=40^{\circ}$
And $\angle O A P=90^{\circ}$ (Since tangents drawn from an external point are perpendicular to the radius at point of contact)
Now, in $\triangle O A P, \angle A O P+\angle O A P+\angle A P O=180^{\circ}$
$\Rightarrow \angle A O P+90^{\circ}+40^{\circ}=180^{\circ}$
$\Rightarrow \angle A O P=180^{\circ}-130^{\circ}=50^{\circ}$
4. In the given figure, AD and AE are the tangents to a circle with centre O and BC touches the circle at F . If $\mathrm{AE}=5 \mathrm{~cm}$, then perimeter of $\triangle A B C$ is

(a) 15 cm
(b) 10 cm
(c) 22.5 cm
(d) 20 cm

Answer: (b) 10 cm

Sol:

Since the tangents from an external point are equal, we have
$A D=A E, C D=C F, B E=B F$
Perimeter of $\triangle A B C=A C+A B+C B$
$=(A D-C D)+(C F+B F)+(A E-B E)$
$=(A D-C F)+(C F+B F)+(A E-B F)$
$=A D+A E$
$=2 A E$
$=2 \times 5$
$=10 \mathrm{~cm}$
5. In the given figure, a quadrilateral $A B C D$ is drawn to circumscribe a circle such that its sides $A B, B C, C D$ and $A D$ touch the circle at P, Q, R and S respectively. If $A B=x \mathrm{~cm}, B C$ $=7 \mathrm{~cm}, \mathrm{CR}=3 \mathrm{~cm}$ and $\mathrm{AS}=5 \mathrm{~cm}$, find x .

Sol:

We know that tangent segments to a circle from the same external point are congruent
Now, we have
$C R=C Q, A S=A P$ and $B Q=B P$
Now, $B C=7 \mathrm{~cm}$
$\Rightarrow C Q+B Q=7$
$\Rightarrow B Q=7-C Q$
$\Rightarrow B Q=7-3 \quad[\because C Q=C R=3]$
$\Rightarrow B Q=4 \mathrm{~cm}$
Again, $A B=A P+P B$
$=A P=B Q$
$=5+4 \quad[\because A S=A P=5]$
$=9 \mathrm{~cm}$
Hence, the value of $x 9 \mathrm{~cm}$
6. In the given figure, PA and PB are the tangents to a circle with centre O. Show that the points A, O, B, P are concyclic.

Sol:

Here, OA = OB
And $O A \perp A P, O A \perp B P$, (Since tangents drawn from an external point arc perpendicular to the radius at the point of contact)
$\therefore \angle O A P=90^{\circ}, \angle O B P=90^{\circ}$
$\therefore \angle O A P+\angle O B P=90^{\circ}+90^{\circ}=180^{\circ}$
$\therefore \angle A O B+\angle A P B=180^{\circ} \quad\left(\right.$ Since,$\left.\angle O A P+\angle O B P+\angle A O B+\angle A P B=360^{\circ}\right)$
Sum of opposite angle of a quadrilateral is 180°.
Hence A, O, B and P are concyclic.
7. In the given figure, PA and PB are two tangents form an externa point P to a circle with centre O. If $\angle P B A=65^{\circ}$, find the $\angle O A B$ and $\angle A P B$.

Sol:

We know that tangents drawn from the external port are congruent
$\therefore P A=P B$
Now, In isosceles triangle APB
$\angle A P B+\angle P B A=\angle P A B=180^{\circ} \quad$ [Angle sum property of a triangle]
$\Rightarrow \angle A P B+65^{\circ}+65^{\circ}=180^{\circ} \quad\left[\because \angle P B A=\angle P A B=65^{\circ}\right]$
$\Rightarrow \angle A P B=50^{\circ}$
We know that the radius and tangent are perpendicular at their port of contact
$\therefore \angle O B P=\angle O A P=90^{\circ}$
Now, In quadrilateral $A O B P$
$\angle A O B+\angle O B P+\angle A P B+\angle O A P=360^{\circ} \quad$ [Angle sum property of a quadrilateral]
$\Rightarrow \angle A O B+90^{\circ}+50^{\circ}+90^{\circ}=360^{\circ}$
$\Rightarrow 230^{\circ}+\angle B O C=360^{\circ}$
$\Rightarrow \angle A O B=130^{\circ}$
Now, In isosceles triangle $A O B$
$\angle A O B+\angle O A B+\angle O B A=180^{\circ} \quad$ [Angle sum property of a triangle]
$\Rightarrow 130^{\circ}+2 \angle O A B=180^{\circ} \quad[\because \angle O A B=\angle O B A]$
$\Rightarrow \angle O A B=25^{\circ}$
8. Two tangents segments $B C$ and $B D$ are drawn to a circle with center O such that $\angle C B D=120^{\circ}$. Prove that $O B=2 B C$

Ans:

Sol:

Here, $O B$ is the bisector of $\angle C B D$.
(Two tangents are equally inclined to the line segment joining the center to that point)
$\therefore \angle C B O=\angle D B O=\frac{1}{2} \angle C B D=60^{\circ}$
\therefore From $\triangle B O D, \angle B O D=30^{\circ}$
Now, from right - angled $\triangle B O D$,
$\Rightarrow \frac{B D}{O B}=\sin 30^{\circ}$
$\Rightarrow O B=2 B D$
$\Rightarrow O B=2 B C$ (Since tangents from an external point are equal. i.e., $B C=B D$)
$\therefore O B=2 B C$
9. Fill in the blanks.
(i) A line intersecting a circle in two distinct points is called a \qquad
(ii) A circle can have parallel tangents at the most ...
(iii) The common point of a tangent to a circle and the circle is called the \qquad
(iv) A circle can have \qquad tangents

Sol:

(i) A line intersecting a circle at two district points is called a secant
(ii) A circle can have two parallel tangents at the most
(iii) The common point of a tangent to a circle and the circle is called the point of contact. (iv) A circle can have infinite tangents
10. Prove that the lengths of two tangents drawn from an external point to a circle are equal.

Sol:

Given two tangents AP and AQ are drawn from a point A to a circle with center O .
To prove: $A P=A Q$
Join $O P, O Q$ and $O A$.
$A P$ is tangent at P and $O P$ is the radius.
$\therefore O P \perp A P$ (Since tangents drawn from an external point are perpendicular to the radius at the point of contact)
Similarly, $O Q \perp A Q$
In the right $\triangle O P A$ and $\triangle O Q A$, we have:
$O P=O Q \quad$ [radii of the same circle]
$\angle O P A=\angle O Q A\left(=90^{\circ}\right)$
$O A=O A$
[Common side]
$\therefore \triangle O P A \cong \triangle O Q A$
[By R.H.S - Congruence]
Hence, $A P=A Q$
11. Prove that the tangents drawn at the ends of the diameter of a circle are parallel.

Sol:

Here, $P T$ and $Q S$ are the tangents to the circle with center O and $A B$ is the diameter
Now, radius of a circle is perpendicular to the tangent at the point of contact
$\therefore O A \perp A T$ and $O B \perp B S$ (Since tangents drawn from an external point are perpendicular to the radius at point of contact)
$\therefore \angle O A T=\angle O B Q=90^{\circ}$
But $\angle O A T$ and $\angle O B Q$ are alternate angles.
$\therefore A T$ is parallel to $B S$.
12. In the given figure, if $A B=A C$, prove that $B E=C E$.

Sol:

Given, $A B=A C$
We know that the tangents from an external point are equal
$\therefore A D=A F, B D=B E$ and $C F=C E$
Now, $A B=A C$
$\Rightarrow A D+D B=A F+F C$
$\Rightarrow A F+D B=A F+F C \quad[\operatorname{from}(i)]$
$\Rightarrow D B=F C$
$\Rightarrow B E=C E$
$[$ from $(i)]$
Hence proved.
13. If two tangents are drawn to a circle from an external point, show that they subtend equal angles at the centre.
Sol:

Given: A circle with center O and a point A outside it. Also, $A P$ and $A Q$ are the two tangents to the circle
To prove: $\angle A O P=\angle A O Q$.
Proof : In $\triangle A O P$ and $\triangle A O Q$, we have
$A P=A Q \quad$ [tangents from an external point are equal]
$O P=O Q \quad$ [radii of the same circle]
$O A=O A \quad$ [common side]
$\therefore \triangle A O P \cong \triangle A O Q \quad$ [by SSS - congruence]
Hence, $\angle A O P=\angle A O Q$ (c.p.c.t).
14. Prove that the tangents drawn at the ends of a chord of a circle make equal angles with the chord.

Sol:

Let $R A$ and $R B$ be two tangents to the circle with center O and let $A B$ be a chord of the circle.
We have to prove that $\angle R A B=\angle R D A$.
\therefore Now, $R A$
$=R B$ (Since tangents drawn from an external point to a circle are equal)
In. $\triangle R A B, \angle R A B=\angle R D A$ (Since opposite sides are equal, their base angles are also equal)
15. Prove that the parallelogram circumscribing a circle, is a rhombus.

Sol:

Given, a parallelogram $A B C D$ circumscribes a circle with center O
$A B=B C=C D=A D$
We know that the tangents drawn from an external point to circle are equal
$\therefore A P=A S$
(i) [tangents from A]
$B P=B Q$
...........(ii) [tangents from B]
$C R=C Q$
.(iii) [tangents from C]
$D R=D S$
.(iv) [tangents from D]
$\therefore A B+C D=A P+B P+C R+D R$
$=A S+B Q+C Q+D S$
[from (i), (ii), (iii) and (iv)]
$=(A S+D S)+(B Q+C Q)$
$=A D+B C$

Thus, $(A B+C D)=(A D+B C)$
$\Rightarrow 2 A B=2 A D$
$\Rightarrow A B=A D$
$\therefore C D=A B=A D=B C$
Hence, $A B C D$ is a rhombus.
16. Two concentric circles are of radii 5 cm and 3 cm respectively. Find the length of the chord of the larger circle which touches the smaller circle.

Sol:

Given: Two circles have the same center O and $A B$ is a chord of the larger circle touching the smaller circle at C. also, $O A=5 \mathrm{~cm}$ ad $O C 3 \mathrm{~cm}$
In $\triangle O A C, O A^{2}=O C^{2}+A C^{2}$
$\therefore A C^{2}=O A^{2}-O C^{2}$
$\Rightarrow A C^{2}=5^{2}-3^{2}$
$\Rightarrow A C^{2}=25-9$
$\Rightarrow A C^{2}=16$
$\Rightarrow A C=4 \mathrm{~cm}$
$\therefore A B=2 A C$ (Since perpendicular drawn from the center of the circle bisects the chord)
$\therefore A B=2 \times 4=8 \mathrm{~cm}$
The length of the chord of the larger circle is 8 cm .
17. A quadrilateral $A B C D$ is drawn to circumscribe a circle. Prove that $A B+C D=A D+B C$.

Or
A quadrilateral is drawn to circumscribe a circle. Prove that the sum of opposite sides are equal.
Sol:

We know that the tangents drawn from an external point to circle are equal.
$\therefore A P=A S$
(i) [tangents from $A]$
$B P=B Q$
(ii) [tangents from B]
$C R=C Q$ \qquad (iii) [tangents from C]
$D R=D S$
(iv) [tangents from $D]$
$\therefore A B+C D=(A P+B P)+(C R+D R)$
$=(A S+B Q)+(C Q+D S)$
[using (i), (ii), (iii) and (iv)]
$=(A S+D S)+(B Q+C Q)$
$=A D+B C$
Hence, $(A B+C D)=(A D+B C)$
18. Prove that the opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.
Sol:

Given, a quadrilateral $A B C D$ circumference a circle with center O.
To prove: $\angle A O B+\angle C O D=180^{\circ}$
And $\angle A O D+\angle B O C=180^{\circ}$
Join: $O P, O Q, O R$ and $O S$.
We know that the tangents drawn from an external point of a circle subtend equal angles at the center.
$\therefore \angle 1=\angle 7, \angle 2=\angle 3, \angle 4=\angle 5$ and $\angle 6=\angle 8$

And $\angle 1+\angle 2+\angle 3+\angle 4+\angle 5+\angle 6+\angle 7+\angle 8=360^{\circ} \quad$ [angles at a point]
$\Rightarrow(\angle 1+\angle 7)+(\angle 3+\angle 2)+(\angle 4+\angle 5)+(\angle 6+\angle 8)=360^{\circ}$
$2 \angle 1+2 \angle 2+2 \angle 6+2 \angle 5=360^{\circ}$
$\Rightarrow \angle 1+\angle 2+\angle 5+\angle 6=180^{\circ}$
$\Rightarrow \angle A O B+\angle C O D=180^{\circ}$ and $\angle A O D+\angle B O C=180^{\circ}$
19. Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line segments joining the points of contact at the centre.
Ans:
Sol:

Given, $P A$ and $P B$ are the tangents drawn from a point P to a circle with center O. Also, the line segments $O A$ and $O B$ are drawn.
To prove: $\angle A P B+\angle A O B=180^{\circ}$
We know that the tangent to a circle is perpendicular to the radius through the point of contact
$\therefore P A \perp O A$
$\Rightarrow \angle O A P=90^{\circ}$
$P B \perp O B$
$\Rightarrow \angle O B P=90^{\circ}$
$\therefore \angle O A P+\angle O B P=\left(90^{\circ}+90^{\circ}\right)=180^{\circ}$
But we know that the sum of all the angles of a quadrilateral is 360°.

$$
\begin{equation*}
\therefore \angle O A P+\angle O B P+\angle A P B+\angle A O B=360^{\circ} \tag{ii}
\end{equation*}
$$

From (i) and (ii), we get:
$\angle A P B+\angle A O B=180^{\circ}$
20. $P Q$ is a chord of length 16 cm of a circle of radius 10 cm . The tangents at P and Q intersect at a point T as shown in the figure. Find the length of TP.

Sol:

Let $\mathrm{TR}=y$ and $\mathrm{TP}=x$
We know that the perpendicular drawn from the center to the chord bisects it.
$\therefore P R=R Q$
Now, $\mathrm{PR}+\mathrm{RQ}=16$
$\mathrm{PR}+\mathrm{PR}=16$
$\Rightarrow P R=8$
Now, in right triangle POR
By Using Pythagoras theorem, we have

$$
\begin{aligned}
& P O^{2}=O R^{2}+P R^{2} \\
& \Rightarrow 10^{2}=O R^{2}+(8)^{2} \\
& \Rightarrow O R^{2}=36 \\
& \Rightarrow O R=6
\end{aligned}
$$

Now, in right triangle TPR
By Using Pythagoras theorem, we have

$$
T P^{2}=T R^{2}+P R^{2}
$$

$\Rightarrow x^{2}=y^{2}+(8)^{2}$
$\Rightarrow x^{2}=y^{2}+64$
Again, in right triangle TPQ
By Using Pythagoras theorem, we have

$$
T O^{2}=T P^{2}+P O^{2}
$$

$$
\Rightarrow(y+6)^{2}=x^{2}+10^{2}
$$

$$
\Rightarrow y^{2}+12 y+36=x^{2}+100
$$

$$
\begin{equation*}
\Rightarrow y^{2}+12 y=x^{2}+64 \tag{2}
\end{equation*}
$$

Solving (1) and (2), we get $x=10.67$
$\therefore T P=10.67 \mathrm{~cm}$

