Chapter: Quadrilateral Page no.: 185 Exercise: 15

Question 1:

(i) Solution: A quadrilateral has 4 Sides.

(ii)

Solution: A quadrilateral has 4 Angles.

(iii)

Solution: A quadrilateral has 4 Vertices, no three of which are co-linear.

(iv)

Solution: A quadrilateral has A quadrilateral has 2 Diagonals

(v)

Solution: A diagonal of a quadrilateral is a line segment that joins two opposite vertices of the quadrilateral.

(vi)

Solution: The sum of the angles of a quadrilateral is 360° .

Question 2:

(i)

Solution: There are four pairs of adjacent sides, namely (AB, BC), (BC, CD), (CD, DA) and (DA, AB).

(ii)

Solution: There are two pairs of opposite sides, namely (*AB*, *DC*) and (*AD*, *BC*).

(iii)

Solution: There are four pairs of adjacent angles, namely $\angle A$, $\angle B$, $\angle B$, $\angle C$, $\angle C$, $\angle D$ and $\angle D$, $\angle A$.

(iv)

Solution: There are two pairs of opposite angles, namely $\angle A$, $\angle C$ and $\angle B$, $\angle D$

(v)

Solution: There are two diagonals, namely AC and BD.

Question 3: Solution:

Let *ABCD* be a quadrilateral. Join A and C.

Now, we know that the sum of the angles of a triangle is 180° .

For $\triangle ABC$: $\angle 2 + \angle 4 + \angle B = 180^{\circ}$... (1) For \triangle ADC: $\angle 1 + \angle 3 + \angle D = 180^{\circ}$... (2) Adding (1) and (2): $\angle 1 + \angle 2 + \angle 3 + \angle 4 + \angle B + \angle D = 360^{\circ}$ or $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$ Hence, the sum of all the angles of a quadrilateral is 360°

Question 4:

Solution: Sum of all the four angles of a quadrilateral is 360°

 $X = 122^{\circ}$

Let the unknown angle be x°. Sameter $76^{\circ} + 54^{\circ} + 108^{\circ} + x = 360^{\circ}$

 $238^{\circ} + x = 360^{\circ}$.

the fourth angle measures 122° .

Question 5:

Solution:

Let the measures of the angles of the given quadrilateral be $(3x)^\circ$, $(5x)^\circ$, $(7x)^\circ$ and $(9x)^\circ$. Sum of all the angles of a quadrilateral is 360°.

 $::3x+5x+7x+9x=360^{\circ}$

 $24x = 360^{\circ}$

 $X = \frac{360^{\circ}}{-1000}$ 24

x=15

Angles measure:
$$(3 \times 15)^{\circ} = 45^{\circ}$$

 $(5 \times 15)^{\circ} = 75^{\circ}$
 $(7 \times 15)^{\circ} = 105^{\circ}$
 $(9 \times 15)^{\circ} = 135^{\circ}$

Question 6: Solution:

Sum of the four angles of a quadrilateral is 360°. If the unknown angle is x° , then: $75 + 75 + 75 + x = 360^{\circ}$.

 $X = 360^{\circ} - 225^{\circ}$ $X = 135^{\circ}$ the fourth angle measures 135°

Question 7:

Solution:

Let the three angles measure x° each. Sum of all the angles of a quadrilateral is 360°

 $\therefore x + x + x + 120^{\circ} = 360^{\circ}$ $3x + 120^{\circ} = 360^{\circ}$ $3x = 240^{\circ}$ $X = \frac{240^{\circ}}{3}$ $x = 80^{\circ}$

each of the equal angles measure 80°

Question 8: Solution:

Let the two unknown angles measure x^{o} each. Sum of the angles of a quadrilateral is 360°

 $\therefore 85^{\circ} + 75^{\circ} + x + x = 360^{\circ}$ $160^{\circ} + 2x = 360^{\circ}$ $2x = 360^{\circ} - 160^{\circ}$

 $2x = 200^{\circ}$ $\mathbf{X} = \frac{200^{\circ}}{2}$ $X = 100^{\circ}$ each of the equal angle measures 100° .

Question 9:

Solution:

Sum of the angles of a quadrilateral is 360°. $\therefore \angle A + \angle B + 60^\circ + 100^\circ = 360^\circ$ $\angle A + \angle B = 360^{\circ} - 100^{\circ} - 60^{\circ} = 200^{\circ}$ Or $\frac{1}{2} \angle A + \angle B = 100^{\circ}$... (1) Sum of the angles of a triangle is 180°. JISECTORS O. $In \triangle APB$: $\frac{1}{2} \angle A + \angle B + \angle P = 180^{\circ}$ (because AP and PB are bisectors of $\angle A$ and $\angle B$) Using equation (1): $100^\circ + \angle P = 180^\circ$ $\angle P = 80^{\circ}$ $\angle APB = 80^{\circ}$