Chapter: Quadrilateral
Page no.: 185
Exercise: 15

Question 1:

(i)

Solution: A quadrilateral has 4 Sides.
(ii)

Solution: A quadrilateral has 4 Angles.
(iii)

Solution: A quadrilateral has 4 Vertices, no three of which are co-linear.
(iv)

Solution: A quadrilateral has A quadrilateral has 2 Diagonals
(v)

Solution: A diagonal of a quadrilateral is a line segment that joins two opposite vertices of the quadrilateral.
(vi)

Solution: The sum of the angles of a quadrilateral is 360°.

Question 2:

(i)

Solution: There are four pairs of adjacent sides, namely $(A B, B C),(B C, C D),(C D, D A)$ and $(D A, A B)$.
(ii)

Solution: There are two pairs of opposite sides, namely $(A B, D C)$ and $(A D, B C)$.
(iii)

Solution: There are four pairs of adjacent angles, namely $\angle A, \angle B, \angle B, \angle C, \angle C, \angle D$ and $\angle D, \angle A$.
(iv)

Solution: There are two pairs of opposite angles, namely $\angle A, \angle C$ and $\angle B, \angle D$
(v)

Solution: There are two diagonals, namely $A C$ and $B D$.

Question 3:

Solution:

Let $A B C D$ be a quadrilateral.
Join A and C.
Now, we know that the sum of the angles of a triangle is 180°.
For $\triangle \mathrm{ABC}: \angle 2+\angle 4+\angle B=180^{\circ}$
For $\triangle \mathrm{ADC}: \angle 1+\angle 3+\angle D=180^{\circ}$
Adding (1) and (2):
$\angle 1+\angle 2+\angle 3+\angle 4+\angle B+\angle D=360^{\circ}$
or $\angle A+\angle B+\angle C+\angle D=360^{\circ}$
Hence, the sum of all the angles of a quadrilateral is 360°.

Question 4:

Solution: Sum of all the four angles of a quadrilateral is 360°.
Let the unknown angle be x°.

$$
\begin{array}{r}
76^{\circ}+54^{\circ}+108^{\circ}+\mathrm{x}=360^{\circ} \\
238^{\circ}+\mathrm{x}=360^{\circ} . \\
\mathrm{X}=122^{\circ}
\end{array}
$$

the fourth angle measures 122°.

Question 5:

Solution:

Let the measures of the angles of the given quadrilateral be $(3 \mathrm{x})^{\circ},(5 \mathrm{x})^{\circ},(7 \mathrm{x})^{\circ}$ and $(9 \mathrm{x})^{\circ}$.
Sum of all the angles of a quadrilateral is 360°.
$\therefore 3 \mathrm{x}+5 \mathrm{x}+7 \mathrm{x}+9 \mathrm{x}=360^{\circ}$
$24 \mathrm{x}=360^{\circ}$
$X=\frac{360^{\circ}}{24}$
$\mathrm{x}=15$

Angles measure: $(3 \times 15)^{o}=45^{\circ}$

$$
\begin{aligned}
& (5 \times 15)^{o}=75^{\circ} \\
& (7 \times 15)^{o}=105^{\circ} \\
& (9 \times 15)^{o}=135^{o}
\end{aligned}
$$

Question 6:

Solution:

Sum of the four angles of a quadrilateral is 360°.
If the unknown angle is x^{o}, then:
$75+75+75+\mathrm{x}=360^{\circ}$.
$\mathrm{X}=360^{\circ}-225^{\circ}$
$\mathrm{X}=135^{\circ}$
the fourth angle measures 135°

Question 7:

Solution:
Let the three angles measure x^{o} each.
Sum of all the angles of a quadrilateral is 360°
$\therefore \mathrm{x}+\mathrm{x}+\mathrm{x}+120^{\circ}=360^{\circ}$
$3 x+120^{\circ}=360^{\circ}$
$3 \mathrm{x}=240^{\circ}$
$\mathrm{X}=\frac{240^{\circ}}{3}$
$\mathrm{x}=80^{\circ}$
each of the equal angles measure 80°

Question 8:

Solution:

Let the two unknown angles measure x^{o} each.
Sum of the angles of a quadrilateral is 360°
$\therefore 85^{\circ}+75^{\circ}+\mathrm{x}+\mathrm{x}=360^{\circ}$
$160^{\circ}+2 \mathrm{x}=360^{\circ}$
$2 \mathrm{x}=360^{\circ}-160^{\circ}$
$2 \mathrm{x}=200^{\circ}$
$X=\frac{200^{\circ}}{2}$
$\mathrm{X}=100^{\circ}$
each of the equal angle measures 100°.

Question 9:

Solution:
Sum of the angles of a quadrilateral is 360°.
$\therefore \angle A+\angle B+60^{\circ}+100^{\circ}=360^{\circ}$
$\angle A+\angle B=360^{\circ}-100^{\circ}-60^{\circ}=200^{\circ}$
Or
$\frac{1}{2} \angle A+\angle B=100^{\circ}$
Sum of the angles of a triangle is 180°.
In $\triangle A P B$:
$\frac{1}{2} \angle A+\angle B+\angle P=180^{\circ}$
Using equation (1):
$100^{\circ}+\angle P=180^{\circ}$
$\angle P=80^{\circ}$
$\angle A P B=80^{\circ}$

