Chapter: Direct and inverse proportions

Page no.: 162 **Exercise: 12A**

Question 1:

(i)

Solution: Clearly,
$$\frac{x}{y} = \frac{3}{9} = \frac{5}{15} = \frac{8}{24} = \frac{11}{33} = \frac{26}{78} = \frac{1}{3}$$
 (constant)

Therefore, x and y are proportional.

Solution: Clearly,
$$\frac{x}{y} = \frac{2.5}{10} = \frac{4}{16} = \frac{7.5}{30} = \frac{10}{40} = \frac{1}{4}$$
, while $\frac{14}{42} = \frac{1}{3}$

i.e.,
$$\frac{2.5}{10} = \frac{4}{16} = \frac{7.5}{30} = \frac{10}{40}$$
 is not equal to $\frac{14}{42}$. Therefore, x and y are not proportional.

Solution: Clearly,
$$\frac{x}{y} = \frac{5}{15} = \frac{7}{21} = \frac{9}{27} = \frac{25}{75} = \frac{1}{3}$$
, while $\frac{15}{60} = \frac{18}{72} = \frac{1}{4}$

(iii)

Solution: Clearly,
$$\frac{x}{y} = \frac{5}{15} = \frac{7}{21} = \frac{9}{27} = \frac{25}{75} = \frac{1}{3}$$
, while $\frac{15}{60} = \frac{18}{72} = \frac{1}{4}$
i.e., $= \frac{5}{15} = \frac{7}{21} = \frac{9}{27} = \frac{25}{75}$ is not equal to $\frac{15}{60}$ and $\frac{18}{72}$. Therefore, x and y are not proportional.

Question 2:

Solution: Since x and y are directly proportional, we have: $\frac{3}{72} = \frac{x_1}{120} = \frac{x_2}{192} = \frac{10}{y}$ Now, $\frac{3}{72} = \frac{x_1}{120}$

$$x_1 = \frac{120 \times 3}{72} = 5$$
 and, $\frac{3}{72} = \frac{x_2}{192}$

$$x_2 = \frac{3 \times 192}{72} = 8$$

And,
$$\frac{3}{72} = \frac{10}{y_1}$$

$$y_1 = \frac{72 \times 10}{3} = 240$$

Therefore, $x_1 = 5$, $x_2 = 8$ and $y_1 = 240$

Question 3:

Solution:

Let the required distance be x km. Then, we have:

Quantity of diesel (in liters)	34	20
Distance (in km)	510	x

Clearly, the less the quantity of diesel consumed, the less is the distance covered. So, this is a case of direct proportion.

Now,
$$\frac{34}{510} = \frac{20}{x}$$

 $\frac{1}{15} = \frac{20}{x}$
 $X \times 1 = 20 \times 15 = 300$

therefore, the required distance is 300 km.

Question 4:

Solution:

Let the charge for a journey of 124 km be Rs. x.

Price(in Rs.)	2550	x
Distance(in km)	150	124

More is the distance travelled, more will be the price.

So, it is a case of direct proportion.

Thus, the taxi charges Rs. 2,108 for the distance of 124 km.

Ouestion 5:

Solution:

Let the required distance be x km. Then, we have: 1 h=60 minute. $5 \text{ h=}5 \times 60 = 300 \text{ min}$.

Distance (in km)	 16	x
Time (in min)	25	300

Clearly, the more the time taken, the more will be the distance covered.

So, this is a case of direct proportion.

Now,
$$\frac{16}{25} = \frac{x}{300}$$
$$x = \frac{16 \times 300}{25}$$
$$x = 192$$

Therefore, the required distance is 192 km.

Question 6:

Solution:

Let the required number of dolls be x. Then, we have:

No of dolls	18	x
Cost of dolls (in rupees)	630	455

Clearly, the less the amount of money, the less will be the number of dolls bought. So, this is a case of direct proportion.

Now,
$$\frac{18}{630} = \frac{x}{455}$$

 $\frac{1}{35} = \frac{x}{455}$
 $X = \frac{455}{35}$
 $x = 13$

Therefore, 13 dolls can be bought for Rs 455.

Question 7:

Solution:

Let the quantity of sugar bought for 371 be x kg.

Quantity(in kg)	9	x
Price	238.50	371

The price increases as the quantity increases. Thus, this is a case of direct proportion

$$\therefore \frac{9}{238.50} = \frac{x}{371}$$
$$X = \frac{9 \times 371}{238.50} = 14$$

Thus, the quantity of sugar bought for 371 is 14 kg.

Question 8:

Solution:

Let the length of cloth be x m. Then, we have:

Length of cloth (in meters)	15 x
Cost of cloth (in rupees)	981 1308

Clearly, more length of cloth can be bought by more amount of money. So, this is a case of direct proportion.

Now,
$$\frac{15}{981} = \frac{x}{1308}$$

$$x = \frac{15 \times 1308}{981}$$

$$x = 20$$

Therefore, 20 m of cloth can be bought for Rs 1,308.

Question 9:

Solution:

Let *x* m be the length of the model of the ship. Then, we have:

1 m = 100 cm

Therefore, 15 m = 1500 cm

35 m = 3500 cm

	Length of the mast (in cm)	Length of the ship (in cm)
Actual ship	1500	3500
Model of the ship	9	x

Clearly, if the length of the actual ship is more, then the length of the model ship will also be more.

So, this is a case of direct proportion.

Now,
$$\frac{1500}{9} = \frac{3500}{x}$$

$$X = \frac{3500 \times 9}{1500}$$

$$X = 21 \text{ cm}$$

Therefore, the length of the model of the ship is 21 cm.

Question 10:

Solution:

Let x kg be the required amount of dust. Then, we have:

No. of days	8	15	41	
Dust (in kg)	6.4×107	X		

Clearly, more amount of dust will be collected in more number of days. So, this is a case of direct proportion.

Now
$$\frac{8}{6.4 \times 10^7} = \frac{15}{x}$$

$$X = \frac{15 \times 6.4 \times 10^7}{8}$$

$$X = 12 \times 10^7$$

Therefore, 12, 00, 00,000 kg of dust will be picked up in 15 days.

Question 11:

Solution:

Let *x* km be the required distance. Then, we have:

1 h=60 minute.

i.e. $1h\ 12\ min = (60+12)\ min = 72\ min$

Distance covered (in km)	50	x
Time (in min)	60	72

Clearly, more distance will be covered in more time.

So, this is a case of direct proportion

Now,
$$\frac{50}{60} = \frac{x}{72}$$
$$x = \frac{50 \times 72}{60}$$
$$x = 60$$

Therefore, the distance travelled by the car in 1 h 12 min is 60 km.

Question 12:

Solution:

Let x km be the required distance covered by Ravi in 2 h 24 min.

Then, we have:

1 h=60 min

i.e., 2 h 24 min = (120+24) min = 144 min

Distance covered (in km)	5	x
Time (in min)	60	144

Clearly, more distance will be covered in more time. So, this is a case of direct proportion.

Now,
$$\frac{5}{60} = \frac{x}{144}$$
$$x = \frac{5 \times 144}{60}$$
$$x = 12$$

Therefore, the distance covered by Ravi in 2 h 24 min is 12 km.

Question 13:

Solution:

Let x mm be the required thickness. Then, we have:

Thickness of cardboard (in mm)	65	x
No. of cardboards	12	312

Clearly, when the number of cardboard is more, the thickness will also be more. So, it is a case of direct proportion.

Now,
$$\frac{65}{12} = \frac{x}{312}$$

$$X = \frac{65 \times 312}{12}$$

$$x = 1690$$

Therefore, the thickness of the pile of 312 cardboards is 1690 mm.

Question 14:

Solution:

Let *x* be the required number of men.

Now,
$$6\frac{3}{4} \text{ m} = \frac{27}{4} \text{ m}$$

Then, we have:

Number of men	11	x
Length of trench (in meters)	$\frac{27}{4}$	27

Clearly, the longer the trench, the greater will be the number of men required. So, it is a case of direct proportion.

Now,
$$\frac{11}{27/4} = \frac{x}{27}$$

$$\frac{11 \times 4}{27} = \frac{x}{27}$$

$$x = 44$$

Therefore, 44 men should be employed to dig a trench of length 27 m.

Question 15:

Solution:

Let Reenu type x words in 8 minutes.

			//////////////////////////////////////	
No. of words		540	x	
Time taken (in min)	40	30	8	

Clearly, less number of words will be typed in less time. So, it is a case of direct proportion.

Now,
$$\frac{540}{30} = \frac{x}{8}$$
$$x = \frac{540 \times 8}{30}$$
$$x = 144$$

Therefore, Reenu will type 144 words in 8 minutes.

Exercise: 12B Page no.: 165

Question 1:

(i)

Solution; Clearly, $6 \times 9 \neq 10 \times 15 \neq 14 \times 21 \neq 16 \times 24$ Therefore, x and y are not inversely proportional.

(ii)

Solution: Clearly, $5 \times 18 = 9 \times 10 = 15 \times 6 = 3 \times 30 = 45 \times 2 = 90 = (constant)$ Therefore, x and y are inversely proportional.

(iii)

Solution: Clearly, $9 \times 4 = 3 \times 12 = 36 \times 1 = 36$, while $6 \times 9 = 54$ i.e., $9 \times 4 = 3 \times 12 = 36 \times 1 \neq 6 \times 9$

Therefore, x and y are not inversely proportional.

Solution: Since x and y are inversely proportional, xy must be a constant. Therefore, $8 \times y_1 = x_1 \times 4 = 16 \times 5 = x_2 \times 2 = 80 \times y_2$ Now, $16 \times 5 = 8 \times y_1$ $\frac{80}{9} = y_1$

Now,
$$16 \times 5 = 8 \times y_1$$

$$\frac{80}{8} = y_1$$

$$\therefore y_1 = 10$$

$$16 \times 5 = x_1 \times 4$$

$$\frac{80}{4} = x_1$$

$$\therefore x_1 = 20$$

$$16 \times 5 = x_2 \times 2$$

$$\frac{80}{2} = x_2$$

$$\therefore x_2 = 40$$

$$16 \times 5 = 80 \times y_2$$

$$\frac{80}{80} = y_2$$

$$\therefore y_2 = 1$$

Hence, $y_1 = 10$, $x_1 = 20$, $x_2 = 40$ and $y_2 = 1$

Question 3:

Solution:

Let *x* be the required number of days. Then, we have:

No. of days	8	x
No. of men	35	20

Clearly, less men will take more days to reap the field.

So, it is a case of inverse proportion.

Now,
$$8 \times 35 = x \times 20$$

$$\frac{8 \times 35}{20} = x$$

$$14 = x$$

Therefore, 20 men can reap the same field in 14 days.

Question 4:

Solution: Let *x* be the required number of men. Then, we have:

No. of days	8	6
No. of men	12	x

Clearly, more men will require less number of days to dig the pond. So, it is a case of inverse proportion.

Now,
$$8 \times 12 = 6 \times x$$

$$x = \frac{8 \times 12}{6}$$

$$x=16$$

Therefore, 16 men can dig the pond in 6 days.

Question 5:

Solution:

Let *x* be the number of days. Then, we have:

No. of days	28	x
No. of cows	6	14

Clearly, more number of cows will take less number of days to graze the field. So, it is a case of inverse proportion.

Now,
$$28 \times 6 = x \times 14$$

$$X = \frac{28 \times 6}{14}$$

$$x=12$$

Therefore, 14 cows will take 12 days to graze the field.

Question 6:

Solution:

Let *x* h be the required time taken. Then, we have:

Speed (in km/h)	60	75
Time (in h)	5	x

Clearly, the higher the speed, the lesser will be the time taken.

So, it is a case of inverse proportion.

Now,
$$60 \times 5 = 75 \times x$$

$$x = \frac{60 \times 5}{75}$$

$$x=4$$

Therefore, the car will reach its destination in 4 h if it travels at a speed of 75 km/h.

Question 7:

Solution:

Let x be the number of machines required to produce same number of articles in 48. Then, we have:

No. of machines	42	x	
No. of days	56	48	

Clearly, less number of days will require more number of machines.

So, it is a case of inverse proportion.

Now,
$$42 \times 56 = x \times 48$$

$$\Rightarrow x = \frac{42 \times 56}{48}$$

$$\Rightarrow x=49$$

Therefore, 49 machines would be required to produce the same number of articles in 48 days.

Question 8:

Solution:

Let x be the required number of taps. Then, we have:

$$1 h = 60 min$$

i.e.,
$$1 \text{ h } 36 \text{ min} = (60+36) \text{ min} = 96 \text{ min}$$

No. of taps	7	8	
Time (in min)	96	x	

Clearly, more number of taps will require less time to fill the tank.

So, it is a case of inverse proportion.

Now, $7 \times 96 = 8 \times x$

$$X = \frac{7 \times 96}{8}$$

$$x = 84$$

Therefore, 8 taps of the same size will take 84 min or 1 h 24 min to fill the tank.

Question 9:

Solution:

Let *x* min be the required number of time. Then, we have:

No. of taps	8	6
Time (in min)	27	X

Clearly, less number of taps will take more time to fill the tank.

So, it is a case of inverse proportion.

Now, $8 \times 27 = 6 \times x$

$$x = \frac{8 \times 27}{6}$$

$$x = 36$$

Therefore, it will take 36 min to fill the tank.

Question 10:

Solution:

Let x be the required number of days. Then, we have:

No. of days	9	X
No. of animals	28	36

Clearly, more number of animals will take less number of days to finish the food. So, it is a case of inverse proportion.

Now, $9 \times 28 = x \times 36$

$$x = \frac{9 \times 28}{36}$$

$$x = 7$$

Therefore, the food will last for 7 days

Question 11:

Solution:

Let x be the required number of days. Then, we have:

No. of men	900	1400
No. of days	42	x

Clearly, more men will take less number of days to finish the food. So, it is a case of inverse proportion.

Now,
$$900 \times 42 = 1400 \times x$$

$$x = \frac{900 \times 42}{1400}$$

$$x = 27$$

Therefore, the food will now last for 27 days.

Question 12:

Solution:

Let *x* be the required number of days. Then, we have:

No. of students	75	60
No. of days	24	x

Clearly, less number of students will take more days to finish the food.

So, it is a case of inverse proportion.

Now, $75 \times 24 = 60 \times x$

$$x = \frac{75 \times 24}{60}$$
$$x = 30$$

Therefore, the food will now last for 30 days.

Question 13:

Solution:

Let x min be the duration of each period when the school has 8 periods a day.

No. of periods	9	8
Time (in min)	40	x

Clearly, if the number of periods reduces, the duration of each period will increase.

So, it is a case of inverse proportion.

Now, $9\times40=8\times x$

$$x = \frac{9 \times 40}{8}$$
$$x = 45$$

Therefore, the duration of each period will be 45 min if there were eight periods a day.

Question 14:

Solution:

X	15	9
y	6	y_1

x and y vary inversely.i.e. xy = constant

Now,
$$15\times6=9\times y_1$$

$$y_1 = 15 \times 69$$

$$y_1 = 10$$

 \therefore Value of y=10, when x = 9

Question 15:

Solution:

X	18	x_1
y	8	16

x and y vary inversely.i.e. xy = constant

Now,
$$18 \times 8 = x_1 \times 16$$

$$\frac{18\times8}{16} = x_1$$

$$9 = x_1$$

 \therefore Value of x=9

Exercise: 12 C Page no.: 166

Question 1:

Solution: Let 22 kg of pulses cost x.

8	1	CASTAGE AND		
Quantity(in kg)			14	22
Price(in Rs)		~O	882	x

As the quantity increases, the price also increases.

So, it is a case of direct proportion.

$$\therefore \frac{14}{882} = \frac{22}{x}$$

$$X = \frac{22 \times 882}{14} = 1386$$

Thus, the cost of 22 kg of pulses is Rs 1,386.

Hence, the correct Solution is option (d).

Question 2:

Solution: Let the number of oranges that can be bought for Rs. 169 be x.

Quantity	8	x
Price(in Rs.)	52	169

As the quantity increases the price also increases.

So, this is a case of direct proportion.

$$\therefore \frac{8}{52} = \frac{x}{169}$$

$$X = \frac{8 \times 169}{52} = 26$$

Thus, 26 oranges can be bought for Rs. 169. Hence, the correct Solution is option (c).

Question 3:

Solution:

(b) 700

Let *x* be the number of bottles filled in 5 hours.

No. of bottles	420	X	
Time (h)	3	5	

More number of bottles will be filled in more time.

Now,
$$\frac{420}{3} = \frac{x}{5}$$
$$x = \frac{420 \times 5}{3}$$
$$x = 700$$

Therefore, 700 bottles would be filled in 5 h.

Question 4:

Solution:

(a) 25 km

Let x km be the required distance.

Now, 1 h = 60 min

Distance (in km)	75	X
Time (in min)	60	20

Less distance will be covered in less time.

Now,
$$\frac{75}{60} = \frac{x}{20}$$
$$x = \frac{75 \times 20}{60}$$
$$x = 25 \text{ km}$$

Question 5:

Solution:

(c) 300

Let x sheets weigh 1 kg.

Now, 1 kg = 1000 g

No. of sheets	12	X
Weight (in g)	40	1000

Now,
$$\frac{12}{40} = \frac{x}{1000}$$

$$x = \frac{12 \times 1000}{40}$$

$$x = 300$$

Question 6:

Solution:

(b) 9.8 m

Let *x* m be the height of the tree.

Height of object	14	X
Length of shadow	10	7

The more the length of the shadow, the more will be the height of the tree.

Now,
$$\frac{14}{10} = \frac{x}{7}$$
$$x = \frac{14 \times 7}{10}$$
$$x = 9.8$$

Therefore, a 9.8 m tall tree will cast a shadow of length 7 m.

Question 7:

Solution: (c) 10^{-4} cm

Let x cm be the actual length of the bacteria.

The larger the object, the larger its image will be.

Now,
$$\frac{x}{1}$$
 =550000=10-4 cm

Hence, the actual length of the bacteria is 10^{-4} cm.

Question 8:

Solution:

(b) 144 min

Let x min be the time taken by 5 pipes to fill the tank.

No. of pipes	6	5	
--------------	---	---	--

Time (in min)	120	X	
_ /			

Now,
$$6 \times 120 = 5 \times x$$

$$x = 144$$

Therefore, 5 pipes will take 144 min to fill the tank.

Question 9:

Solution:

(b) 3 days

Let x be number of days taken by 4 persons to build the wall.

	-		١
No. of persons	3	4	
No. of days	4	X	

More number of persons will take less time to build the wall.

So, it is a case of inverse proportion.

Now,
$$3\times4=4\times x\Rightarrow x=3$$

Therefore, 4 persons can build the wall in 3 days.

Question 10:

Solution:

(a) 1 h 30 min

Let x h be the time taken by the car travelling at 80 km/hr.

Speed (km/h)	60	80
Time (in h)	2	X

The greater the speed, the lesser will be the time taken.

So, it is a case of inverse proportion.

Now, $60 \times 2 = 80 \times x$

$$x = \frac{120}{80}$$

x= 1.5Therefore, the car will take 1 h 30 min to reach its destination if it travels at a speed of 80 km/h.

Test paper

Page no. - 168

A Question 1:

Solution:

Let *x* be the required number of boxes.

No. of boxes	350	X
No. of cartons	25	16

Less number of boxes will require less number of cartons.

So, it is a case of direct proportion.

Now,
$$\frac{350}{25} = \frac{x}{16}$$

$$x = \frac{350 \times 16}{25}$$

$$x = 224$$

∴ 224 boxes can be placed in 16 cartoons.

Question 2:

Solution:

Let Rs x be the cost of 24 tennis balls.

No. of balls	140	24
Cost of balls	4900	X

More tennis balls will cost more.

Now,
$$\frac{140}{4900} = \frac{24}{x}$$
$$x = \frac{24 \times 4900}{140}$$
$$x = 840$$

∴ The cost of 2 dozen tennis balls is Rs 840.

Question 3:

Solution:

Let Rs x be the railway fare for a journey of distance 53 km.

A.S. Klieck away

Distance (in km)		61	53	
Railway fare (in ru	ipees)	183	X	36

The lesser the distance, the lesser will be the fare.

So, it is a case of direct proportion.

Now,
$$\frac{61}{183} = \frac{53}{x}$$

$$X = \frac{53 \times 183}{61}$$

$$x = 159$$

The railway fare for a journey of distance 53 km is Rs 159.

Question 4:

Solution:

Let x people dig the trench in 4 days.

No. of people	10	X
No. of days	6	4

More people will take less number of days to dig the trench.

Hence, this is a case of inverse proportion.

Now,
$$10 \times 6 = x \times 4$$

$$X = \frac{60}{4}$$

$$x=15$$

∴ 15 people can dig the trench in 4 days.

Ouestion 5:

Solution:

Let x be the number of days taken by 21 men to finish the piece of work.

No. of men	30	21
No. of days	28	X

More men will take less time to complete the work.

So, this is a case of inverse proportion.

Now,
$$30 \times 28 = 21 \times x$$

$$x = \frac{30 \times 28}{21}$$

$$x = 40$$

∴ 21 men will take 40 days to finish the piece of work.

Question 6:

Solution:

Clearly, the remaining food is sufficient for 200 men for (45 - 15), i.e., 30 days.

Total number of men = 200 + 40 = 240

Let the remaining food last for *x* days.

No. of men	200	240
No. of days	30	X

Clearly, more men will take less number of days to finish the food.

So, it is a case of inverse proportion.

Now,
$$200 \times 30 = 240 \times x$$

$$x = \frac{200 \times 30}{240}$$

$$x = 25$$

∴ The remaining food will last for 25 days.

B. mark () against the correct answer in each of the following:

Question 7: Solution:

(d) 144 minutes

Let one pipe take x min to fill the tank.

No. of pipe	6	1
Time(in min)	24	X

Clearly, one pipe will take more time to fill the tank.

So, it is a case of inverse proportion.

Now,
$$6 \times 24 = 1 \times x$$

 $x = 6 \times 24$
 $x = 144$

: One pipe can fill the tank in 144 minutes.

Question 8:

Solution: (d) 588 days

Let one worker take *x* days to build the wall.

No. of workers	14	1	
No. of days	42	X	

Clearly, one worker will take more days to finish the work. So, it is a case of inverse proportion.

: One worker can build the wall in 588 days.

Question 9:

Solution: (a) 14 days

Let 20 men take *x* days to reap the field.

No. of days	8	X
No. of men	35	20

Clearly, less number of men will take more days.

So, it is a case of inverse proportion.

Now,
$$8 \times 35 = x \times 20$$

$$x = \frac{8 \times 35}{20}$$

$$x = 14$$

∴ 20 men can reap the field in 14 days.

Question 10:

Solution: (b) 72 km

Let x km be the distance covered in 1 h 12 min.

Now, 1 h 12 min = (60+12) min = 72 min

Distance(in km)	60	X
Time(in min)	60	72

More distance will be covered in more time. So, it is a cas of direct proportion.

Now,
$$\frac{60}{60} = \frac{x}{72}$$

x=72 km

∴ The car will cover a distance of 72 km in 1 h 12 min.

Question 11:

Solution: (c) 170 words

Let x be the number of words typed by Rashmi in 10 minutes.

No. of words	510	X	
Time(in min)	30	10	

Less time will be taken to type less number of words. So, it is a case of direct variation.

Now,
$$\frac{510}{30} = \frac{x}{10}$$

 $X = 170$

∴ Rashmi will type 170 words in 10 minutes.

Question 12: Solution: (c) 8

X	3	x_1	
y	36	96	

x and y vary directly. Then x =ky, where k is the constant of proportionality. \Rightarrow k = $\frac{x}{y}$

Now,
$$\frac{3}{36} = \frac{x_1}{96}$$

 $\frac{96 \times 30}{36} = x_1$
 $8 = x_1$

 \therefore Value of x=8

Question 13: Solution: (a) 10

X	15	9
y	6	y_1

Since x and y vary inversely, xy = constant

.Now,
$$15 \times 6 = 9 \times y_1$$

$$\frac{90}{9} = y_1$$

$$10 = y_1$$

 \therefore Value of y = 10, when x = 9.

C. Question 14.

(i)

Solution: Let *x* be the number of days taken by 4 persons to complete the work.

		S
No. of days	4	X
No. of persons	3	4

Clearly, more workers will take less number of days.

So, it is a case of inverse proportion.

Now,
$$4\times3=x\times4$$

$$x=3$$

Therefore, 4 persons can do the piece of work in 3 days.

(ii)

Solution: Let *x* min be the time taken by 6 pipes to fill the tank.

No. of pipes	5	6	
Time (in min)	144	X	

Clearly, more number of pipes will take less time to fill the tank.

So, it is a case of inverse proportion.

Now,
$$5 \times 144 = 6 \times x$$

$$x = \frac{5 \times 144}{6}$$

∴ 6 pipes can fill the tank in 120 min.

(iii)

Solution: Let *x* min be the time taken by the car travelling at 45 km/h.

Now,
$$1 \text{ h } 30 \text{ min} = (60+30) \text{ min}$$

Speed(in km/hr)	60	45
Time(in min)	90	X

Clearly, a car travelling at a less speed will take more time. So, it is a case of inverse proportion.

Now,
$$60 \times 90 = 45 \times x$$

$$x = \frac{60 \times 90}{45}$$

$$x=120 \text{ min} = 2 \text{ h}$$

∴ The car will take 2 h if it travels at a speed of 45 km/h.

(iv)

Solution: Let Rs x be the cost of 5 oranges.

No. of oranges	8	5
Cost of oranges	20.80	X

Clearly, less number of oranges will cost less.

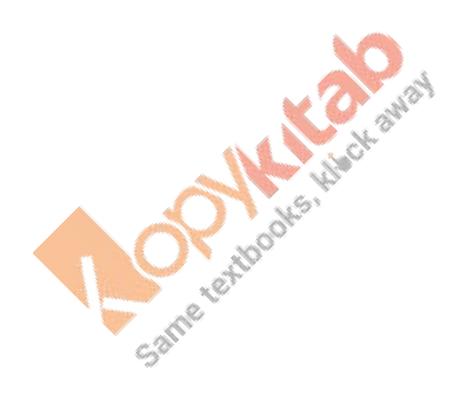
So, it is a case of direct variation.

Now,
$$\frac{8}{20.80} = \frac{5}{x}$$

 $x = \frac{5 \times 20.80}{8}$
 $x = 13$

∴ The cost of 5 oranges is Rs 13.

(v)


Solution: Let x be the number of sheets that weigh 500 g.

No. of sheets	12	X	
Weight(in grams)	50	500	

More number of sheets will weigh more. So, it is a case of direct variation.

Now,
$$\frac{12}{50} = \frac{x}{500}$$

 $x = \frac{12 \times 500}{50}$
 $x = 120$

∴ 120 sheets will weigh 500 g.

