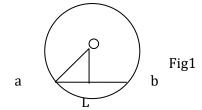
CIRCLES - CHAPTER-12

EXERCISE 12A

ANSWER1 (by fig1)

Let the length of the chord be 16cm. AB Radius of circle be 10cm
Then, OA = 10, from O draw OL\(\pext{AB}\).

we know that perpendicular from the centre of a circle to a chord bisects the chord.



$$\therefore AL = \frac{1}{2}AB = \left(\frac{1}{2} \times 16\right) = 8cm$$

Because, the angle subtended by arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.

From,
$$\triangle OLA$$

 $OA^2 = OL^2 + AL^2$
 $\Rightarrow OL^2 = OA^2 - AL^2 = [(10)^2 - (8)^2] = 100 - 64$
 $= 36$
 $OL = \sqrt{36} = 6 \text{cm}$

ANSWER2 (by fig1)

Given, distance centre from chord is 3cm. radius is given 5cm.

Then, in △AOL

$$OA^2 = OL^2 + AL^2$$

 $(5)^2 = (3)^2 + AL^2$
 $AL^2 = 25-9 = 16$
 $AL = \sqrt{16} = 4$ cm

Hence, length of the chord be calculated and, OLLAB, AL= LB

AB = AL + LB = 4 + 4 = 8cm

ANSWER3 (by fig1.)

Given, length of the chord = 30cm

Then, OA = 30, from O draw $OL \perp AB$.

we know that perpendicular from the centre of a circle

to a chord bisects the chord.

As we know the angle subtended by arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.

$$AL = \frac{1}{2}AB = \frac{1}{2} \times 30 = 15cm$$

And the distance from centre to the chord be 8cm

Then, in △AOL

OA² = OL² + AL²
OA² = (15)² + (8)²
OA² = 225 + 64 = 289
OA =
$$\sqrt{289}$$
 = 17cm

Given, radius = 5cm

AB and CD are 2 parallel cords AB= 8cm, CD= 6cm

(i) Same side of the centre

Since, OP⊥AB, OQ⊥CD and AB||CD,

The points O, P, Q are collinear.

As we know the angle subtended by arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.

Bisects the chord on perpendicular lines

$$\therefore AP = \frac{1}{2}AB = \frac{1}{2} \times 8 = 4cm$$

And,
$$CQ = \frac{1}{2}CD = \frac{1}{2} \times 6 = 3cm$$

Join OA and OC.

Then, OA = OC = 5cm

In $\triangle OPA$, we have

$$OP^2 = OA^2 - AP^2 = [(5)^2 - (4)^2] = 9$$

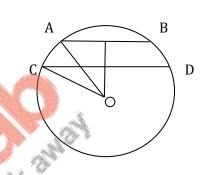
$$OP = \sqrt{9} = 3cm$$

From \triangle OQC, we have

$$OQ^2 = OC^2 - CQ^2 = [(5)^2 - (3)^2] = 16$$

$$OQ = \sqrt{16} = 4cm$$

$$PQ = OP - OQ = 4-3 = 1cm$$



P

(ii) We know that \bot from the centre of a circle to a chord bisects the chord. As we know the angle subtended by arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.

$$\therefore AP = \frac{1}{2}AB = \frac{1}{2} \times 8 = 4cm$$

$$CQ = \frac{1}{2}CD = \frac{1}{2} \times 6 = 3cm$$

Then,
$$OA = OC = 5cm$$

From the right – angles $\triangle OPA$, we have

$$OP^2 = OA^2 + AP^2 = [(5)^2 + (4)^2] = 9cm^2$$

 $OP = 3cm$

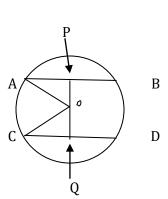
From the right angled \triangle OCQ, we have

$$OQ^2 = OC^2 - CQ^2 = [5^2 - 3^2] = 16cm^2$$

00 = 4 cm

Since, $OP \perp AB$, $OQ \perp CD$ and $AB \parallel CD$, the points P,O,Q are collinear.

$$PQ = OP + OQ = (3 + 4) = 7cm$$



ANSWER5

CLASS IX

Given, let AB = 30 and CD = 16cm. and radius = 17cm

We know that \bot from the centre of a circle to a chord bisects the chord.

As we know the angle subtended by arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.

$$AP = \frac{1}{2}AB = \frac{1}{2}x30 = 15cm$$

$$CQ = \frac{1}{2}CD = \frac{1}{2}x16 = 8cm$$

Join OA and OC

Then, OA = OC = 17cm

From the right – angles
$$\triangle$$
OPA , we have $OP^2 = OA^2 + AP^2 = [(17)^2 + (15)^2] = 64cm^2$ OP = 8cm

From the right angled \triangle OCQ, we have

$$OQ^2 = OC^2 - CQ^2 = [17^2 - 8^2] = 225cm^2$$

 $OQ = 15cm$

Since, $OP \perp AB$, $OQ \perp CD$ and $AB \parallel CD$, the points P,O,Q are collinear.

$$PQ = OP + OQ = (8 + 15) = 23cm$$

ANSWER6

Given, CD is diameter of a circle with centre O. OE⊥AB, AB= 12cm and CE= 3cm If diameter of circle is CD then radius is OC (by fig)

As we know the angle subtended by arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.

$$AE = \frac{1}{2}AB = \frac{1}{2} \times 12 = 6cm$$

Let $OC = OA = r^2$ Then, in $\triangle AOE$

$$OA^{2} = AE^{2} + OE^{2} = [(6)^{2} + (r - 3)^{2}]$$

$$r^{2} = 36 + r^{2} - 6r + 9$$

$$6r = 36 + 9 = 45$$

$$r = 7.5cm$$

ANSWER7

Given, CD is diameter of a circle with centre O. OE⊥CD, CE=ED=8cm, and EB=4cm If diameter of circle is CD then radius is OC (by fig)

$$CE = 8cm$$

Let $OD = OB = r^2$ Then, in $\triangle AOE$

$$OD^2 = OE^2 + ED^2 = [(r-4)^2 + (8)^2]$$

 $r^2 = r^2 - 8r + 16 + 64$
 $8r = 16 + 64 = 80$
 $r = 8cm$

CLASS IX

RS Aggarwal solutions

Given, OD \perp AB, BC is diameter, so radius is OB=OC, Here, AD=DB meANSWER D is mid point of AB And O is midpoint of BC Join AC In \triangle ABC D is mid point of AB, and O is midpoint of BC

$$\therefore$$
 AC||OD and DO = $\frac{1}{2}AC$

Hence,
$$AC = 2 \times AC$$

ANSWER9

Given, 2 chords AB and CD intersect each other at P. PO bisects ∠BPD

Let, draw OE ⊥AB and OF⊥CD

Now, DC= DF +FC, \therefore DF = FC

And AB = EB + EA : AE = EB

P is intersecting point

So, $\angle OEP = \angle OFP = 90^{\circ}$

Also, $OP = OP \cdot \angle OPE = \angle OPF$

Hence, $\triangle OEP \cong \triangle OFP$, and hence OE = OF

Also, chords which are equidistant from the centre are equal

Hence, AB = CD

ANSWER10

Let the chords of the circle be AB and CD and both are parallel with centre O.

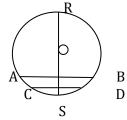
Let ROS be the diameter of the circle. Such that \angle REB = 90°

Then, $\angle REB = \angle RFD = 90^{\circ}$ [corresponding angles]

Thus, we can say that

RF \perp CD, and so, OF \perp CD

Hence, \Rightarrow CF= FD



ANSWER11

Let suppose 2 different circles intersect at three points A, B, C . then, these points are not collinear. They cant fall on same line of bisection.

So, we have create unique circle to pass through above points . so these statement is contradict. Hence, 2 different circles cannot intersect each other at more than 2 points.

ANSWER12

Given,

Radius of 1st circle is 10cm and 2nd circle be 8cm. chord length = 12cm for both of circle.

So, AO = 10cm and AO' = 8cm

Here, D is midpoint of chord 12cm

AD=DB.

As we know the angle subtended by arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.

$$AD = \frac{1}{2}AB = \frac{1}{2} \times 12 = 6cm$$

In $\triangle AOD$.

$$AO^{2} = OD^{2} + AD^{2}$$

 $OD^{2} = AO^{2} - AD^{2}$
 $OD^{2} = [10^{2} - 6^{2}] = 100 - 36 = 64$
 $OD = \sqrt{64} = 8cm$

In △AO'D

$$AO'^2 = O'D^2 + AD^2$$
 $O'D^2 = AO'^2 - AD^2$
 $O'D^2 = [8^2 - 6^2] = 64 - 36 = 28$
 $O'D = \sqrt{28} = 2\sqrt{7}cm$

Hence, the distance between centre $OO' = OD + DO' = (8 + 2\sqrt{7})$ cm

ANSWER13
Given,
Equal circles intersect at P and Q.
P is straight line meets the circles in A and B.
Foin PQ,
Fo, PQ is common chord for both circles.
Fo, arc PDQ = arc PCQ
QP_AB (by fig)
Hence, $\angle QAP = \angle QBP$
 $AQ = QB$

Hence, the distance between centre $00' = 0D + D0' = (8 + 2\sqrt{7}) \text{ cm}$

Equal circles intersect at P and Q.

P is straight line meets the circles in A and B. Join PQ,

So, PQ is common chord for both circles.

So, arc PDQ = arc PCQ

QP_AB (by fig)

Hence, ∠QAP=∠QBP

$$AQ = QB$$

ANSWER14

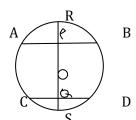
Let the chord of the circles be AB and CD with center O.

Suppose the diameter of the circle be ROS bisects them at P and Q.

Then the distance OP = OQ

As, OP⊥AB and OO⊥CD

Thus, $\angle APQ = \angle PQD \Rightarrow AB \parallel CD$.



ANSWER15 given,

Radius of bigger circle 5cm and smaller one 3cm.

Join PA.

$$AB = (5-3) = 2cm$$

So, acc to fig,

CLASS IX

PQ⊥AB, As we know the angle subtended by arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.

$$AL = \frac{1}{2}AB = \frac{1}{2} \times 2 = 1cm$$

In APAL

$$PA^{2} = PL^{2} + AL^{2}$$

$$PL^{2} = PA^{2} - AL^{2} = [5^{2} - 1^{2}]$$

$$PL = \sqrt{25 - 1} = \sqrt{24} = 2\sqrt{6}$$

So,
$$PL = 2 \times PL = 2 \times 2\sqrt{6} = 4\sqrt{6}$$

ANSWER16

Given, BC= OB, \angle ACD= y° , \angle AOD = x° If OB = OC, Then $\angle BOC = \angle BCO = y^{\circ}$ In △ OBC

∠OBC=∠BOC+∠OCB

$$= y^{\circ} + y^{\circ} = 2y^{\circ}$$

As fig, OA = OB (radius of circle)

$$\angle OAC = \angle OBC = 2y^{\circ}$$

Then, acc to theorem,

If one side of a triangle is produced then the exterior angle so formed is equal to the sum of the THE LEXIBODIES. two interior opposite angles.

$$\angle AOD = \angle OAC + \angle ACO$$

= $\angle OAB + \angle BCO$
 $x^{\circ} = y^{\circ} + 2y^{\circ} = 3y^{\circ}$

ANSWER17

given, radius be r such that AB = 2AC

let AC = x. then AB = 2x.

acc to fig, $OL \perp AB$ and $OM \perp AC$.

Then, OL = p, OM = q and OA = r.

As we know the angle subtended by arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.

Also,
$$AM = \frac{1}{2}AC = \frac{x}{2}$$
 and $AL = \frac{1}{2}AB = x$

In AAOL

$$OA^2 = OL^2 + AL^2$$
$$r^2 = p^2 + x^2$$

In $\triangle AOM$

$$OA^{2} = OM^{2} + AM^{2}$$
$$r^{2} = q^{2} + (\frac{x}{2})^{2}$$

Given, AB = AC, $OP \perp AB$ and $OQ \perp AC$, From centre O, OP = OQ (radius) As given 2 chords AB and AC Then, AB = AC

$$\frac{1}{2}AB = \frac{1}{2}AC$$

$$\Rightarrow MB = NC$$

Also, $\angle PMB = \angle QNC = 90^{\circ}$

Equal chords are equidistance from the centre \Rightarrow OM =ON

$$OP = OQ \Rightarrow OP - OM = OQ - ON$$

$$\Rightarrow$$
 PM = QN

$$\therefore \Delta MPB \cong \Delta NQC$$

$$\Rightarrow$$
 PB = QC

$$OB = OC = r$$
 (radius

$$\therefore OP = OQ$$

Given, $AB\|AC$ Q and P is midpoint of both the chords CD and AB resp. If Draw $OQ\bot CD$ and $OP\bot AB$, then In $\triangle OPB\cong\triangle OQC$ Here, $\angle OBP=\angle OCP$ OB=OC=r (radius) $\angle OPB=\angle OQC=90^\circ$ OP=OQIt, the chords equidistance from the ence, AB=CD

ANSWER20

Let suppose we make equilateral Δ of sides 9cm.

So. AD be the median of the Δ

Then, AD⊥BC and

As D is midpoint of the chord BC

$$BD = \frac{1}{2}BC = \frac{1}{2} \times 9 = 4.5cm$$

In AABD

$$AB^2 = AD^2 + BD^2$$
$$AD^2 = AB^2 - BD^2$$

$$AD^2 = \left[9^2 - \left(\frac{9}{2}\right)^2\right] = \frac{243}{4}$$

$$AD = \sqrt{\frac{243}{4}} = \frac{9\sqrt{3}}{2} \text{cm}$$

In an equilateral \triangle the centroid and circumcentre coincide and AG:GD = 2:1 As we know the angle subtended by arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.

$$\therefore \text{ radius } AG = \frac{2}{3}AG = \left(\frac{2}{3}x\frac{9\sqrt{3}}{2}\right) = 3\sqrt{3}cm$$

ANSWER21

given

AB = AC are equal chords with centre O.

Lets join OC, OB, OA

In $\triangle OAB \cong OAC$

OA = OA

AB= AC (given)

OB=OC=r

Hence, $\angle OAB = \angle OAC$

ANSWER22

Join OX and OY, so we get r = OX = OY

$$\Delta OXP \cong OYR$$

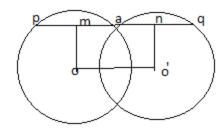
$$OP = OR$$

$$OX = OY = r$$

$$\angle OPX = \angle ORY = 90^{\circ}$$

$$\Rightarrow PX = RY \Rightarrow PQ - PX = QR - RY \quad [PQ = QR]$$

$$\Rightarrow$$
 QX = QY



Draw $OM \perp PQ$ and $O'N \perp PQ$. then $OM \perp$ chord PASo, PM = MA $\Rightarrow PM = 2PM = 2MA$ Similarly, AQ = 2AN.

$$PQ = PA + AQ = 2MA + 2AN$$

$$2(MA + AN) = 2MN$$

$$= 200'$$

EXERCISE 12B

ANSWER1

- (i) Given O is the centre $AO = OC, \angle BAO = 40^{\circ}, \angle OCB = 30^{\circ}$ Join OB
 Here, OA = OB
 Then, $\angle BAO = \angle OBA = 40^{\circ}$ Also, OC = OB $\angle OCB = \angle BCO = 30^{\circ}$ $\therefore \angle ABC = \angle ABO + \angle OBC$ $= (40^{\circ} + 30^{\circ}) = 70^{\circ}$ Now, $\angle AOC = 2\angle ABC = 2x70 = 140^{\circ}$
- (ii) Given, $\angle AOB = 90^{\circ}$, $\angle AOC = 110^{\circ}$ Here, OB = OC = OA (radius) As we know sum of all angles of circle be 360° Then, by adding angles. $\angle AOB + \angle AOC + \angle BOC = 360$ $90^{\circ} + 110^{\circ} + \angle BOC = 360^{\circ}$ $\angle BOC = 360 - 110 - 90$ $\angle BOC = 160^{\circ}$ Hence, $\angle BAC = \frac{1}{2} \angle BOC = \frac{1}{2} \times 160 = 80^{\circ}$

ANSWER2

Given.

∠AOB = 70°

As we know that exterior angle is equal some of 2 angles then.

 $\angle AOB = \angle OCA + \angle OAC$

 \Rightarrow OA = OC (radius)

 $\therefore \angle OCA = \angle OAC$

We can calculate, the angle subtended by arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.

$$\angle OCA = \frac{1}{2} \angle AOB = \frac{1}{2} x70 = 35^{\circ}$$

Hence, $\angle OCA = \angle OAC = 35^{\circ}$

ANSWER3

Given, 0 is the centre $\angle APB = 110^{\circ}$, $\angle PBC = 25^{\circ}$ In liner APC, $180 = \angle APB + \angle BPC$ $\angle BPC = 180 - 110 = 70^{\circ}$

So, $\angle ACB = \angle PCB$ Then, In $\triangle CPB$ $\angle PCB = 180 - \angle PCB - \angle PBC$ $\angle PCB = 180 - 25 - 70 = 85^{\circ}$ Hence, $\angle PCB = \angle ACB$ Angle with same segment. $\angle ACB = \angle ADB = 85^{\circ}$

ANSWER4

Given, o is centre of the circle. $\angle ABD = 35^{\circ}$, $\angle BAC = 70^{\circ}$ By fig, $AD \perp AB$, $\angle A = 90^{\circ}$ Then, In $\triangle ADB$ $\angle DAB + \angle ADB + \angle DBA = 180^{\circ}$ $90^{\circ} + \angle ADB + 35^{\circ} = 180^{\circ}$ $\angle ADB = 180 - 90 - 35 = 55^{\circ}$ Angle with same segment $\angle ADB = \angle ACB = 55^{\circ}$

ANSWER5

Given, O is the centre of the circle.

So, $\angle AOB = 2 \times \angle ACB = 2x50 = 100^{\circ}$

Then, let the radius be r,

On the same segment $\angle OAB = \angle OBA = r^{\circ}$

In △AOB

$$\angle OAB + \angle OBA + \angle AOB = 180^{\circ}$$

$$r + r + 100 = 180$$

$$2r = 180 - 100 = 80$$

$$r = \frac{80}{2} = 40^{\circ}$$

ANSWER6

Given, $\angle ABD = 45^{\circ}$, $\angle BCD = 43^{\circ}$

- (i) As we know that angle on same segment are equals So, on chord AD
 ∠ABD = ∠ACD = 54°
- (ii) On chord BD $\angle DCB = \angle BAD = 43^{\circ}$
- (iii) In $\triangle ABD$ $\angle BAD = \angle 43^{\circ}$, $\angle ABD = 54^{\circ}$ Sum of all the angles be 180° $\angle BAD + \angle ABD + \angle ADB = 180$ $54 + 43 + \angle ADB = 180 - 54 - 43$ $\angle ADB = 83^{\circ}$

```
ANSWER7
```

Given, $AC\parallel DE$, $\angle CBD = 60^{\circ}$ On same line segment chord CD $\angle DBC = \angle DAC = 60^{\circ}$ And $\angle ADC = 90^{\circ}$ angle is in semi circle. In △ADC As we know that sum of all the angles in the triangle 180 $\angle ADC + \angle DAC + \angle ACD = 180^{\circ}$ $\angle ADC + 60 + 90 = 180$ ∠ADC= 180-60-90 Hence, $\angle ADC = 30^{\circ}$

ANSWER8

Given, $AB\parallel CD$, $\angle ABC = 25^{\circ}$ Draw joining line OC and OD Here, $\angle ABC = \angle BCD = 25^{\circ}$[alternative int. angles] Then, arc BD makes \angle BOD at the centre and \angle BCD at a point on the circle. $\angle BOD = 2 \angle BCD = 50^{\circ}$ Similary, $\angle AOC = 2\angle ABC = 50^{\circ}$ In liner segment AOB Sum of all the angles on the line segment is 180° Then, $\angle AOC + \angle COD + \angle BOD = 180^{\circ}$

$$\angle COD + 50 + 50 = 180$$

$$\angle COD = 180 - 50-50 = 80^{\circ}$$

Hence, similarly $\angle CED = \frac{1}{2} \square COD = 40^{\circ}$

ANSWER9

Given, $\angle AOC = 80^{\circ}$, $\angle CDE = 40^{\circ}$

In △CDE (i)

Here, $\angle CDE = 90^{\circ}$ [with in semicircle make angle at 90°] So, \angle CDE + \angle EDC + \angle DCE = 180

$$\angle DCE = 180 - 90 - 40 = 50^{\circ}$$

Hence, ∠DCE =50°

(ii) In line segment AOB

∠BOC = 180 - ∠AOC

 $\angle BOC = 180 - 80 = 100^{\circ}$

So. in $\triangle BOC$

 $\angle BOC + \angle CBO + \angle OCB = 180^{\circ}$

∠CBO = 180 - ∠BOC - ∠OCB

 $\angle CBO = 180 - 50 - 100 = 40^{\circ}$

Hence, $\angle ABC = \angle CBO = 30^{\circ}$

Given,

$$\angle AOB = 40^{\circ}$$
, $\angle BDC = 100^{\circ}$

Here,
$$\angle ACB = \frac{1}{2} \angle AOB = \frac{1}{2} x40 = 20^{\circ}$$

So, in △DBC

 $\angle DCB + \angle DBC + \angle CDB = 180^{\circ}$

$$\angle DCB = 180 - \angle DBC + \angle CDB$$

 $\angle DCB = 180 - 100 - 20 = 60^{\circ}$

Hence, $\angle DCB = 60^{\circ}$

ANSWER11

Given $\angle OAB = 25^{\circ}$

Join OB we get radius of circle is same

OB = OA and $\angle OAB = \angle OBA = 25^{\circ}$

Then, In △AOB

 $\angle AOB + \angle OAB + \angle ABO = 180^{\circ}$

 $\angle AOB + 25 + 25 = 180^{\circ}$

 $\angle AOB = 180 - 25 - 25$

∠AOB = 130°

As we know the angle subtended by arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.

Then,
$$\angle ACB = \frac{1}{2} \angle AOB = \frac{1}{2} x130 = 65^{\circ}$$

In ∆EBC

So, $\angle CEB = 90^{\circ}$[by fig]

$$\angle$$
CEB + \angle ECB + \angle CEB = 180

$$\angle EBC + 90 + 65 = 180^{\circ}$$

$$\angle EBC = 180 - 90 - 65$$

 \angle EBC = 25 $^{\circ}$

ANSWER12

Given, $\angle OAB = 20^{\circ}$, $\angle OCB = 55^{\circ}$

(i) As we know that equal chords of a circles subtend equal angles at the centre Here, OC = OB (radius) and $\angle OCB = \angle OBC = 55^{\circ}$

In AOCE

 $\angle OCB + \angle OBC + \angle BOC = 180^{\circ}$

$$55^{\circ} + 55^{\circ} + \angle BOC = 180^{\circ}$$

 $\angle BOC = 180^{\circ} - 55 - 55 = 70^{\circ}$

(ii) In △AOB

OA = OB and $\angle OAB = \angle OBA$

Sum of all the angles is 180°

 $\angle AOB + \angle OAB + \angle OBA = 180^{\circ}$

$$\angle AOB + 20 + 20 = 180$$

$$\angle AOB = 180 - 20-20 = 140^{\circ}$$

And
$$\angle AOB = \angle BOC + \angle AOC$$

$$\angle AOC = \angle AOB - \angle BOC = 140 - 70$$

Hence, $\angle AOC = 70^{\circ}$

Given $\angle BCO = 30^{\circ}$

And by fig, $\angle AOD = \angle OEC = 90^{\circ}$...[corresponding angles]

OD||BC, OC is trANSWERversal

 $\angle DOC = \angle OCE = 30^{\circ}$[alternative int angles]

As we know the angle subtended by arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.

Then,
$$\angle CBD = \frac{1}{2} \angle COD = \frac{1}{2} \times 30 = 15^{\circ}$$

Hence, $y = 15^{\circ}$ centre

$$\angle AOD = 90^{\circ}$$
 (given)

And
$$\angle ABC = \frac{1}{2} \angle AOD = \frac{1}{2} x90 = 45^{\circ}$$

In △ABE

 $\angle A + \angle B + \angle E = 180^{\circ}$

$$\angle A = 180 - 90 - (45 + y^{\circ}) = 180 - 90 - (45 + 15)$$

$$\angle A = 180 - 90 - 60 = 30^{\circ}$$

Hence, $\angle A = x = 30^{\circ}$

ANSWER14

Given, BD = OD, $CD \perp AB$

Join CA

By fig, BD = OD and OD = OB (radius of circle)

BD = OD = OB [equilateral triangle]

Sum of angles will be 180° in equilateral so, each angles is divided into 60°

In ∆DBO

 $\angle DBO = \angle BDO = \angle BOD = 60^{\circ}$

Since altitudes of an angle of an equilateral Δ bisects the vertical angle

So, $\angle BDE = \angle ODE = 30^{\circ}$

Angles on the segment will be equal, on segment of CB

 $\angle CAB = \angle CDB = 30^{\circ}$

ANSWER15

Given PQ is diameter . \angle PQR =65° , \angle SPR =40° , \angle PQM = 50°

In $\triangle QPR$, $\angle QRP = 90^{\circ}$ [angle in the semicircle is right angle]

 $\angle QRP + \angle QPR + \angle PQR = 180^{\circ}$

 \angle QPR = 180 - \angle QRP - \angle PQR

 $\angle QPR = 180 - 65 - 90$

Hence, $\angle QPR = 25^{\circ}$

 $\Rightarrow \angle QPR = \angle PRS = 25^{\circ}$[alternative int angles]

Similarly, △QPM

 $\angle QPM + \angle PMQ + \angle PQM = 180^{\circ}$

 \angle QPM + 50 + 90 = 180

 \angle QPM = 180-50-90 = 40°

Hence, $\angle QPM = 40^{\circ}$

Given, ∠APB = 150°, join BC which is common chord of the angles

As we know the angle subtended by arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.

$$\therefore \angle ACB = \frac{1}{2} \angle APB = \frac{1}{2} \times 150 = 75^{\circ}$$

In linear segment ACD

$$\angle ACB + \angle CBD = 180^{\circ}$$

$$\angle$$
CBD = 180 - 75 = 105°

Similarly, in second circle

 $\angle BCD = \frac{1}{2} reflex \angle BQD$ [angle made by the major arc BFD at the centre $2\angle BCD$]

$$105^{\circ} = \frac{1}{2}(360-x)$$

$$\Rightarrow$$
 210° = 360- x°

$$\Rightarrow$$
 x° = 360-210 = 150°

ANSWER17

Given , ∠BAC= 30°

As we know the angle subtended by arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.

$$\angle BOC = 2\angle ABC = 2x30 = 60^{\circ}$$

Here, OB = OC is radius of the circle

Then, from above in $\triangle OBC$

Since, OB = OC (radius)

∠OBC = ∠OCB

Sum of all the angles is 180°

 $\angle OBC + \angle OCB + \angle BOC = 180^{\circ}$

 $\angle OBC + \angle OBC = 180 - \angle BOC$

 $2\angle OBC = 180 - 60 = 120$

 $\angle OBC = 120/2 = 60^{\circ}$

Hence, \triangle OBC is equilateral \triangle then, all the sides are equal too

BC is equal to radius of the circumcircle.

ANSWER18

Join AC, BC, BD

Given AB is the chord,

And angle subtended by an arc CXA = \angle AOC, Angle subtended by arc DYB = \angle DOB

As we know the angle made by an arc at the centre is twice the angle made by this arc at a point on the remaining part of the circle.

$$\angle AOC = 2\angle ABC \dots (1)$$

Similarly,
$$\angle DOB = 2 \angle DCB \dots (2)$$

Adding both equation

$$\therefore \angle AOC + \angle DOB = 2\angle ABC + 2\angle DCB = 2\angle AEC$$

Hence,
$$\angle AEC = \frac{1}{2} (\angle AOC + \angle DOB)$$

EXERCISE 12C

ANSWER1

Given, $\angle DBC = 60^{\circ}$, $\angle BAC = 40^{\circ}$ (i) On same chord CB $\angle BAC = \angle BDC = 40^{\circ}$ In $\triangle DBC$ $\angle DCB + \angle CBD + \angle CDB = 180^{\circ}$ $\angle DCB + 40^{\circ} + 60^{\circ} = 180^{\circ}$

(ii) On same chord CD \angle CBD = \angle CAD = 60°

ANSWER2

Given, $\angle PSR = 150^{\circ}$

As we know that the sum of either pair of the opposite angles of a cyclic quadrilateral is 180°

 \angle PSR + \angle PQR = 180°

 $\angle PQR = 180 - 150 = 30^{\circ}$

Here, angle in semicircle make 90°

 \angle PRQ = 90°

∆In PQR

 $\angle PQR + \angle RPQ + \angle QRP = 180^{\circ}$

 $\angle RPQ + 90 + 30 = 180^{\circ}$

 $\angle RPQ = 180 - 90 - 30 = 60^{\circ}$

ANSWER3

As we know the angle subtended by arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.

$$\angle PBC = \frac{1}{2} \angle AOC = \frac{1}{2} \times 130 = 65^{\circ}$$

ANSWER4

Given $\angle FAE = 20^{\circ}$, $\angle ABC = 92^{\circ}$

As we know that the sum of either pair of the opposite angles of a cyclic quadrilateral is 180°

Then, $\angle ABC + \angle ADC = 180$

 $\angle ABC = 180 - 92 = 88^{\circ}$

So, by the fig CD||AE,

 $\angle ADC = \angle ADF$ (alt int \angle)

 $\angle ADF = \angle ADE + \angle FAE$

 $\angle ADF = 88 + 20 = 108^{\circ}$

As we know that exterior angle is equal to the int opposite angles

 $\angle BCD = \angle ADF = 108^{\circ}$

Hence, $\angle BCD = 108^{\circ}$

ANSWER5

Given, BD = DC, \angle CBD = 30° \angle CBD = \angle DCB = 30° In \triangle CBD

$$\angle$$
CBD + \angle CDB + \angle BCD = 180°
 \angle CDB + 30 +30 = 180

$$\angle CDB + 30 + 30 = 180$$

$$\angle$$
CDB = 180 -30-30 = 120°

As we know that the sum of either pair of the opposite angles of a cyclic quadrilateral is 180°

$$\angle BAC + \angle BDC = 180^{\circ}$$

$$\angle BAC + 120^{\circ} = 180^{\circ}$$

Hence,
$$\angle BAC = 180 - 120 = 60^{\circ}$$

ANSWER6

Given, $\angle AOC = 100^{\circ}$

As we know the angle subtended by arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.

$$\angle ADC = \frac{1}{2} \angle AOC = \frac{1}{2} \times 100 = 50^{\circ}$$

So, As we know that the sum of either pair of the opposite angles of a cyclic quadrilateral is 180°

Then,
$$\angle ADC + \angle ABC = 180^{\circ}$$

$$\angle ABC = 180 - \angle ADC = 180 - 50$$

ANSWER7

Given △ABC is equilateral △ (i)

$$\therefore$$
 AB= BC= AC

And
$$\angle ABC = \angle BAC = \angle ACB = 60^{\circ}$$

On same segment of chord BC

So, As we know that the sum of either pair of the opposite angles of a cyclic (ii) quadrilateral is 180°

$$\angle BDC + \angle BEC = 180^{\circ}$$

hence
$$\angle BEC = 180 - 60 = 120^{\circ}$$

ANSWER8

Given,
$$\angle BCD = 100^{\circ}$$
, $\angle ABD = 50^{\circ}$

As we know that the sum of either pair of the opposite angles of a cyclic quadrilateral is 180°

$$\angle BAD + \angle BCD = 180^{\circ}$$

$$\angle BAD + 100 = 180^{\circ}$$

$$\angle BAD = 180 - 100 = 80^{\circ}$$

So. in $\triangle ADB$

$$\angle ADB + \angle DBA + \angle BAD = 180^{\circ}$$

$$\angle ADB + 50 + 80 = 180^{\circ}$$

$$\angle ADB = 180 - 50 - 80$$

Hence, $\angle ADB = 50^{\circ}$

ANSWER9

Given,
$$\angle BOD = 150^{\circ}$$

As we know the angle subtended by arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle

$$\angle DCB = \frac{1}{2} \angle DOB = \frac{1}{2} x150 = 75^{\circ}$$

Hence, $y^{\circ} = 75$

Then, As we know that the sum of either pair of the opposite angles of a cyclic quadrilateral is 180° $\angle DCB + \angle BAD = 180^{\circ}$

 $\angle BAD + 75 = 180^{\circ}$

Hence, $\angle BAD = 105^{\circ}$

ANSWER10

Then, As we know that the sum of either pair of the opposite angles of a cyclic quadrilateral is 180° $\angle DCB + \angle BAD = 180^{\circ}$

$$y + 50^{\circ} = 180^{\circ}$$

$$y = 180 - 50 = 130^{\circ}$$

In equilateral △OAB

OA = OB, $\angle OBA = \angle OAB = 50^{\circ}$

As we know that exterior angle is equal to the int opposite angles

$$\angle BOD = 180 - (\angle OAB + \angle OBA)$$

$$\angle BOD = 180 - (50 + 50) = 80^{\circ}$$

ANSWER11

As we know that exterior angle is equal to the int opposite angles

Then, $\angle CBF = 130^{\circ}$ (given)

Now,
$$\angle$$
CDE = 180 - \angle CBF

$$= 180 - 130 = 50^{\circ}$$

Hence, $x = \angle CDE = 50^{\circ}$

ANSWER12

Given, DO ||CB and $\angle BCD = 120^{\circ}$

- (i) As we know that the sum of either pair of the opposite angles of a cyclic quadrilateral is 180°

 ∠BAD = 180- ∠BCD
- (ii) So, $\angle BDA = 90^{\circ}$ In $\triangle ADB$ $\angle ADB + \angle BAD + \angle ABD = 180^{\circ}$ $\angle ABD + 60 + 90 = 180^{\circ}$ $\angle ABD = 180 - 60-90 = 30$ Hence, $\angle ABD = 30^{\circ}$

 $\angle BAD = 180 - 120 = 60^{\circ}$

(iii) $\triangle AOD$ OA = OD, $And \angle ODA = \angle BAD = \angle OAD = 60^{\circ}$ In semicircle $\triangle ADB$ $\therefore \angle ODB = 90 - \angle ODA$ = 90 - 60 $\angle ODB = 30^{\circ}$ $OD \parallel CB$, DB is trANSWERversal $\angle ODB = \angle CBD = 30^{\circ}$[alt int angles]

```
(iv) In \triangleCBD \angleCBD +\angleBDC +\angleDCB = 180° \angleBDC + 120 +30 = 180° \angleBDC = 180 - 120 -30 = 30° Then, by fig \angleADC = \angleBDC + \angleBDA (Above values) Hence, \angleADC = 90 + 30 = 120° \triangleAOD OA = OD (radius) \angleAOD = \angleADO = \angleOAD = 60° Hence, it is proved equilateral \triangle
```

As we know that AB and CD are the chords intersect at point then

AP x BP = CP x CD
(AB+BP) x BP = (CD+DP) x CD
(6+2) x 2 = (CD +2.5) x 2.5
⇒8 x 2 = 2.5CD + 6.25
⇒2.5 CD = 16 - 6.25 = 9.75
⇒CD =
$$\frac{9.75}{2.5}$$
 = 3.9cm

ANSWER14

Given,
$$\angle AOD = 140^{\circ}$$
, $\angle CAB = 50^{\circ}$

(i) we know that the sum of either pair of the opposite angles of a cyclic quadrilateral is 180°

So,
$$\angle BAC + \angle BDC = 180^{\circ}$$

$$\angle BDC + 50 = 180^{\circ}$$

$$\angle BDC = 180 - 50 = 130^{\circ}$$

Then, in line segment CDE

$$\angle BDC + \angle EDB = 180^{\circ}$$

$$\angle EDB = 180 - 130 = 50^{\circ}$$

Hence,
$$\angle EDB = 50^{\circ}$$

(ii) here, $\angle BOD = 180 - \angle AOD$ (given)

$$\angle BOD = 180 - 140 = 40^{\circ}$$

Also, OD = OB so, the angles \angle OBD = \angle ODB

We can calculate by △ODB

$$\angle$$
ODB + \angle OBD + \angle BOD = 180

$$2\angle ODB = 180 - 40 = 140^{\circ}$$

$$\angle ODB = \frac{140}{2} = 70^{\circ}$$

$$\angle ODB = \angle OBD = 70^{\circ}$$

In line segment OBE

$$180 = \angle OBD + \angle EBD$$

$$\angle$$
EBD= 180 - \angle OBD
Hence, \angle EBD = 180 - 70 = 110°

Given. In △ABC

AB = AC

D is intersecting at AB and E is intersecting AC

 \therefore \angle CBA = \angle BCA

As we know that exterior angle is equal to the int opposite angles

And ext. \angle ADE = \angle CBA = \angle BCA

Hence, $\angle ADE = \angle ABC$, $DE \parallel BC$

ANSWER16

As we know that exterior angle is equal to the int opposite angles

 $Ext \angle EDC = \angle A$, $Ext \angle DCE = \angle B$

AB||CD (given)

So, $\angle A = \angle B$

Hence, △AEB is isosceles

 $\angle A = \angle B$, AE = BE

ANSWER17

Given ∠BAD = 75°

we know that the sum of either pair of the opposite angles of a cyclic quadrilateral is 180° then in first Quadrilateral ABCD

 $\angle BAD + \angle BCD = 180^{\circ}$

∠BCD = 180 - ∠BAD

 $\angle BCD = 180 - 75 = 105^{\circ}$

As we know that exterior angle is equal to the int opposite angles

Then, $\angle BCD = \angle DEF = 105^{\circ}$

 $y = 105^{\circ}$

In line segment BCF

 $\angle BCD + \angle DCF = 180^{\circ}$

 $\Rightarrow \angle DCF = 180 - \angle BCD = 180 - 105 = 75^{\circ}$

Hence, $\angle DCF = 75^{\circ}$

 $x = 75^{\circ}$

ANSWER18

Given , ABCD is quadrilateral AD=BC and \angle ADC = \angle BCD

Draw \bot lines on AB such that DE \bot AB and CF \bot AB

So. $\angle DEA = \angle CFB = 90^{\circ}$

In \triangle ADE and \triangle BCF, we have

 $\angle ADE = \angle ADC - 90^{\circ}$

 $\Rightarrow \angle BCD - 90^{\circ} = \angle BCF [\angle ADC = \angle BCD]$

AD = BC

And $\angle ADE = \angle BFC = 90^{\circ}$

 $\therefore \Delta ADE \cong \Delta BCF$

 $\angle A = \angle B$

 $\therefore \angle A + \angle B + \angle C + \angle D = 360^{\circ}$

CLASS IX

 $2\angle B + 2\angle D = 360 \dots [\angle ADC = \angle BCD (Given)]$

Then, $\angle B + \angle D = 180^{\circ}$

Similarly, $\angle A + \angle C = 180^{\circ}$

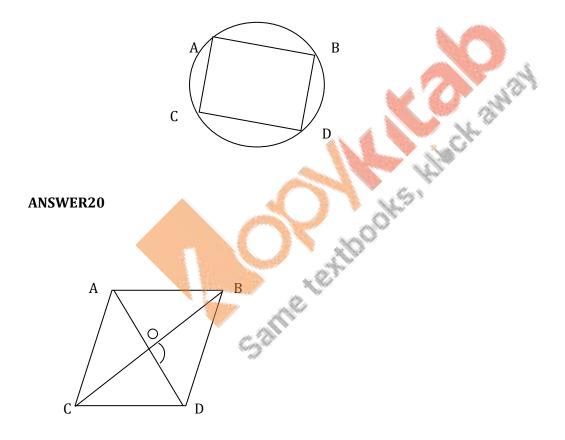
Because we know that the sum of either pair of the opposite angles of a cyclic quadrilateral is 180° Hence proved ABCD is lie on circle

ANSWER19

Suppose, ABCD be a cyclic quadrilaterals and O be the centre of the circle.

Then, AB ,BC, CD DA are the chords of the circle , and its bisector must pass through the centre of the circle, 0.

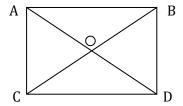
Hence, we can say that right bisector of AB, BC, CD and DA pass through O so, it is concurrent.



Let AD and BC is the diagonal of a rhombus ABCD intersect at 0. As we know that the diagonals of a rhombus bisects at 90° right angle Δ So, \angle BOD = 90°

Also, ∠BOD is lies in the semicircle.

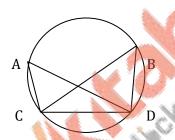
Thus, the circle drawn with BD as diameter will pass through O Similarly, AB, CD, AC are the diameter as pass through O.



Let O be the intersection point of the diagonals AC and BD of rect, ABCD . Since the diagonals of a rectangles are equal and bisects each other , we have , OA = OB = OC = OD.

Hence, O is centre of the circle through A, B,C,D.

ANSWER22



Let ACD are the given points . with the B as an center radius equal to AD draw an arc. With D as centre and CB as radius draw another arc, intersecting the previous arc at B. then B is the desired point

PROOF join AD and BC

$$\triangle ADC \cong BCD \dots [AC = BD, CB = AD, CD = CD]$$

$$\Rightarrow 2DAC = 2CBD$$

Thus, CD subtends equal angles ∠ACD and ∠CBD on the same side of it.

∴ A, B, C, D are cyclic.

ANSWER23

Given, ABCD is cyclic equilateral, $(\angle B - \angle D) = 60^{\circ}$

As we know that the sum of either pair of the opposite angles of a cyclic quadrilateral is 180° $\angle B + \angle D = 180^{\circ}$

∴ by solving above equation

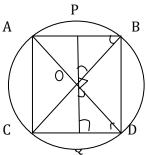
$$\Rightarrow \angle B - \angle D = 60^{\circ}$$

$$\angle B + \angle D = 180$$

$$\angle B = \frac{240}{2} = 120^{\circ}$$

And
$$\angle D = 180 - \angle B$$

$$\Rightarrow \angle D = 180 - 120 = 60^{\circ}$$



Let ABCD is the cyclic quadrilaterals whose diagonals AC and BD intersect at 0 at the right angles. Let $OQ \perp CD$ such that OQ produced to P meet at AB chord

Then by fig,

We have to prove that CM = MD

Clearly, \angle CBA = \angle ADC[same line segment]

 $\angle QDO + \angle DOQ = 90^{\circ} \quad [\because \angle OQD = 90^{\circ}]$

 $\angle QOD + \angle POB = 90^{\circ}$ [: POQ is linear segment and $\angle BOD = 90^{\circ}$]

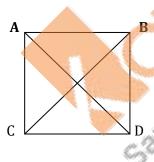
 $\therefore \angle QDO + \angle DOQ = \angle QOD + \angle POB \Rightarrow \angle QDO = \angle POB$

Thus, $\angle CBA = \angle ADC$ and $\angle QDO = \angle POB \Rightarrow \angle CBA = \angle POB$

 \therefore OP= PB and OP = PA

Hence, PB = PA

ANSWER25



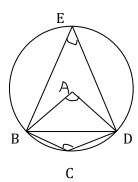
By fig, $\angle ACB = 90^{\circ} \angle ADB = 90^{\circ}$

As we know that the opposite angles of quadrilateral ABCD are supplementary or 180°

Then, ABCD is cyclic quadrilateral

This meANSWER circles pass through the points A, B, C, D

 $\therefore \angle BAC = \angle BDC \dots [$ angles in the same segment



Given, ABCD is a quadrilateral such that A is the centre of the circle passing through B,C and D. Take Point E on the circle outside arc BCD. Join BE, DE and BD

As we know the angle subtended by arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle Williaghs, M

Clearly, $\angle BAD = 2 \angle BED$

Now, EBCD ia cyclic quadrilateral.

$$\therefore \angle BED + \angle BCD = 180^{\circ}$$

⇒∠BCD =
$$180^{\circ}$$
 - ∠BED
⇒∠BCD = 180° - $\frac{1}{2}$ ∠BAD[∠BAD = 2 ∠BED]

In \triangle BCD, we have

$$\angle BCD + \angle CBD + \angle BDC = 180^{\circ}$$

$$\angle$$
CBD + \angle CDB = 180° - \angle BCD

$$= 180^{\circ} - (180 - \frac{1}{2} \angle BAD) = \frac{1}{2} \angle BAD$$

$$\angle CBD + \angle CDB = 180^{\circ} - \angle BCD$$

$$= 180^{\circ} - (180 - \frac{1}{2} \angle BAD) = \frac{1}{2} \angle BAD$$
Hence $\angle CBD + \angle CDB = \frac{1}{2} \angle BAD$.

MULTIPLE-CHOICE QUESTIONS

ANSWER 1:

(b) 12 cm

Let PQ be the chord of the given circle with centre 0 and a radius of 13 cm.

Then, PQ = 10 cm and OQ = 13 cm

From O, draw OX perpendicular to PQ.

We know that the perpendicular from the centre of a circle to a chord bisects the chord.

$$\therefore QX = (\frac{10}{2}) cm = 5 cm$$

From the right Δ OXQ, we have:

 $OQ^2 = OX^2 + XQ^2$

 \Rightarrow 13² = 0X² + 5²

 \Rightarrow 169 = $0X^2 + 25$

 \Rightarrow OX² = (169 - 25) = 144

 \Rightarrow 0X= $\sqrt{144}$ cm=12cm

Hence, the distance of the chord from the centre is 12 cm.

ANSWER 2:

(c) 30 cm

Let PQ be the chord of the given circle with centre 0 and a radius of 17 cm.

From O, draw OX perpendicular to PQ.

Then OX = 8 cm and OQ = 17 cm

From the right ΔOXQ , we have:

 $OQ^2 = OX^2 + XQ^2$

 \Rightarrow 17² = 8² + XQ²

 \Rightarrow 289 = 64 + \times XQ²

 \Rightarrow XQ² = (289 - 64) = 225

 \Rightarrow X0= $\sqrt{225}$ cm=15cm

The perpendicular from the centre of a circle to a chord bisects the chord.

 \therefore PQ = 2 × XQ = (2 x 15) cm = 30 cm

Hence, the required length of the chord is 30 cm.

ANSWER 3:

(b) 45°

Since an angle in a semicircle is a right angle, $\angle BAC = 90^{\circ}$ $\therefore \angle ABC + \angle ACB = 90^{\circ}$ Now, AB = AC(Given) \Rightarrow \angle ABC = \angle ACB = 45°

ANSWER 4:

 $(c) 60^{\circ}$

As the angle at the centre of a circle is twice the angle at any point on the remaining part of the circumference.

Thus, $\angle AOB = (2 \times \angle ACB) = (2 \times 30^{\circ}) = 60^{\circ}$

ANSWER 5:

(b) 50° OA = OB \Rightarrow \angle OBA = \angle OAB = 40° Now, $\angle AOB = 180^{\circ} - (40^{\circ} + 40^{\circ}) = 100^{\circ}$

...en OC = radius = 17 cm ...= $\frac{2}{2}$ CD = $(\frac{1}{2} \times 30)$ cm=15cm In right Δ0LC, we have: OL² = OC² - CL² = (17)² - (15)² = (289 - 225) = 64 ⇒ OL= $\sqrt{64}$ = 8cm · Distance of CD from AB = 8 cm.

(b) 80°

Given: AB = CD

We know that equal chords of a circle subtend equal angles at the centre.

 $\therefore \angle COD = \angle AOB = 80^{\circ}$

ANSWER8:

(c) 7.5 cm

Let OA = OC = r cm.

Then OE = (r - 3) cm and AE = $\frac{1}{2}$ AB = 6cm

Now, in right $\triangle OAE$, we have:

 $OA^2 = OE^2 + AE^2$

$$\Rightarrow$$
 $(r)^2 = (r - 3)^2 + 6^2$

$$\Rightarrow r^2 = r^2 + 9 - 6r + 36$$

$$\Rightarrow$$
 6 r = 45

$$\Rightarrow r = \frac{45}{6} = 7.5$$
cm

Hence, the required radius of the circle is 7.5 cm.

ANSWER9:

$$\Rightarrow (r)^2 = (r - 4)^2 + 8^2$$

$$\Rightarrow r^2 = r^2 + 16 - 8r + 64$$

$$\Rightarrow 8r = 80$$

$$\Rightarrow r = 10 \text{ cm}$$

 $r 8^2$ ∴ + 16 - 8r + 64 ⇒ 8r = 80 ⇒ r = 10 cm Hence, the required radius of the circle is 10 cm. NSWER 10:) 10 cm aw 0M ⊥ AB and 0N ⊥ CD. ∆ 0MB and ∆ ONC, we have = 0C (Radional Additional Control Radional Control

 $\angle BOM = \angle CON$ (Vertically opposite angles)

 \angle OMB = \angle ONC (90° each)

 $\therefore \Delta OMB \cong \Delta ONC$ (By AAS congruency rule)

 \therefore OM = ON

Chords equidistant from the centre are equal.

 \therefore CD = AB = 10 cm

ANSWER 11:

(b) 75°

OB = BC (Given)

$$\Rightarrow \angle BOC = \angle BCO = 25^{\circ}$$

Exterior
$$\angle OBA = \angle BOC + \angle BCO = (25^{\circ} + 25^{\circ}) = 50^{\circ}$$

OA = OB (Radius of a circle)

$$\Rightarrow \angle OAB = \angle OBA = 50^{\circ}$$

In Δ AOC, side CO has been produced to D.

∴ Exterior
$$\angle AOD = \angle OAC + \angle ACO$$

$$= \angle OAB + \angle BCO$$

$$= (50^{\circ} + 25^{\circ}) = 75^{\circ}$$

ANSWER12:

(b) 12 cm

 $OD \perp AB$

i.e., D is the mid point of AB.

Also, O is the mid point of BC.

Now, in \triangle BAC, D is the mid point of AB and O is the mid point of BC.

$$\therefore$$
 OD= $\frac{1}{2}$ AC

(By mid point theorem)

$$\Rightarrow$$
 AC = 20D = (2 × 6) cm = 12 cm

Now, in
$$\triangle$$
 BAC, D is the mid point of AB and O is the mid point of BC.

$$\therefore OD = \frac{1}{2}AC \qquad (By \text{ mid point theorem})$$

$$\Rightarrow AC = 20D = (2 \times 6) \text{ cm} = 12 \text{ cm}$$

ANSWER13:

(c) $3\sqrt{3}$ cm

Let \triangle PQR be an equilateral triangle of side 9 cm.
Let PM be one of its mediANSWER.

Then PM \triangle QR and QM = 4.5 cm
$$\therefore PM = \sqrt{PQ^2 + OM^2} = \sqrt{81 - \frac{81}{4}} = \frac{9\sqrt{3}}{2} \text{ cm}$$

Let O be the centroid of \triangle PQR

Then PO: OM = 2: 1
$$\therefore \text{ Radius} = PO = \frac{2}{3} \text{ PM} = (\frac{2}{3} \times \frac{9\sqrt{3}}{2}) \text{ cm} = 3\sqrt{3} \text{ cm}$$

∴ Radius = PO =
$$\frac{2}{3}$$
 PM = $(\frac{2}{3} \times \frac{9\sqrt{3}}{2})$ cm = $3\sqrt{3}$ cm

ANSWER 14:

 $(c) 90^{\circ}$

The angle in a semicircle measures 90°.

ANSWER 15:

(a) equal

The angles in the same segment of a circle are equal.

ANSWER 16:

(c) 70° $\angle BDC = \angle BAC = 60^{\circ}$ (Angles in the same segment of a circle) In \triangle BDC, we have: $\angle DBC + \angle BDC + \angle BCD = 180^{\circ}$ (Angle sum property of a triangle) $\therefore 50^{\circ} + 60^{\circ} + \angle BCD = 180^{\circ}$ $\Rightarrow \angle BCD = 180^{\circ} - (50^{\circ} + 60^{\circ}) = (180^{\circ} - 110^{\circ}) = 70^{\circ}$

ANSWER 17:

(c) 60°

Angles in a semi circle measure 90°.

∴ ∠BAC = 90°

In \triangle ABC, we have:

 $\angle BAC + \angle ABC + \angle BCA = 180^{\circ}$ (Angle sum property of a triangle)

 $∴ 90^{\circ} + ∠ABC + 30^{\circ} = 180^{\circ}$

 \Rightarrow \angle ABC = $(180^{\circ} - 120^{\circ}) = 60^{\circ}$

 $\therefore \angle CDA = \angle ABC = 60^{\circ}$ (Angles in the same segment of a circle)

ANSWER 18:

(b) 50° $\angle ODB = \angle OAC = 50^{\circ}$ (Angles in the same segment of a circle)

ANSWER 19:

(c) 100° In \triangle OAB, we have: OA = OB (Radii of a circle) $\Rightarrow \angle OAB = \angle OBA = 20^{\circ}$ In $\triangle OAC$, we have: OA = OC (Radii of a circle) $\Rightarrow \angle OAC = \angle OCA = 30^{\circ}$ Now, $\angle BAC = (20^{\circ} + 30^{\circ}) = 50^{\circ}$ $\therefore \angle BOC = (2 \times \angle BAC) = (2 \times 50^{\circ}) = 100^{\circ}$

ANSWER 20:

(a) 85° We have: $\angle BOC + \angle BOA + \angle AOC = 360^{\circ}$ $\Rightarrow \angle BOC + 100^{\circ} + 90^{\circ} = 360^{\circ}$ $\Rightarrow \angle BOC = (360^{\circ} - 190^{\circ}) = 170^{\circ}$ $\therefore \angle BAC = (\frac{1}{2} \times \angle BOC) = (\frac{1}{2} \times 170^{\circ}) = 85^{\circ}$

ANSWER 21:

(d) 65° We have:

OA = OB (Radii of a circle)

Let ? OAB = \angle OBA = x°

In \triangle OAB, we have:

 $x^{\circ} + x^{\circ} + 50^{\circ} = 180^{\circ}$ (Angle sum property of a triangle)

 $\Rightarrow 2x^{\circ} = (180^{\circ} - 50^{\circ}) = 130^{\circ}$

 $\Rightarrow x = (\frac{130}{2})^{\circ} = 65^{\circ}$

Hence, 20AB = 65°

ANSWER 22:

(c) 30°

 $\angle COB = 180^{\circ} - 120^{\circ} = 60^{\circ}$ (Linear pair)

Now, arc BC subtends $\angle COB$ at the centre and $\angle BDC$ at the point D of the remaining part of the circle.

 $\therefore \angle COB = 2 \angle BDC$

 $\Rightarrow \angle BDC = \frac{1}{2}\angle COB = (\frac{1}{2}\times60^{\circ}) = 30^{\circ}$

ANSWER 23:

(b) 50°

We have:

OA = OB (Radii of a circle)

 $\Rightarrow \angle OBA = \angle OAB = 50^{\circ}$

 $\therefore \angle CDA = \angle OBA = 50^{\circ}$ (Angles in the same segment of a circle)

ANSWER 24:

```
(b) 60^{\circ} We have:

\angle CDB = \angle CAB = 40^{\circ} (Angles in the same segment of a circle)

In \triangle CBD, we have:

\angle CDB + \angle BCD + \angle CBD = 180^{\circ} (Angle sum property of a triangle)

\Rightarrow 40^{\circ} + 80^{\circ} + \angle CBD = 180^{\circ}

\Rightarrow \angle CBD = (180^{\circ} - 120^{\circ}) = 60^{\circ}
```

ANSWER 25:

```
(c) 80^{\circ} We have:

\angle AEB + \angle CEB = 180^{\circ} (Linear pair angles)

\Rightarrow 110^{\circ} + \angle CEB = 180^{\circ}

\Rightarrow \angle CEB = (180^{\circ} - 110^{\circ}) = 70^{\circ}

In \triangle CEB, we have:

\angle CEB + \angle EBC + \angle ECB = 180^{\circ} (Angle sum property of a triangle)

\Rightarrow 70^{\circ} + 30^{\circ} + \angle ECB = 180^{\circ}

\Rightarrow \angle ECB = (180^{\circ} - 100^{\circ}) = 80^{\circ}

The angles in the same segment are equal.

Thus, \angle ADB = \angle ECB = 80^{\circ}
```

ANSWER 26:

```
(d) 60°
We have:
OA = OB (Radii of a circle)
\Rightarrow \angle OBA = \angle OAB = 20^{\circ}
In \triangleOAB, we have:
\angle OAB + \angle OBA + \angle AOB = 180^{\circ} (Angle sum property of a triangle)
\Rightarrow 20° + 20° + \angleAOB = 180°
\Rightarrow \angle AOB = (180^{\circ} - 40^{\circ}) = 140^{\circ}
Again, we have:
OB = OC (Radii of a circle)
\Rightarrow \angle OBC = \angle OCB = 50^{\circ}
In \triangleOCB, we have:
\angle OCB + \angle OBC + \angle COB = 180^{\circ} (Angle sum property of a triangle)
\Rightarrow 50^{\circ} + 50^{\circ} + \angle COB = 180^{\circ}
\Rightarrow \angle COB = (180^{\circ} - 100^{\circ}) = 80^{\circ}
Since \angle AOB = 140^{\circ}, we have:
\angle AOC + \angle COB = 140^{\circ}
```

```
\Rightarrow \angle AOC + 80^{\circ} = 140^{\circ}
\Rightarrow \angleAOC = (180° - 80°) = 60°
```

ANSWER 27:

(b) 30° We have: \angle ABC + \angle ADC = 180° (Opposite angles of a cyclic quadrilateral) \Rightarrow \angle ABC + 120° = 180° \Rightarrow \angle ABC = (180° - 120°) = 60° Also, $\angle ACB = 90^{\circ}$ (Angle in a semicircle) In \triangle ABC, we have: $\angle BAC + \angle ACB + \angle ABC = 180^{\circ}$ (Angle sum property of a triangle) $\Rightarrow \angle BAC + 90^{\circ} + 60^{\circ} = 180^{\circ}$ \Rightarrow \angle BAC = (180° - 150°) = 30°

ANSWER 28:

(b) 100°

 \angle BAD + \angle BCD = 180° (Opposite angles of a cyclic quadrilateral) ⇒ 100° + \angle BCD = 180° rilate.

 $\Rightarrow \angle BCD = (180^{\circ} - 100^{\circ}) = 80^{\circ}$

Now, AB | DC and CB is the trANSWERversal.

 $\therefore \angle ABC + \angle BCD = 180^{\circ}$

 $\Rightarrow \angle ABC + 80^{\circ} = 180^{\circ}$

 $\Rightarrow \angle ABC = (180^{\circ} - 80^{\circ}) = 100^{\circ}$

ANSWER 29:

(c) 115°

Take a point X on the remaining part of the circumference.

Join AX and CX.

Then $\angle AXC = \frac{1}{2} \angle AOC = (\frac{1}{2} \times 130^{\circ}) = 65^{\circ}$

In cyclic quadrilateral ABCX, we have:

 \angle ABC + \angle AXC = 180° (Opposite angles of a cyclic quadrilateral)

 \Rightarrow \angle ABC + 65° = 180°

 $\Rightarrow \angle ABC = (180^{\circ} - 65^{\circ}) = 115^{\circ}$

ANSWER 30:

```
(a) 30°
\angle ADC = \angle BAD = 30^{\circ} (Alternate angles)
∠ADB = 90°
                                 (Angle in semicircle)
\therefore \angle CDB = (90^{\circ} + 30^{\circ}) = 120^{\circ}
But ABCD being a cyclic quadrilateral, we have:
\angle BAC + \angle CDB = 180^{\circ}
\Rightarrow \angle BAD + \angle CAD + \angle CDB = 180^{\circ}
\Rightarrow 30° + \angleCAD + 120° = 180°
\Rightarrow \angle CAD = (180^{\circ} - 150^{\circ}) = 30^{\circ}
```

ANSWER 31:

(a) 50°

Take a point X on the remaining part of the circumference. Join AX and CX.

```
Now, side AB of the cyclic quadrilateral ABCX has been produced to D.

\therefore \text{ Exterior } \angle \text{CBD} = \angle \text{AXC} = 50^{\circ}

ANSWER 32:

(c) 100^{\circ}
OA = OB \text{ (Radii of a circle)}
\Rightarrow \angle OBA = \angle OAB = 50^{\circ}
 \Rightarrow \angle OBA = \angle OAB = 50^{\circ}
 In \triangle OAB, we have:
 \angle OAB + \angleOBA + \angleAOB = 180° (Angle sum property of a triangle)
 \Rightarrow 50° + 50° + \angleAOB = 180°
 \Rightarrow \angleAOB = (180° - 100°) = 80°
 Since \angle AOB + \angle BOD = 180^{\circ} (Linear pair)
 \therefore \angle BOD = (180^{\circ} - 80^{\circ}) = 100^{\circ}
```

ANSWER 33:

(b)
$$70^{\circ}$$
 BC = CD (given)
 $\Rightarrow \angle BDC = \angle CBD = 35^{\circ}$ In $\triangle BCD$, we have:
 $\angle BCD + BDC + \angle CBD = 180^{\circ}$ (Angle sum property of a triangle)
 $\Rightarrow \angle BCD + 35^{\circ} + 35^{\circ} = 180^{\circ}$
 $\Rightarrow \angle BCD = (180^{\circ} - 70^{\circ}) = 110^{\circ}$

CLASS IX

In cyclic quadrilateral ABCD, we have:

$$\angle BAD + \angle BCD = 180^{\circ}$$

$$\Rightarrow \angle BAD + 110^{\circ} = 180^{\circ}$$

$$\therefore \angle BAD = (180^{\circ} - 110^{\circ}) = 70^{\circ}$$

ANSWER 34:

(c) 120°

Since \triangle ABC is an equilateral triangle, each of its angle is 60°.

In a cyclic quadrilateral ABCD, we have:

$$\angle BAC + \angle BDC = 180^{\circ}$$

$$\Rightarrow$$
 60° + \angle BDC = 180°

$$\Rightarrow$$
 \angle BDC = (180° - 60°) = 120°

ANSWER 35:

(b) 80°

In a cyclic quadrilateral ABCD, we have:

Interior opposite angle, $\angle ADC = \text{exterior } \angle CBE = 100^{\circ}$

$$\therefore \angle CDF = (180^{\circ} - \angle ADC) = (180^{\circ} - 100^{\circ}) = 80^{\circ}$$
 (Linear pair)

ANSWER 36:

(c) 110°

Join AB.

Then chord AB subtends $\angle AOB$ at the centre and $\angle AXB$ at a point X of the remaining parts of a circle.

$$\Rightarrow \angle AXB = \frac{1}{2} \angle AOB = (\frac{1}{2} \times 140^{\circ}) = 70^{\circ}$$

In the cyclic quadrilateral, we have:

$$\angle AXB + \angle ACB = 180^{\circ}$$

$$\Rightarrow$$
 70° + \angle ACB = 180°

$$\therefore \angle ACB = (180^{\circ} - 70^{\circ}) = 110^{\circ}$$

ANSWER 37:

(c) 115°

Join AB.

Then chord AB subtends ∠AOB at the centre and ∠AXB at a point X of the remaining parts of a

$$\Rightarrow \angle AXB = \frac{1}{2} \angle AOB = (\frac{1}{2} \times 130^{\circ}) = 65^{\circ}$$

In cyclic quadrilateral, we have:

$$\angle AXB + \angle ACB = 180^{\circ}$$

$$\Rightarrow$$
 65° + \angle ACB = 180°

$$\therefore \angle ACB = (180^{\circ} - 65^{\circ}) = 115^{\circ}$$

ANSWER 38:

(d) 110°

Since ABCD is a cyclic quadrilateral, we have:

$$\angle BAD + \angle BCD = 180^{\circ}$$

$$\Rightarrow \angle BAD + 110^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle BAD = (180^{\circ} - 110^{\circ}) = 70^{\circ}$$

Similarly in ABEF, we have:

$$\angle BAD + \angle BEF = 180^{\circ}$$

$$\Rightarrow$$
 70° + \angle BEF = 180°

$$\Rightarrow \angle BEF = (180^{\circ} - 70^{\circ}) = 110^{\circ}$$

ANSWER 39:

(c) 105°

We have:

$$\angle ABC + \angle ADC = 180^{\circ}$$

$$\Rightarrow \angle ABC + 95^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle ABC = (180^{\circ} - 95^{\circ}) = 85^{\circ}$$

Now, CF | AB and CB is the trANSWERversal.

$$\therefore \angle BCF = \angle ABC = 85^{\circ}$$
 (Alternate interior angles)

$$\Rightarrow \angle BCE = (85^{\circ} + 20^{\circ}) = 105^{\circ}$$

$$\Rightarrow$$
 \angle DCB = (180° - 105°) = 75°

Now,
$$\angle BAD + \angle BCD = 180^{\circ}$$

$$\Rightarrow \angle BAD + 75^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle BAD = (180^{\circ} - 75^{\circ}) = 105^{\circ}$$

ANSWER 40:

(c) 8.5 cm Join AC.

Then AE : CE = DE : BE (Intersecting secant theorem)

 \therefore AE \times BE = DE \times CE

Let CD = y cm

Then AE = (AB + BE) = (11 + 3) cm = 14 cm; BE = 3 cm; CE = (y + 3.5) cm; DE = 3.5 cm

 $\therefore 14 \times 3 = (y + 3.5) \times 3.5$

$$\Rightarrow y + 3.5 = \frac{14 \times 3}{3.5} = \frac{42}{3.5} = 12$$

$$\Rightarrow$$
 y = (12 - 3.5) cm = 8.5 cm

Hence, CD = 8.5 cm

ANSWER 41:

(b) 6 cm

We know that the line joining their centres is the perpendicular bisector of the common chord. Join AP.

Then AP = 5 cm; AB = 4 cm

Also, $AP^2 = BP^2 + AB^2$

Or $BP^2 = AP^2 - AB^2$

Or $BP^2 = 5^2 - 4^2$

Or BP = 3 cm

 \therefore ΔABP is a right angled and PQ = 2 × BP = (2 × 3) cm = 6 cm

ANSWER 42:

(c) 60°

We have:

$$\angle AOB = 2 \angle ACB$$

$$\Rightarrow \angle ACB = \frac{1}{2} \angle AOB = (\frac{1}{2} \times 90^{\circ}) = 45^{\circ}$$

$$\angle COA = 2\angle CBA = (2 \times 30^{\circ}) = 60^{\circ}$$

$$\therefore \angle COD = 180^{\circ} - \angle COA = (180^{\circ} - 60^{\circ}) = 120^{\circ}$$

$$\Rightarrow \angle CAO = \frac{1}{2} \angle COD = (\frac{1}{2} \times 120^{\circ}) = 60^{\circ}$$