Time and Work

1. Work from Days:

Ex 13A

If A can do a piece of work in *n* days, then A's 1 day's work = $\frac{1}{n}$

2. Days from Work:

If A's 1 day's work = $\frac{1}{n}$, then A can finish the work in n days.

3. Ratio:

If A is thrice as good a workman as B, then:

Ratio of work done by A and B = 3: 1.

Ratio of times taken by A and B to finish a work = 1:3.

Q1.

Answer:

Work done by Rajan in 1 day $=\frac{1}{24}$

Work done by Amit in 1 day = $\frac{1}{30}$

Work done by Amit and Rajan together in 1 day $=\frac{1}{24}+\frac{1}{30}=\frac{54}{720}=\frac{3}{40}$

Q2. \therefore They can complete the work in $\frac{40}{3}$ days, i.e., $13\frac{1}{3}$ days if they work together.

Answer:

Time taken by Ravi = 15 h

Time taken by Raman = 12 h

Work done per hour by Ravi $=\frac{1}{15}$

Work done per hour by Raman $= \frac{1}{12}$

Work done per hour by Ravi and Raman together $=\frac{1}{15}+\frac{1}{12}=\frac{9}{60}=\frac{3}{20}$

... Time taken by Ravi and Raman together to finish the work = $\frac{20}{3}$ h = $6\frac{2}{3}$ h Q3.

Answer:

Time taken by A and B to finish a piece of work = 6 days

Work done per day by A and B = $\frac{1}{6}$

Time taken by A alone = 9 days

Work done per day by A alone $=\frac{1}{4}$

Work done per day by B = (work done by A and B) - (work done by A)

$$=\frac{1}{6}-\frac{1}{9}=\frac{3-2}{18}=\frac{1}{18}$$

.. B alone will take 18 days to complete the work.

Q4.

Answer:

Time taken by Raju = 15 h

Work done by Raju in $1 h = \frac{1}{15}$

Time taken by Raju and Siraj working together $= 6 \,\mathrm{h}$

Work done by Raju and Siraj in $1 h = \frac{1}{6}$

Work done by Siraj in 1 h = (work done by Raju and Siraj)

$$=\frac{1}{6}-\frac{1}{15}=\frac{5-2}{30}=\frac{3}{30}=\frac{1}{10}$$

... Siraj will take 10 h to overhaul the scooter by himself.

Q5.

Answer:

Time taken by A to complete the work =10 days

Time taken by B to complete the work $\,=\,12$ days

Time taken by C to complete the work = 15 days

Work done per day by $A = \frac{1}{10}$

Work done per day by $B = \frac{1}{12}$

Work done per day by $C = \frac{1}{15}$

Total work done per day $=\frac{1}{10}+\frac{1}{12}+\frac{1}{15}=\frac{6+5+4}{60}=\frac{15}{60}=\frac{1}{4}$

A, B and C will take 4 days to complete the work if they work together.

```
Answer:
```

Time taken by A to complete the piece of work = 24 h Work done per hour by A = $\frac{1}{24}$ Time taken by B to complete the work = 16 h Work done per hour by B = $\frac{1}{16}$ Total time taken when A, B and C work together = 8 h Work done per hour by A, B and C = $\frac{1}{8}$ Work done per hour by A, B and C = (work done per hour by A) + (work done per hour by B) + (work done per hour by C) (Work done per hour by C) = (work done per hour by A, B and C) - (work done per hour by A) - (work done per hour by B) = $\frac{1}{8} - \frac{1}{24} - \frac{1}{16} = \frac{6-2-3}{48} = \frac{1}{48}$

Thus, C alone will take 48 h to complete the work.

Q7.

Answer:

A can complete the work in 20 h.

Work done per hour by $A = \frac{1}{20}$

B can complete the work in 24 h.

Work done per hour by $B = \frac{1}{24}$

It takes 8 h to complete the work if A, B and C work together.

Work done together per hour by A, B and $C = \frac{1}{8}$

(Work done per hour by A, B and C) = (work done per hour by A)

+ (work done per hour by B) + (work done per hour by C)

OR

(Work done per hour by C) = (work done per hour by A, B and C)

- (work done per hour by A) - (work done per hour by B)
$$= \frac{1}{8} - \frac{1}{24} - \frac{1}{20} = \frac{1}{30}$$

.. C alone will take 30 h to complete the work.

Q8.

Answer:

Time taken by A to complete the work = 16 days

Work done per day by $A = \frac{1}{16}$

Time taken by B to complete the work = 12 days

Work done per day by $B = \frac{1}{12}$

Work done per day by A and B = $\frac{1}{12} + \frac{1}{16} = \frac{4+3}{48} = \frac{7}{48}$

Work done by A in two days $=\frac{2}{16}=\frac{1}{8}$

Work left $= 1 - \frac{1}{8} = \frac{7}{8}$

A and B together can complete $\frac{7}{48}$ of the work in 1 day.

Then, time taken to complete $\frac{7}{8}$ of the work $=\frac{7}{8}\div\frac{7}{48}=\frac{7}{8}\times\frac{48}{7}=6$ days \therefore Total time taken =6+2=8 days.

Q9.

Time taken by A to complete the work = 14 days

Work done by A in one day $=\frac{1}{14}$

Time taken by B to complete the work = 21 days

Work done by B in one day $=\frac{1}{21}$

Work done jointly by A and B in one day $=\frac{1}{14}+\frac{1}{21}=\frac{3+2}{42}=\frac{5}{42}$

Work done by A and B in 6 days $=\frac{5}{42} \times 6 = \frac{5}{7}$

Work left = $1 - \frac{5}{7} = \frac{2}{7}$

With B working alone, time required to complete the work $=\frac{2}{7} \div \frac{1}{21} = \frac{2}{7} \times 21 = 2 \times 3 = 6$ days

So, the total time taken to complete the work = 6 + 6 = 12 days

Q10.

Answer:

A can do $\frac{2}{3}$ work in 16 days

So, work done by A in one day $=\frac{2}{48}=\frac{1}{24}$

B can do $\frac{1}{4}$ work in 3 days

So, work done by B in one day $=\frac{1}{12}$

Work done jointly by A and B in one day $=\frac{1}{24}+\frac{1}{12}=\frac{1+2}{24}=\frac{3}{24}=\frac{1}{8}$ So, A and B together will take 8 days to complete the work.

Q11.

Answer:

Time taken by A = 15 days

Time taken by B = 12 days

Time taken by C = 20 days

Work d by A in one day $=\frac{1}{15}$

Work done by B in one day $=\frac{1}{12}$

Work done by C in one day $=\frac{1}{20}$

Work done in one day by A, B and C together $=\frac{1}{15} + \frac{1}{12} + \frac{1}{20} = \frac{4+5+3}{60} = \frac{12}{60} = \frac{1}{5}$

Work done by A, B and C together in 2 days

Work remaining $=1-\frac{2}{5}=\frac{3}{5}$

Work done by A and B in one day $=\frac{1}{15}+\frac{1}{12}=\frac{9}{60}=\frac{3}{20}$

Time required by A and B to complete the remaining work together $=\frac{3}{5}\div\frac{3}{20}=\frac{3}{5}$ $\times\frac{20}{3}=4$ days

Q12.

Answer:

Time needed by A and B to finish the work $\,=18$ days

Time needed by B and C to finish the work = 24 days

Time needed by C and A to finish the work =36 days

Work done by A and B in one day $=\frac{1}{18}$

Work done by B and C in one day $=\frac{1}{24}$

Work done by C and A in one day $=\frac{1}{36}$

 $2 \times \text{Work done by A, B and C in one day } = \frac{1}{18} + \frac{1}{24} + \frac{1}{36} = \frac{4+3+2}{72} = \frac{9}{72} = \frac{1}{8}$

 \therefore Work done by A, B and C in one day $=\frac{1}{16}$

So, A, B and C working together will take 16 days to complete the work.

(A+B) can complete the work in 12 days.

(B+C) can complete the work in 15 days.

(C+A) can complete the work in 20 days.

(A+B)'s 1 day work = $\frac{1}{12}$

(B+C)'s 1 day work $=\frac{1}{15}$

(C+A)'s 1 day work $=\frac{1}{20}$

 $2\Big(A+B+C\Big)\text{'s }1\ \text{day work }=\tfrac{1}{12}+\tfrac{1}{15}+\tfrac{1}{20}=\tfrac{5+4+3}{60}=\tfrac{12}{60}=\tfrac{1}{5}$

(A+B+C)'s 1 day work $=\frac{1}{10}$

 $\label{eq:assumption} \begin{array}{lll} A\text{'s 1 day work} \ = \ \{(A+B+C)\text{'s 1 day work}\} \ - \ \{(B+C)\text{'s 1 day work}\} \ = \ \frac{1}{10} \end{array}$ $-\frac{1}{15} = \frac{3-2}{30} = \frac{1}{30}$

A will take 30 days to complete the work, if he works alone.

Q14.

Answer:

A can fill a tank in 10 hours.

B can fill a tank in 15 hours.

Pipe A fills $\frac{1}{10}$ of the tank in one hour.

Pipe B fills $\frac{1}{15}$ of the tank in one hour.

Part of tank filled by pipes A and B together $=\frac{1}{10}+\frac{1}{15}=\frac{3+1}{30}$

Thus, pipes A and B require 6 hours to fill the tank.

Q15.

Answer:

Pipe A can fill a tank in 5 hours.

Pipe B can empty a full tank in 6 hours.

Pipe A fills $\frac{1}{6}$ of the tank in one hour.

Pipe B empties $\frac{1}{6}$ of the tank in one hour.

Part of the tank filled in one hour using both pipes A and B = $\frac{1}{5} - \frac{1}{6} = \frac{6-5}{30} = \frac{1}{30}$

It takes $\frac{30}{1}$ or 30 hours to fill the tank completely.

Q16.

Answer:

Time taken by tap A to fill the tank = 6 hours

Time taken by tap B to fill the tank = 8 hours

Time taken by tap C to fill the tank = 12 hours

A fills $\frac{1}{6}$ of the tank in one hour.

B fills $\frac{1}{8}$ of the tank in one hour.

C fills $\frac{1}{12}$ of the tank in one hour.

Part of the tank filled in one hour using all the three pipes $=\frac{1}{6}+\frac{1}{8}+\frac{1}{12}=\frac{4+3+2}{24}=$ $\frac{9}{24}$

Time taken by A, B and C together to fill the tank $=\frac{24}{9}=\frac{8}{3}=2\frac{2}{3}$ hours

Q17.

Inlet A can fill the cistern in 12 minutes.

Inlet B can fill the cistern in 15 minutes.

Outlet C empties the filled cistern in 10 minutes.

Part of the cistern filled by inlet A in one minute $=\frac{1}{12}$

Part of the cistern filled by inlet B in one minute $=\frac{1}{15}$

Part of the cistern emptied by outlet C in one minute $= -\frac{1}{10}$

(water flows out from C and empties the cistern)

Part of the cistern filled in one minute with A, B and C working together $=\frac{1}{12}+\frac{1}{15}-\frac{1}{10}$ $= \frac{5+4-6}{60} = \frac{3}{60} = \frac{1}{20}$

The time required to fill the cistern with all inlets, A, B and C, open is 20 minutes.

Q18.

Answer:

A pipe can fill a cistern in 9 hours.

Part of the cistern filled by the pipe in one hour $=\frac{1}{9}$

Let the leak empty the cistern in x hours.

Part of the cistern emptied by the leak in one hour $= -\frac{1}{r}$

(The leak drains out the water)

Considering the leak, the tank is filled in 10 hours.

Part of the tank filled in one hour $=\frac{1}{10}$

$$\frac{1}{9} - \frac{1}{x} = \frac{1}{10}$$
 or, $\frac{1}{x} = \frac{1}{9} - \frac{1}{10} = \frac{10-9}{90} = \frac{1}{90} x = 90$

The leak will empty the filled cistern in 90 hours.

Q19.

Answer:

Pipe A can fill a cistern in 6 hours.

Pipe B can fill a cistern in 8 hours.

Part of the cistern filled by pipe A in one hour

Part of the cistern filled by pipe B in one hour

Part of the cistern filled by pipes A and B in one hour $=\frac{1}{6}+\frac{1}{8}=\frac{4+3}{24}=\frac{7}{24}$ Part of the cistern filled by pipes A and B in 2 hours $=\frac{7}{24}\times 2=\frac{7}{12}$

Part of the tank empty after 2 hours $=1-\frac{7}{12}=\frac{5}{12}$ Time taken by pipe B to fill the remaining tank $=\frac{5}{12}\div\frac{1}{8}=\frac{5}{12}\times 8=\frac{10}{3}=3\frac{1}{3}$ hours

Time and Work **Ex 13B**

1. Work from Days:

If A can do a piece of work in n days, then A's 1 day's work = $\frac{1}{n}$

2. Days from Work:

If A's 1 day's work = $\frac{1}{n}$, then A can finish the work in n days.

3. Ratio:

If A is thrice as good a workman as B, then:

Ratio of work done by A and B = 3:1.

Ratio of times taken by A and B to finish a work = 1:3.

Q1.

Answer:

(b) 6 days

A can do a work in 10 days.

A's 1 day work = $\frac{1}{10}$

B can do a work in 15 days.

B's 1 day work = $\frac{1}{15}$

$$(A+B)$$
's 1 day work = $\frac{1}{10} + \frac{1}{15} = \frac{5}{30} = \frac{1}{6}$

Let the son's 1 day work be $\frac{1}{x}$. Therefore, $\frac{1}{5} = \frac{1}{5} + \frac{1}{x}$, $\frac{1}{x} = \frac{1}{3} - \frac{1}{3}$

(c)
$$7\frac{1}{2} \ days$$

$$\frac{1}{2} = \frac{1}{2} + \frac{1}{2}$$

or,
$$\frac{1}{x} = \frac{1}{3} - \frac{1}{5} = \frac{5 \cdot 3}{15} = \frac{2}{15}$$

 $x = \frac{15}{2} = 7\frac{1}{2}$ days

$$x = \frac{15}{2} = 7\frac{1}{2} \text{ days}$$

Q3.

Answer:

A can do a job in 16 days.

B can do the job in 12 days.

Suppose C can do the job in x days.

A's 1 day work
$$= \frac{1}{16}$$

B's 1 day work
$$=\frac{1}{12}$$

C's 1 day work =
$$\frac{1}{x}$$

A, B and C together can complete the work in 6 days.

$$(A+B+C)$$
's 1 day work = $\frac{1}{6}$

Therefore,
$$\frac{1}{6} = \frac{1}{16} + \frac{1}{12} + \frac{1}{x}$$

$$\Rightarrow \frac{1}{\mathbf{x}} = \frac{1}{6} - \frac{1}{16} - \frac{1}{12} = \frac{8 - 3 - 4}{48} = \frac{1}{48}$$

$$\mathbf{x} = 48$$

Therefore, C alone can complete the job in 48 days.

(a) 30 days

Let B take x days to complete the work.

Then A takes
$$\left(x + \frac{50}{100}x\right) = 1.5x$$

$$A$$
's $1 day$'s $work = \frac{1}{1.5x} = \frac{2}{3x}$

$$B$$
's $1 day$'s $work = \frac{1}{x}$

(A+B) takes 18 days to complete the work.

$$(A+B)$$
's 1 day's net work $=\frac{1}{18}$

or
$$\frac{1}{18} = \frac{2}{3x} + \frac{1}{x}$$

$$\Rightarrow \frac{1}{19} = \frac{5}{2\pi}$$

 $By\ cross-multiplication,\ we\ get:$

$$x=30~days$$

 \therefore B alone will take 30 days to complete the work.

Q5.

Answer:

(c) 36 days

Let A take x days to complete the work. Then B takes 2x days to complete the work.

A's 1 day 's work =
$$\frac{1}{x}$$

B's 1 day's work =
$$\frac{1}{2x}$$

A and B take 12 days to complete the work.

Net work done by
$$(A + B)$$
 in $1 day = \frac{1}{12} = \frac{1}{x} + \frac{1}{2x} = \frac{3}{2x}$

$$\Rightarrow 2x = 36$$

$$\Rightarrow$$
 x = 18

A can complete the work by himself in 18 days.

B will take 36 days, i.e., twice as long as the time taken by A.

Q6.

Answer:

(c) Rs. 1800

Since the wage distribution will follow the work distribution ratio, we have:

Work done by A in 1 day =
$$\frac{1}{10}$$

Work done by B in 1 day = $\frac{1}{15}$

Net work done by (A+B) in 1 day
$$=$$
 $\frac{1}{10}$ $+$ $\frac{1}{15}$ $=$ $\frac{5}{30}$ $=$ $\frac{1}{6}$

i.e., (A+B) will take 6 days to complete the work.

A's share of work in a day =
$$\frac{1}{10} \div \frac{1}{6} = \frac{1}{10} \times \frac{6}{1} = \frac{6}{10} = \frac{3}{5}$$

$$\therefore$$
 A's wage = $\frac{3}{5} \times 3000 = Rs~1800$

Q7.

Answer:

(c) 4:3

The number of days taken for working is the reciprocal of the rate of work.

i.e., number of days taken $=\frac{1}{\text{rate of work}} = \frac{1}{\frac{3}{4}} = \frac{4}{3}$

Q8.

Answer:

(c) 10 days

(A+B) can do a work in 12 days.

(B+C) can do a work in 20 days.

(C+A) can do a work in 15 days.

Now, we have:

Work done by (A+B) in 1 day = $\frac{1}{12}$

Work done by $\left(B+C\right)$ in 1 day $=\frac{1}{20}$

Work done by (C+A) in 1 day $=\frac{1}{15}$

Net work done by $2(A+B+C) = \frac{1}{12} + \frac{1}{20} + \frac{1}{15} = \frac{5+3+4}{60} = \frac{12}{60}$

Net work done by (A+B+C) in $1 day = \frac{1}{10}$

∴ If A, B and C work together, they will complete the work in 10 days.

Q9.

Answer:

(c) 4 days

Three men can complete the work in 12 days.

Thus, one man can complete the work in 36 days.

Rate of work done by one man in 1 day = $\frac{1}{36}$

Similarly, rate of work done by one woman in 1 day = $\frac{1}{5\times12} = \frac{1}{60}$

Now, six men will do $\frac{6}{36}$, i.e., $\frac{1}{6}$ unit of work in a day.

Five women will do $\frac{5}{60}$, i,e., $\frac{1}{12}$ unit of work in a day.

 \therefore Total work done in $1 \text{ day} = \frac{1}{6} + \frac{1}{12} = \frac{1}{4}$ unit

Thus, six men and five women will take 4 days to complete the work.

The work can be completed in 4 days.

Q10.

(a) 10 days

Work done by A in $1 \text{ day} = \frac{1}{15}$

B is 50% more efficient than A.

... Work done by B in $1~\text{day} = \frac{150}{100} \times \frac{1}{15} = \frac{1}{10}$

Thus, B can complete the work in 10 days.

Q11.

Answer:

(c) 6 hours

Time taken by A to finish the piece of work = $7\frac{1}{2}$ hours = $\frac{15}{2}$ hours

Work done by A in 1 hour = $\frac{2}{15}$

Let B take x hours to finish the work.

Work done by B in 1 hours = $\frac{1}{x}$

A can work 20% less than B, or A can do 4/5 of B's work.

Now,
$$\frac{\left(\frac{4}{5}\right)}{1} = \frac{\left(\frac{2}{15}\right)}{\left(\frac{1}{5}\right)}$$

$$\Rightarrow \frac{4}{5} = \frac{2x}{15}$$

$$\Rightarrow$$
 $\mathbf{x} = \frac{15 \times 4}{5 \times 2} = 6$ hours

Q12.

Answer:

(b) 5 days

A can complete the work in 20 days.

Work done by A in $1 day = \frac{1}{20}$

B can complete the work in 12 days.

Work done by B in $1 \text{ day} = \frac{1}{12}$

In 9 days, B completes $\frac{9}{12}$, i.e., $\frac{3}{4}$ of the work and leaves $1 - \frac{3}{4}$, i.e., $\frac{1}{4}$ of the work undone.

 \therefore Time taken by $A = \frac{1}{4} \div \frac{1}{20} = \frac{1}{4} \times 20 = 5$ days

Q13.

Answer:

(C

A can do the piece of work in 25 days.

Work done by A in $1 \text{ day} = \frac{1}{25}$

B can do the same work in 20 days.

Work done by B in $1 day = \frac{1}{20}$

A alone completes $\frac{10}{25}$, i,e., $\frac{2}{5}$ of the work in 10 days. Now, work remaining =1 $-\frac{2}{5}=\frac{3}{5} \text{ Work done by } \left(A+B\right) \text{ in } 1 \text{ day} = \frac{1}{25}+\frac{1}{20}=\frac{9}{100} \text{ } \therefore \text{ Time taken if they}$ work together $=\frac{3}{5} \div \frac{9}{100}=\frac{3}{5} \times \frac{100}{9}=\frac{20}{3}=6\,\frac{2}{3} \text{ days}$

Q14.

(b) 12 minutes

First pipe can fill a tank in 20 minutes.

Second pipe can fill the tank in 30 minutes.

Part of tank filled by the first pipe in one minute $=\frac{1}{20}$

Part of tank filled by the second pipe in one minute $\frac{1}{30}$ Part of tank filled by both pipes

in one minute
$$= \frac{1}{20} + \frac{1}{30} = \frac{5}{60} = \frac{1}{12}$$

Thus, it takes 12 minutes to fill the tank using both the pipes.

Q15.

Answer:

(c) 16 hours

A tap can fill a cistern in 8 hours.

Part of cistern filled in one hour $=\frac{1}{8}$

A tap can empty the cistern in 16 hours.

Part of cistern emptied in one hour $=-\frac{1}{16}$ (negative sign shows that the cistern

is being drained)

 \therefore Part of cistern filled in one hour $= \ \frac{1}{8} - \frac{1}{16} = \frac{1}{16}$

Time required to fill the cistern = 16 hours

Q16.

Answer:

(d) 14 hours

A pump can fill a tank in 2 hours.

Part of the tank filled by the pump in one hour $=\frac{1}{2}$

Suppose the leak empties a full tank in x hours.

Part of the tank emptied by the leak in one hour = -

Part of tank filled in one hour $=\frac{1}{2} - \frac{1}{x} = \frac{3}{7}$ (given

$$\frac{1}{\mathbf{x}} = \frac{1}{2} - \frac{3}{7} = \frac{7 - 6}{14} = \frac{1}{14}$$

x = 14 hours

Q17.

Answer:

(b) 7 hours 30 minutes

Part of the tank filled by the first pipe in one hour $=\frac{1}{10}$

Part of the tank filled by the second pipe in one hour $=\frac{1}{12}$

Part of the tank filled by the third pipe in one hour $=\frac{-1}{20}$

Part of the tank filled by three pipes in one hour $=\frac{1}{10}+\frac{1}{12}-\frac{1}{20} = \frac{2}{15}$

Total time taken to fill the tank $=\frac{15}{2} \, hrs = 7 \, hours \, 30 \, minutes$