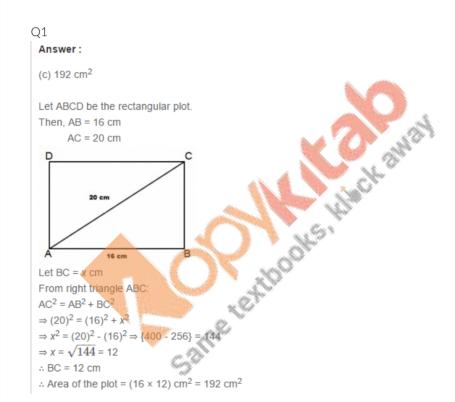
Mensuration Exercise 20G

Mensuration RS Aggarwal Class 7 Maths Solutions Exercise 20G



Q2

Answer:

(b) 72 cm²

Given:

Diagonal of the square = 12 cm

Given:
Diagonal of the square = 12 cm

$$\therefore \text{ Area of the square} = \left\{ \frac{1}{2} \times (\text{Diagonal})^2 \right\} \text{ sq. units.}$$

$$= \left\{ \frac{1}{2} \times (12)^2 \right\} \text{ cm}^2$$

$$= 72 \text{ cm}^2$$

Q3

Answer:
(b) 20 cm

Area of the square = $\left\{ \frac{1}{2} \times (\text{Diagonal})^2 \right\} \text{ sq. units.}$
Area of the square field = 200 cm²

Q3

Answer:

(b) 20 cm

Area of the square = $\left\{\frac{1}{2} \times (Diagonal)^2\right\}$ sq. units. Area of the square field = 200 cm²

Diagonal of a square = $\sqrt{2} \times Area$ of the square $=(\sqrt{2\times200}) \text{ cm} = (\sqrt{400}) \text{ cm} = 20 \text{ cm}$

 \therefore Length of the diagonal of the square = 20 cm

Q4

Answer:

(a) 100 m

Area of the square = $\left\{ \frac{1}{2} \times (D\, \mathbf{iagonal})^2 \right\}$ sq. units

Given:

Area of square field = 0.5 hectare

=
$$(0.5 \times 10000)$$
m² [since 1 hectare = 10000 m²]
= 5000 m²

Diagonal of a square = $\sqrt{2 \times Area}$ of the square $=(\sqrt{2\times5000})$ m = 100 m

Hence, the length of the diagonal of a square field is 100 m.

(c) 90 m

Let the breadth of the rectangular field be x m.

Length = 3x m

Perimeter of the rectangular field = 2(I + b)

$$\Rightarrow$$
 240 = 2(x + 3 x)

$$\Rightarrow$$
 240 = 2(4x)

$$\Rightarrow$$
 240 = 8x \Rightarrow x = $\left(\frac{240}{8}\right) = 30$

: Length of the field = $3x = (3 \times 30) \text{ m} = 90 \text{ m}$

Q6

Answer:

(d) 56.25%

Let the side of the square be a cm.

Area of the square = $(a)^2$ cm²

Increased side = (a + 25% of a) cm

$$=\left(a+\frac{25}{100}a\right)\operatorname{cm}=\left(a+\frac{1}{4}a\right)\operatorname{cm}=\left(\frac{5}{4}a\right)\operatorname{cm}$$
 Area of the square $=\left(\frac{5}{4}a\right)^2\operatorname{cm}^2=\left(\frac{25}{16}a^2\right)\operatorname{cm}^2$ Increase in the area $=\left[\left(\frac{25}{16}a^2\right)-a^2\right]\operatorname{cm}^2=\left(\frac{25a^2-16a^2}{16}\right)\operatorname{cm}^2=\left(\frac{9a^2}{16}\right)\operatorname{cm}^2$ % increase in the area $=\frac{\operatorname{Increased area}}{\operatorname{Old area}}\times 100$ $=\left[\left(\frac{9}{16}a^2\right)\times 100\right]=\left(\frac{9\times 100}{16}\right)=56.25$

Answer:

(b) 1:2

Let the side of the square be a. Length of its diagonal $=\sqrt{2}a$ \therefore Required ratio $=\frac{a^2}{(\sqrt{2}a)^3}=\frac{a^2}{2a^2}=\frac{1}{2}=1.2$

Q7

Answer:

(b) 1:2

Let the side of the square be a

Length of its diagonal = $\sqrt{2}a$

: Required ratio =
$$\frac{a^2}{(\sqrt{2}a)^2} = \frac{a^2}{2a^2} = \frac{1}{2} = 1$$
: 2

Q8

Answer:

(c)
$$A > B$$

We know that a square encloses more area even though its perimeter is the same as that of the rectangle.

: Area of a square > Area of a rectangle

Q9

Answer:

(b) 13500 m²

Let the length of the rectangular field be 5x.

Breadth =
$$3x$$

Perimeter of the field =
$$2(l + b)$$
 = 480 m (given)

$$\Rightarrow$$
 480 = 2(5x + 3x) \Rightarrow 480 = 16x

$$\Rightarrow \chi = \frac{480}{16} = 30$$

:. Length =
$$5x = (5 \times 30) = 150 \text{ m}$$

Breadth =
$$3x = (3 \times 30) = 90 \text{ m}$$

∴ Area of the rectangular park = 150 m × 90 m = 13500 m²

(a) 6 m

Total cost of carpeting = Rs 6000

Rate of carpeting = Rs 50 per m

- \therefore Length of the carpet = $\left(\frac{6000}{50}\right)$ m = 120 m
- ∴ Area of the carpet = $\left(120 \times \frac{75}{100}\right)$ m² = 90 m² [since 75 cm = $\frac{75}{100}$ m]

Area of the floor = Area of the carpet = 90 m^2

:. Width of the room = $\left(\frac{Area}{Length}\right) = \left(\frac{90}{15}\right)\,m = 6\;m$

Q11

Answer:

(a) 84 cm²

Let a = 13 cm, b = 14 cm and c = 15 cm

Then,
$$s = \frac{a+b+c}{2} = \left(\frac{13+14+15}{2}\right) \text{ cm} = 21 \text{ cm}$$

Q12

Q12

Answer:

(b)
$$48 \text{ m}^2$$

Base = 12 m

Height = 8 m

Area of the triangle = $\left(\frac{1}{2} \times \text{Base} \times \text{Height}\right)$ sq. units

= $\left(\frac{1}{2} \times 12 \times 8\right) \text{ m}^2$
= 48 m^2

Q13

Answer:

(b) 4 cm

Area of the equilateral triangle = $4\sqrt{3} \text{ cm}^2$

We know:

We know:

Area of an equilateral triangle = $\frac{\sqrt{3}}{4}$ (side)² sq. units

$$\text{ : Side of the equilateral triangle} = \left[\sqrt{\left(\frac{4 \times \text{Area}}{\sqrt{3}} \right)} \right] \text{ cm}$$

$$= \left[\sqrt{\left(\frac{4 \times 4 \sqrt{3}}{\sqrt{3}} \right)} \right] \text{ cm} = \left(\sqrt{4 \times 4} \right) \text{ cm} = \left(\sqrt{16} \right) \text{cm} = 4 \text{ cm}$$

Q14

Answer:

(c)
$$16\sqrt{3}$$
 cm²

It is given that one side of an equilateral triangle is 8 cm.

$$\therefore$$
 Area of the equilateral triangle = $\frac{\sqrt{3}}{4} \left(\text{Side} \right)^2$ sq. units
$$= \frac{\sqrt{3}}{4} \left(8 \right)^2 \text{ cm}^2 \\ = \left(\frac{\sqrt{3}}{4} \times 64 \right) \text{ cm}^2 = 16 \sqrt{3} \text{ cm}^2$$

(b) $2\sqrt{3} \, \text{cm}^2$

Let $\triangle ABC$ be an equilateral triangle with one side of the length a cm.

Diagonal of an equilateral triangle = $\frac{\sqrt{3}}{2}a$ cm

$$\Rightarrow \frac{\sqrt{3}}{2} a = \sqrt{6}$$

$$\Rightarrow a = \frac{\sqrt{6} \times 2}{\sqrt{3}} = \frac{\sqrt{3} \times \sqrt{2} \times 2}{\sqrt{3}} = 2\sqrt{2} \text{ cm}$$

Area of the equilateral triangle =
$$\frac{\sqrt{3}}{4}a^2$$

 $\Rightarrow a - \frac{\sqrt{3}}{\sqrt{3}} \qquad \sqrt{3}$ Area of the equilateral triangle = $\frac{\sqrt{3}}{4} a^2$ = $\frac{\sqrt{3}}{4} (2\sqrt{2})^2 \text{ cm}^2 = (\frac{\sqrt{3}}{4} \times 8) \text{cm}^2 = 2\sqrt{3} \text{ cm}^2$

Q16

Answer:

(b) 72 cm²

Base of the parallelogram = 16 cm

Height of the parallelogram = 4.5 cm

 \therefore Area of the parallelogram = Base \times Height

$$= (16 \times 4.5) \text{ cm}^2 = 72 \text{ cm}^2$$

Q17

Answer:

(b) 216 cm²

Length of one diagonal = 24 cm

Length of the other diagonal = 18 cm

∴ Area of the rhombus =
$$\frac{1}{2}$$
 × (Product of the diagonals)

\therefore Area of the rhombus = $\frac{1}{2}$ × (Product of the diagonals)

Q18

Answer:

(c) 154 cm²

Let the radius of the circle be r cm.

Circumference = $2\pi r$

(Circumference) - (Radius) = 37

$$\therefore (2\pi \mathbf{r} - \mathbf{r}) = 37$$

$$\rightarrow r(2\pi - 1) - 37$$

$$\begin{array}{l} \therefore (2\pi \mathbf{r} - \mathbf{r}) = 37 \\ \Rightarrow \mathbf{r}(2\pi - 1) = 37 \\ \Rightarrow \mathbf{r} = \frac{37}{(2\pi - 1)} = \frac{37}{\left(2 \times \frac{22}{7} - 1\right)} = \frac{37}{\left(\frac{44}{7} - 1\right)} = \frac{37}{\left(\frac{44-7}{7}\right)} = \left(\frac{37 \times 7}{37}\right) = 7 \\ \therefore \text{ Radius of the given circle is 7 cm.} \end{array}$$

∴ Radius of the given circle is 7 cm.
∴ Area =
$$\pi \mathbf{r}^2 = \left(\frac{22}{7} \times 7 \times 7\right)$$
 cm² = 154 cm²

(c) 54 m^2

Given:

Perimeter of the floor = 2(l + b) = 18 m

Height of the room = 3 m

:. Area of the four walls =
$$\{2(l + b) \times h\}$$

= Perimeter × Height
= 18 m × 3 m = 54 m²

Q20

Answer:

(a) 200 m

Area of the floor of a room = 14 m \times 9 m = 126 m²

Width of the carpet = 63 cm = 0.63 m (since 100 cm = 1 m)

 $\therefore \text{ Required length of the carpet} = \frac{\text{Area} \quad \text{of} \quad \text{the} \quad \text{floor} \quad \text{of a room}}{\text{Width} \quad \text{of} \quad \text{the}} \quad \frac{\text{carpet}}{\text{carpet}}$ $=\left(\frac{126}{0.63}\right)$ m =200 m

Q21

Answer:

(c) 120 cm²

Let the length of the rectangle be x cm and the breadth be y cm Area of the rectangle = xy cm²

Perimeter of the rectangle = 2(x + y) = 46 cm

$$\Rightarrow 2(x+y) = 46$$

$$\Rightarrow (x+y) = \left(\frac{46}{2}\right) \text{ cm} = 23 \text{ cm}$$

Diagonal of the rectangle =
$$\sqrt{x^2 + y^2}$$
 = 17 cm $\Rightarrow \sqrt{x^2 + y^2}$ = 17

Squaring both the sides, we get:

⇒
$$x^2 + y^2 = (17)^2$$

⇒ $x^2 + y^2 = 289$

Now,
$$(x^2 + y^2) = (x + y)^2 - 2xy$$

$$\Rightarrow 2xy = (x + y)^2 - (x^2 + y^2)$$

$$= (23)^2 - 289$$

$$= 529 - 289 = 240$$

$$\therefore xy = \left(\frac{24}{2}\right) \text{ cm}^2 = 120 \text{ cm}^2$$

Q22

Answer:

(b) 3:1

Let a side of the first square be a cm and that of the second square be b cm. Then, their areas will be a^2 and b^2 , respectively.

Their perimeters will be 4a and 4b, respectively.

According to the question:
$$\frac{a^2}{b^2} = \frac{9}{1} \Rightarrow \left(\frac{a}{b}\right)^2 = \frac{9}{1} = \left(\frac{3}{1}\right)^2 \Rightarrow \frac{a}{b} = \frac{3}{1}$$

 \therefore Required ratio of the perimeters = $\frac{4a}{4b} = \frac{4\times3}{4\times1} = \frac{3}{1}$ = 3:1

(d) 4:1

Let the diagonals be 2d and d. Area of the square = sq. units Required ratio =

Q24

Answer:

(c) 49 m

Let the width of the rectangle be x m.

Given:

Area of the rectangle = Area of the square

$$\Rightarrow$$
 (144 × x) = 84 × 84

: Width
$$(x) = \left(\frac{84 \times 84}{144}\right) n = 49 \text{ m}$$

Hence, width of the rectangle is 49 m.

Q25

Answer:

(d)
$$4:\sqrt{3}$$

aits Let one side of the square and that of an equilateral triangle be the same, i.e. a units

Then, Area of the square = $(Side)^2 = (a)^2$

Area of the square = (Side)² = (a)²

Area of the equilateral triangle =
$$\frac{\sqrt{3}}{4}$$
 (Side)² = $\frac{\sqrt{3}}{4}$ (a)²
 \therefore Required ratio = $\frac{a^2}{\frac{\sqrt{3}}{4}a^2} = \frac{4}{\sqrt{3}} = 4 : \sqrt{3}$

$$\therefore$$
 Required ratio = $\frac{a^2}{\frac{\sqrt{3}}{4}a^2} = \frac{4}{\sqrt{3}} = 4:\sqrt{3}$

Q26

Answer:

(a)
$$\sqrt{\pi}:1$$

Let the side of the square be x cm and the radius of the circle be r cm.

Area of the square = Area of the circle

$$\Rightarrow (x)^2 = \pi r^2$$

$$\therefore$$
 Side of the square (x) = $\sqrt{\pi r}$

:. Side of the square (x) =
$$\sqrt{\pi r}$$

Required ratio = $\frac{\text{Side}}{\text{Radius}}$ of the circle = $\frac{x}{r} = \frac{\sqrt{\pi r}}{r} = \frac{\sqrt{\pi}}{4} = \sqrt{\pi} : 1$

Q27

Answer:

(b)
$$\frac{49\sqrt{3}}{4}$$
 cm²

Let the radius of the circle be r cm.

Then, its area =
$$\pi r^2$$
 cm²

$$\pi r^2 = 154$$

$$\Rightarrow \frac{22}{7} \times r \times r = 154$$

$$\Rightarrow r^2 = \left(\frac{154 \times 7}{22}\right) = 49$$

$$\Rightarrow r = \sqrt{49} \text{ cm} = 7 \text{ cm}$$

Side of the equilateral triangle = Radius of the circle

 \therefore Area of the equilateral triangle = $\frac{\sqrt{3}}{4} \left(\text{side} \right)^2$ sq. units

$$=\frac{\sqrt{3}}{4}(7)^2$$
 cm²

$$=\frac{49\sqrt{3}}{4} \text{ cm}^2$$

(c) 12 cm

Area of the rhombus = $\frac{1}{2}$ × (Product of the diagonals)

Given:

Length of one diagonal = 6 cm

Area of the rhombus = 36 cm²

:. Length of the other diagonal = $\left(\frac{36\times2}{6}\right)$ cm = 12 cm

Q30

Answer:

(c) 17.60 m

Let the radius of the circle be r m.

Area =
$$\pi \mathbf{r}^2$$
 m²

$$\therefore \pi \mathbf{r}^2 = 24.64$$

$$\Rightarrow \left(\frac{22}{7} \times \boldsymbol{r} \times \boldsymbol{r}\right) = 24.64$$

$$\Rightarrow r^2 = \left(\frac{24.64 \times 7}{22}\right) = 7.8$$

$$\Rightarrow r = \sqrt{7.84} = 2.8 \text{ m}$$

$$\Rightarrow$$
 Circumference of the circle = $(2\pi r)$ m

$$=$$
 $\left(2 \times \frac{22}{7} \times 2.8\right)$ m = 17.60 m

Q31

Answer:

(c) 3 cm

Suppose the radius of the original circle is r cm.

Area of the original circle = πr^2

Radius of the circle = (r + 1) cm

According to the question:

$$\pi(\mathbf{r}+1)^2 = \pi \mathbf{r}^2 + 22$$

$$\Rightarrow \pi(\mathbf{r}^2 + 1 + 2\mathbf{r}) = \pi \mathbf{r}^2 + 22$$

$$\Rightarrow \pi \mathbf{r}^2 + \pi + 2\pi \mathbf{r} = \pi \mathbf{r}^2 + 22$$

$$\Rightarrow \pi + 2\pi r = 22$$
 [cancel πr^2 from both the sides of the equation]

$$\Rightarrow \pi(1+2\mathbf{r}) = 22$$

$$\Rightarrow$$
 $(1+2r) = \frac{22}{\pi} = \left(\frac{22\times7}{22}\right) = 7$

$$\Rightarrow$$
 2 r = 7 -1 = 6

$$\therefore r = \left(\frac{6}{2}\right) \text{ cm} = 3 \text{ cm}$$

: Original radius of the circle = 3 cm

Q32

Answer:

(c) 1000

Radius of the wheel = 1.75 m

Circumference of the wheel = $2\pi r$

$$=$$
 $\left(2 \times \frac{22}{7} \times 1.75\right)$ cm = $(2 \times 22 \times 0.25)$ m = 11 m

Distance covered by the wheel in 1 revolution is 11 m.

Now, 11 m is covered by the car in 1 revolution.

(11 × 1000) m will be covered by the car in $\left(1 \times \frac{1}{11} \times 11 \times 1000\right)$ revolutions, i.e. 1000 revolutions.

∴ Required number of revolutions = 1000