Mensuration Exercise 20C

Q1

Answer:

Base = 32 cm Height = 16.5 cm

 \therefore Area of the parallelogram = Base × Height = 32 cm × 16.5 cm = 528 cm²

Q2

Answer:

Base = 1 m 60 cm = 1.6 m Height = 75 cm = 0.75 m [since 100 cm = 1 m]

 \therefore Area of the parallelogram = Base × Height = 1.6 m × 0.75 m = 1.2 m²

Q3

Answer:

(i) Base = 14 dm =
$$(14 \times 10)$$
 cm = 140 cm [since 1 dm = 10 cm]
Height = 6.5 dm = (6.5×10) cm = 65 cm
Area of the parallelogram = Base \times Height
= 140 cm \times 65 cm
= 9100 cm²

(ii) Base = 14 dm =
$$(14 \times 10)$$
 cm [since 1 dm = 10 cm and 100 cm = 1 m]
= 140 cm = 1.4 m
Height = 6.5 dm = (6.5×10) cm
= 65 cm = 0.65 m

∴ Area of the parallelogram = Base × Height = 1.4 m × 0.65 m = 0.91 m²

Q4

Answer:

Area of the given parallelogram = 54 cm^2 Base of the given parallelogram = 15 cm \therefore Height of the given parallelogram = $\frac{\text{Area}}{\text{Base}} = \left(\frac{54}{15}\right) \text{ cm} = 3.6 \text{ cm}$

Q5

Answer:

Base of the parallelogram = 18 cm

Area of the parallelogram = 153 cm²

∴ Area of the parallelogram = Base × Height

⇒ Height = Area of the parallelogram Base

Hence, the distance of the given side from its opposite side is 8.5 cm

Q6

Answer:

Base, AB = 18 cm Height, AL = 6.4 cm \therefore Area of the parallelogram ABCD = Base \times Height $= (18 \text{ cm} \times 6.4 \text{ cm}) = 115.2 \text{ cm}^2$... (i)

Now, taking BC as the base:

Area of the parallelogram ABCD = Base × Height

= (12 cm × AM) ... (ii)

From equation (i) and (ii):

12 cm \times AM = 115.2 cm² \Rightarrow AM = $\left(\frac{115.2}{12}\right)$ cm = 9.6 cm

Q7

Answer:

ABCD is a parallelogram with side AB of length 15 cm and the corresponding altitude AE of length 4 cm. The adjacent side AD is of length 8 cm and the corresponding altitude is CF.

Area of a parallelogram = Base × Height

We have two altitudes and two corresponding bases.

$$\therefore AD \times CF = AB \times AE$$

$$\Rightarrow 8 \text{ cm} \times CF = 15 \text{ cm} \times 4 \text{ cm}$$

$$\Rightarrow$$
 CF = $\left(\frac{15\times4}{8}\right)$ cm = $\left(\frac{15}{2}\right)$ cm = 7.5 cm

Hence, the distance between the shorter sides is 7.5 cm.

Q8

Answer:

Let the base of the parallelogram be x cm. Then, the height of the parallelogram will be $\frac{1}{3}x$ cm. It is given that the area of the parallelogram is 108 cm².

Area of a parallelogram = Base × Height

∴ 108 cm² =
$$x \times \frac{1}{3}x$$

108 cm² = $\frac{1}{3}x^2$
⇒ x^2 = (108 × 3) cm² = 324 cm²
⇒ x^2 = (18 cm)²
⇒ x = 18 cm

∴ Base =
$$x = 18$$
 cm
Height = $\frac{1}{3}x = \left(\frac{1}{3} \times 18\right)$ cm
= 6 cm

Q9

Answer:

Let the height of the parallelogram be x cm.

Then, the base of the parallelogram will be 2x cm.

It is given that the area of the parallelogram is 512 cm².

Area of a parallelogram = Base × Height

$$\therefore 512 \text{ cm}^2 = 2x \times 512 \text{ cm}^2 = 2x^2$$

$$\Rightarrow x^2 = \left(\frac{512}{2}\right) \text{ cm}^2 = 256 \text{ cm}^2$$

$$\Rightarrow x^2 = (16 \text{ cm})^2$$

$$\Rightarrow x = 16 \text{ cm}$$

$$\therefore \text{ Base} = 2x = 2 \times 16$$
$$= 32 \text{ cm}$$
Height = $x = 16 \text{ cm}$

Q10

Answer:

A rhombus is a special type of a parallelogram.

The area of a parallelogram is given by the product of its base and height.

- \therefore Area of the given rhombus = Base \times Height
- (i) Area of the rhombus = 12 cm \times 7.5 cm = 90 cm²

Q11

Answer:

(i)

Length of one diagonal = 16 cm

Length of the other diagonal = 28 cm

 \therefore Area of the rhombus = $\frac{1}{2}$ × (Product of the diagonals)

$$=$$
 $\left(\frac{1}{2} \times 16 \times 28\right)$ cm² = 224 cm²

(ii)

Length of one diagonal = 8 dm 5 cm = (8 \times 10 + 5) cm = 85 cm [since 1 dm = 10 cm] Length of the other diagonal = 5 dm 6 cm = $(5 \times 10 + 6)$ cm = 56 cm

$$= \left(\frac{1}{2} \times 85 \times 56\right) \text{ cm}^2$$
$$= 2380 \text{ cm}^2$$

Therefore, $\triangle AOB$ is a right angled triangle, right angled at O.

Here, OA =
$$\frac{1}{2}$$
 \mathbf{AC} = 12 cm

AB = 20 cm

By Pythagoras theorem:

$$(AB)^2 = (OA)^2 + (OB)^2$$

$$\Rightarrow (20)^2 = (12)^2 + (OB)^2$$

$$\Rightarrow$$
 (OB)² = (20)² - (12)²

$$\Rightarrow$$
 (OB)² = 400 - 144 = 256

$$\Rightarrow$$
 (OB)² = (16)²

$$\therefore$$
 BD = 2 \times OB = 2 \times 16 cm = 32 cm

$$\therefore$$
 Area of the rhombus ABCD = $\left(\frac{1}{2}\times AC\times BD\right)$ cm² = $\left(\frac{1}{2}\times 24\times 32\right)$ cm² = 384 cm²

Answer:

Area of a rhombus = $\frac{1}{2}$ × (Product of the diagonals)

Length of one diagonal = 19.2 cm

Area of the rhombus = 148.8 cm²

∴ Length of the other diagonal = $\left(\frac{148.8 \times 2}{19.2}\right)$ cm = 15.5 cm

Q14

Answer:

Perimeter of the rhombus = 56 cm

Area of the rhombus = 119 cm²

Side of the rhombus = $\frac{\text{Perimeter}}{4} = \left(\frac{56}{4}\right) \text{ cm} = 14 \text{ cm}$

Area of a rhombus = Base × Height

∴ Height of the rhombus =
$$\frac{\text{Area}}{\text{Base}} = \left(\frac{119}{14}\right)$$
 cm
= 8.5 cm

Q15

∴ea of a rhombus = Base × Height

∴ Base of the rhombus = $\frac{\text{Area}}{\text{Height}} = \left(\frac{441}{17.5}\right) \text{ cm} = 25.2 \text{ cm}$ Hence, each side of a rhombus is 25.2 cm.

16

\text{\text{Inswer:}}

\text{rea of a triangle} = $\frac{1}{2} \times \text{Base} \times \text{Height}$ \text{= } $\left(\frac{1}{2} \times 24.8 \times 16^{-14}\right) \times 16^{-14}$ \text{en:}
\text{a of the rho}

Area of the rhombus = Area of the triangle

Area of the rhombus = 204.6 cm^2

Area of the rhombus = $\frac{1}{2}$ × (Product of the diagonals)

Length of one diagonal = 22 cm

∴ Length of the other diagonal =
$$\left(\frac{204.6 \times 2}{22}\right)$$
 cm