Mensuration Exercise 20A

Name	Figure	Perimeter	Area
Rectangle	b a	2 (a + b)	ab
Square	a a a	4a	a²
Triangle	a hi c	a + b + c = 2s	$1 = \frac{1}{2} \times b \times h$ $2 = \sqrt{s(s-a)(s-b)(s-c)}$
Right triangle	h	b + h + d	$\frac{1}{2}$ bh
Equilateral triangle	a h a	3a	1. $\frac{1}{2}$ ah 2. $\frac{\sqrt{3}}{4}$ a ²
Isosceles right triangle	a d a	2a + d	$\frac{1}{2}$ a ²
Parallelogram	b/h /b	2 (a + b)	ah

	<u>/_h</u> /			
Rhombus	a d_1 d_2 a	4a	$\frac{1}{2} d_1 d_2$	
Trapezium	h a	Sum of its four sides	1/2 h (a + b)	
Circle	<u>г</u>	2πr	πr²	
Semicircle	o r	πr + 2r	$\frac{1}{2} \pi r^2$	
Ring (shaded region)			$\pi (R^2 - r^2)$	
Sector of a circle	A C	I + 2r where I = (θ/360) × 2πr	θ/360°×πτ	
Q1 Answer: (i) Length = 24.5 m Breadth = 18 m ∴ Area of the rectangle = Length × Breadth = 24.5 m × 18 m = 441 m ² (ii) Length = 12.5 m Breadth = 8 dm = (8 × 10) = 80 cm = 0.8 m [since 1 dm = 10 cm and 1 m = 100 cm]				
∴ Area of the rectangle = Length × Breadth				

Q1

Answer:

 \therefore Area of the rectangle = Length \times Breadth $= 12.5 \text{ m} \times 0.8 \text{ m}$ $= 10 \text{ m}^2$

Q2

We know that all the angles of a rectangle are 90° and the diagonal divides the rectangle into two right angled triangles.

So, 48 m will be one side of the triangle and the diagonal, which is 50 m, will be the hypotenuse.

According to the Pythagoras theorem:

(Hypotenuse)² = (Base)² + (Perpendicular)²
Perpendicular =
$$\sqrt{(\text{Hypotenuse})^2 - (\text{Base})^2}$$

Perpendicular = $\sqrt{(50)^2 - (48)^2} = \sqrt{2500 - 2304} = \sqrt{196} = 14 \, \text{m}$

∴ Other side of the rectangular plot = 14 m

Length = 48m

Breadth = 14m

 \therefore Area of the rectangular plot = 48 m \times 14 m = 672 m^2 Hence, the area of a rectangular plot is 672 $m^2.$

Q3

Answer:

Let the length of the field be 4x m.

Breadth = 3x m

 \therefore Area of the field = $(4x \times 3x)$ m² = $12x^2$ m²

But it is given that the area is 1728 m².

$$\therefore 12x^2 = 1728$$

$$\Rightarrow \chi^2 = \left(\frac{1728}{12}\right) = 144$$

$$\Rightarrow x = \sqrt{144} = 12$$

:. Length = (4×12) m = 48 m

Breadth = (3×12) m = 36 m

 \therefore Perimeter of the field = 2(l + b) units

 \therefore Cost of fencing = Rs (168 \times 30) = Rs 5040

Area of the rectangular field = 3584 m²

Length of the rectangular field = 64 m

Breadth of the rectangular field = $\left(\frac{\text{Area}}{\text{Length}}\right) = \left(\frac{3584}{64}\right)$ m = 56 m

Perimeter of the rectangular field = 2 (length + breadth)

Distance covered by the boy = $5 \times Perimeter$ of the rectangular field

$$= 5 \times 240 = 1200 \text{ m}$$

The boy walks at the rate of 6 km/hr.

Rate =
$$\left(\frac{6 \times 1000}{60}\right)$$
 m/min = 100 m/min.

∴ Required time to cover a distance of 1200 m = $\left(\frac{1200}{100}\right)$ min = 12 min Hence, the boy will take 12 minutes to go five times around the field.

Q5

Answer:

Given:

Length of the verandah = 40 m = 400 dm [since 1 m = 10 dm]

Breadth of the verandah = 15 m = 150 dm

 \therefore Area of the verandah= (400 \times 150) dm^2 = 60000 dm^2

Length of a stone = 6 dm

Breadth of a stone = 5 dm

 \therefore Area of a stone = (6 \times 5) dm² = 30 dm²

DOMES, MINCH. BINDAY \therefore Total number of stones needed to pave the verandah = $\frac{\text{Area}}{\text{Area}}$ of $\frac{\text{the verandah}}{\text{stone}}$

$$=\left(\frac{60000}{30}\right)=2000$$

Q6

Answer:

Area of the carpet = Area of the room

$$= (13 \text{ m} \times 9 \text{ m}) = 117 \text{ m}^2$$

Now, width of the carpet = 75 cm (given)

= 0.75 m [since 1 m

Length of the carpet = $\left(\begin{array}{c} Area & of the carpet \\ \hline Width & of the carpet \end{array} \right)$

Rate of carpeting = Rs 105 per m

∴ Total cost of carpeting = Rs (156 ×105) = Rs 16380

Hence, the total cost of carpeting the room is Rs 16380.

Q7

Given:

Length of the room = 15 m

Width of the carpet = 75 cm = 0.75 m (since 1 m = 100 cm)

Let the length of the carpet required for carpeting the room be x m.

Cost of the carpet = Rs. 80 per m

 \therefore Cost of x m carpet = Rs. (80 \times x) = Rs. (80x)

Cost of carpeting the room = Rs. 19200

$$\therefore 80x = 19200 \Rightarrow x = \left(\frac{19200}{80}\right) = 240$$

Thus, the length of the carpet required for carpeting the room is 240 m.

Area of the carpet required for carpeting the room = Length of the carpet × Width of the carpet

=
$$(240 \times 0.75) \text{ m}^2 = 180 \text{ m}^2$$

Let the width of the room be b m.

Area to be carpeted = 15 m \times b m = 15b m²

$$15b \text{ m}^2 = 180 \text{ m}^2$$

$$\Rightarrow b = \left(\frac{180}{15}\right) \text{ m} = 12 \text{ m}$$

Hence, the width of the room is 12 m.

Q8

Answer:

Total cost of fencing a rectangular piece = Rs. 9600

Rate of fencing = Rs. 24

∴ Perimeter of the rectangular field =
$$\left(\frac{\text{Total cost of fencing}}{\text{Rate of fencing}}\right)$$
 m = $\left(\frac{9600}{24}\right)$ m = 400 m. Let the length and breadth of the rectangular field be $5x$ and $3x$, respectively. Perimeter of the rectangular land = $2(5x + 3x) = 16x$. But the perimeter of the given field is 400 m. ∴ $16x = 400$ $x = \left(\frac{400}{10}\right) = 25$. Length of the field = (5×25) m = 125 m. Breadth of the field = (3×25) m = 75 m.

Let the length and breadth of the rectangular field be 5x and 3x, respectively

Perimeter of the rectangular land = 2(5x + 3x) = 16x

But the perimeter of the given field is 400 m.

$$16x = 400$$

$$\chi = \left(\frac{400}{16}\right) = 25$$

Length of the field = (5×25) m = 125 m

Breadth of the field = (3×25) m = 75 m

Q9

Answer:

Length of the diagonal of the room = $\sqrt{l^2 + b^2 + h^2}$

=
$$\sqrt{(10)^2 + (10)^2 + (5)^2}$$
 m
= $\sqrt{100 + 100 + 25}$ m
= $\sqrt{225}$ m = 15 m

Hence, length of the largest pole that can be placed in the given hall is 15 m.

010

Answer:

Side of the square = 8.5 m

∴ Area of the square =
$$(\text{Side})^2$$

= $(8.5 \text{ m})^2$
= 72.25 m^2

Q11

Answer:

(i) Diagonal of the square = 72 cm

∴ Area of the square =
$$\left[\frac{1}{2} \times (Diagonal)^2\right]$$
 sq. unit = $\left[\frac{1}{2} \times (72)^2\right]$ cm² = 2592 cm²

(ii)Diagonal of the square = 2.4 m

∴ Area of the square =
$$\left[\frac{1}{2} \times (Diagonal)^2\right]$$
 sq. unit = $\left[\frac{1}{2} \times (2.4)^2\right]$ m² = 2.88 m²

We know:

Area of a square =
$$\left\{\frac{1}{2} \times \left(D\mathbf{iagonal}\right)^2\right\}$$
 sq. units Diagonal of the square = $\sqrt{2 \times \mathbf{Area}}$ of \mathbf{square} units = $\left(\sqrt{2 \times 16200}\right)$ m = 180 m

: Length of the diagonal of the square = 180 m

Q13

Answer:

Area of the square = $\left\{ \frac{1}{2} imes (D \, \mathbf{iagonal})^2 \right\}$ sq. units Given:

Area of the square field = $\frac{1}{2}$ hectare

$$= \left(\frac{1}{2} \times 10000\right) \,\mathrm{m}^2 = 5000 \,\mathrm{m}^2$$

[since 1 hectare = 10000 m²]

Diagonal of the square = $\sqrt{2 \times \text{Area of } the \text{ square}}$

$$= (\sqrt{2 \times 5000})$$
m = 100 m

:. Length of the diagonal of the square field = 100 m

Q14

Answer:

Area of the square plot = 6084 m²

Side of the square plot
$$= \sqrt{Area}$$

=
$$(\sqrt{6084})$$
 m
= $(\sqrt{78 \times 78})$ m = 78 m

 \therefore Perimeter of the square plot = 4 \times side = (4 \times 78) m = 312 m 312 m wire is needed to go along the boundary of the square plot once.

Required length of the wire that can go four times along the boundary = $4 \times Perimeter$ of the square plot

Side of the square = 10 cm

Length of the wire = Perimeter of the square = $4 \times \text{Side} = 4 \times 10 \text{ cm} = 40 \text{ cm}$

Length of the rectangle (/) = 12 cm

Let b be the breadth of the rectangle.

Perimeter of the rectangle = Perimeter of the square

$$\Rightarrow 2(l+b) = 40$$

$$\Rightarrow$$
 2(12 + b) = 40

$$\Rightarrow 24 + 2b = 40$$

$$\Rightarrow 2b = 40 - 24 = 16$$

$$\Rightarrow$$
 b = $\left(\frac{16}{2}\right)$ cm = 8 cm

:. Breadth of the rectangle = 8 cm

Now, Area of the square = $(Side)^2$ = $(10 \text{ cm} \times 10 \text{ cm})$ = 100 cm^2

Area of the rectangle = $I \times b$ = (12 cm \times 8 cm) = 96 cm²

Hence, the square encloses more area.

It encloses 4 cm² more area.

Q16

Answer:

Given:

Length = 50 m

Breadth = 40 m

Height = 10 m

Area of the four walls = $\{2h(l+b)\}$ sq. unit

$$= \{2 \times 10 \times (50 + 40)\} \text{m}^2$$

=
$$\{20 \times 90\}$$
 m² = 1800 m²

Area of the ceiling = $I \times b$ = (50 m \times 40 m) = 2000 m²

 \therefore Total area to be white washed = (1800 + 2000) m² = 3800 m²

Rate of white washing = Rs 20/sq. metre

∴ Total cost of white washing = Rs (3800 × 20) = Rs 76000

Q17

Answer:

Let the length of the room be I'm.

Given:

Breadth of the room = 10 m

Height of the room = 4 m

Area of the four walls = [2(l+b)h] sq units

$$= 168 \text{ m}^2$$

$$\therefore 168 = [2(l + 10) \times 4]$$

$$\Rightarrow 168 = [8/ + 80]$$

$$\Rightarrow I = \left(\frac{88}{8}\right) \text{ m} = 11 \text{ m}$$

:. Length of the room = 11 m

Q18

Answer:

Given:

Length of the room = 7.5 m

Breadth of the room = 3.5 m

Area of the four walls = [2(l+b)h] sq. units.

$$= 77 \text{ m}^2$$

$$\therefore 77 = [2(7.5 + 3.5)h]$$

$$\Rightarrow$$
 77 = [(2 × 11)h]

$$\Rightarrow h = \left(\frac{77}{22}\right) \text{ m} = \left(\frac{7}{2}\right) \text{ m} = 3.5 \text{ m}$$

: Height of the room = 3.5 m

```
Answer:
 Let the breadth of the room be x m.
 Length of the room = 2x m
 Area of the four walls = \{2(l+b) \times h\} sq. units
         120 m<sup>2</sup> = \{2(2x + x) \times 4\} m<sup>2</sup>
 \Rightarrow 120 = \{8 \times 3x\}
 ⇒ 120 = 24x
 \Rightarrow \chi = \left(\frac{120}{24}\right) = 5
 \therefore Length of the room = 2x = (2 \times 5) m = 10 m
 Breadth of the room = x = 5 \text{ m}
 :. Area of the floor = I \times b = (10 m \times 5 m) = 50 m<sup>2</sup>
Q20
 Answer:
 Length = 8.5 m
 Breadth = 6.5 m
 Height = 3.4 m
 Area of the four walls = \{2(l + b) \times h\} sq. units
                     = \{2(8.5 + 6.5) \times 3.4\}m<sup>2</sup> = \{30 \times 3.4\} m<sup>2</sup> = 102 m<sup>2</sup>
 Area of one door = (1.5 \times 1) m<sup>2</sup> = 1.5 m<sup>2</sup>
 \therefore Area of two doors = (2 × 1.5) m<sup>2</sup> = 3 m<sup>2</sup>
                             Area of one window = (2 \times 1) m<sup>2</sup> = 2 m<sup>2</sup>
  \therefore Area of two windows = (2 × 2) m<sup>2</sup> = 4 m<sup>2</sup>
 Total area of two doors and two windows = (3 + 4) \text{ m}^2
 Area to be painted = (102 - 7) \text{ m}^2 = 95 \text{ m}^2
 Rate of painting = Rs 160 per m<sup>2</sup>
 Total cost of painting = Rs (95 × 160) = Rs 15200
```