Kopykitab Same textbooks, klick away

Exercise - 3D
1.

Sol:

The given system of equations is:
$3 x+5 y=12$
$5 x+3 y=4$
These equations are of the forms:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$ and $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $a_{1}=3, b_{1}=5, c_{1}=-12$ and $a_{2}=5, b_{2}=3, c_{2}=-4$
For a unique solution, we must have:
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$, i.e., $\frac{3}{5} \neq \frac{5}{3}$
Hence, the given system of equations has a unique solution.
Again, the given equations are:

$$
\begin{align*}
& 3 x+5 y=12 \tag{i}\\
& 5 x+3 y=4 \tag{ii}
\end{align*}
$$

On multiplying (i) by 3 and (ii) by 5 , we get:
$9 x+15 y=36$
$25 x+15 y=20$
On subtracting (iii) from (iv), we get:
$16 x=-16$
$\Rightarrow x=-1$
On substituting $x=-1$ in (i), we get:
$3(-1)+5 y=12$
$\Rightarrow 5 y=(12+3)=15$
$\Rightarrow y=3$
Hence, $x=-1$ and $y=3$ is the required solution.
2.

Sol:

The given system of equations is:

$$
\begin{align*}
& 2 x-3 y-17=0 \tag{i}\\
& 4 x+y-13=0
\end{align*}
$$

The given equations are of the form
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$ and $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=2, \mathrm{~b}_{1}=-3, \mathrm{c}_{1}=-17$ and $\mathrm{a}_{2}=4, \mathrm{~b}_{2}=1, \mathrm{c}_{2}=-13$
Now,
$\frac{a_{1}}{a_{2}}=\frac{2}{4}=\frac{1}{2}$ and $\frac{b_{1}}{b_{2}}=\frac{-3}{1}=-3$
Since, $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$, therefore the system of equations has unique solution.
Using cross multiplication method, we have
$\frac{x}{b_{1} c_{2}-b_{2} c_{1}}=\frac{y}{c_{1} a_{2}-c_{2} a_{1}}=\frac{1}{a_{1} b_{2}-a_{2} b_{1}}$
$\Rightarrow \frac{x}{-3(-13)-1 \times(-17)}=\frac{y}{-17 \times 4-(-13) \times 2}=\frac{1}{2 \times 1-4 \times(-3)}$
$\Rightarrow \frac{x}{39+17}=\frac{y}{-68+26}=\frac{1}{2+12}$
$\Rightarrow \frac{x}{56}=\frac{y}{-42}=\frac{1}{14}$
$\Rightarrow \mathrm{x}=\frac{56}{14}, \mathrm{y}=\frac{-42}{14}$
$\Rightarrow \mathrm{x}=4, \mathrm{y}=-3$
Hence, $x=4$ and $y=-3$.
3.

Also, find the solution of the given system of equations.
Sol:
The given system of equations is:
$\frac{x}{3}+\frac{y}{2}=3$
$\Rightarrow \frac{2 x+3 y}{6}=3$
$2 x+3 y=18$
$\Rightarrow 2 \mathrm{x}+3 \mathrm{y}-18=0$
and
$x-2 y=2$
$x-2 y-2=0$
These equations are of the forms:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$ and $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $a_{1}=2, b_{1}=3, c_{1}=-18$ and $a_{2}=1, b_{2}=-2, c_{2}=-2$
For a unique solution, we must have:
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$, i.e., $\frac{2}{1} \neq \frac{3}{-2}$
Hence, the given system of equations has a unique solution.
Again, the given equations are:

$$
\begin{align*}
& 2 x+3 y-18=0 \tag{iii}\\
& x-2 y-2=0
\end{align*}
$$

On multiplying (i) by 2 and (ii) by 3 , we get:

$$
\begin{align*}
& 4 x+6 y-36=0 \\
& 3 x-6 y-6=0 \tag{v}
\end{align*}
$$

On adding (v) from (vi), we get:
$7 \mathrm{x}=42$
$\Rightarrow x=6$
On substituting $x=6$ in (iii), we get:
$2(6)+3 y=18$
$\Rightarrow 3 y=(18-12)=6$
$\Rightarrow y=2$
Hence, $x=6$ and $y=2$ is the required solution.

4.

Sol:

The given system of equations are
$2 x+3 y-5=0$
$\mathrm{kx}-6 \mathrm{y}-8=0$
This system is of the form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$ and $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=2, \mathrm{~b}_{1}=3, \mathrm{c}_{1}=-5$ and $\mathrm{a}_{2}=\mathrm{k}, \mathrm{b}_{2}=-6, \mathrm{c}_{2}=-8$
Now, for the given system of equations to have a unique solution, we must have:
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
$\Rightarrow \frac{2}{k} \neq \frac{3}{-6}$
$\Rightarrow \mathrm{k} \neq-4$
Hence, $k \neq-4$
5.

Sol:

The given system of equations are
$\mathrm{x}-\mathrm{ky}-2=0$
$3 \mathrm{x}+2 \mathrm{y}+5=0$
This system of equations is of the form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$ and $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=1, \mathrm{~b}_{1}=-\mathrm{k}, \mathrm{c}_{1}=-2$ and $\mathrm{a}_{2}=3, \mathrm{~b}_{2}=2, \mathrm{c}_{2}=5$
Now, for the given system of equations to have a unique solution, we must have:
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
$\Rightarrow \frac{1}{3} \neq \frac{-k}{2}$
$\Rightarrow \mathrm{k} \neq-\frac{2}{3}$
Hence, $\mathrm{k} \neq-\frac{2}{3}$.
6.

Sol:
The given system of equations are
$5 \mathrm{x}-7 \mathrm{y}-5=0$
$2 \mathrm{x}+\mathrm{ky}-1=0$
This system is of the form:
$a_{1} x+b_{1} y+c_{1}=0$
$\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=5, \mathrm{~b}_{1}=-7, \mathrm{c}_{1}=-5$ and $\mathrm{a}_{2}=2, \mathrm{~b}_{2}=\mathrm{k}, \mathrm{c}_{2}=-1$
Now, for the given system of equations to have a unique solution, we must have:
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
$\Rightarrow \frac{5}{2} \neq \frac{-7}{k}$
$\Rightarrow \mathrm{k} \neq-\frac{14}{5}$
Hence, $\mathrm{k} \neq-\frac{14}{5}$.
7.

Sol:

The given system of equations are
$4 \mathrm{x}+\mathrm{ky}+8=0$
$x+y+1=0$
This system is of the form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$
$\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=4, \mathrm{~b}_{1}=\mathrm{k}, \mathrm{c}_{1}=8$ and $\mathrm{a}_{2}=1, \mathrm{~b}_{2}=1, \mathrm{c}_{2}=1$
For the given system of equations to have a unique solution, we must have:
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
$\Rightarrow \frac{4}{1} \neq \frac{k}{1}$
$\Rightarrow \mathrm{k} \neq 4$
Hence, $\mathrm{k} \neq 4$.
8.

Sol:

The given system of equations are
$4 \mathrm{x}-5 \mathrm{y}=\mathrm{k}$
$\Rightarrow 4 \mathrm{x}-5 \mathrm{y}-\mathrm{k}=0$
And, $2 \mathrm{x}-3 \mathrm{y}=12$
$\Rightarrow 2 \mathrm{x}-3 \mathrm{y}-12=0$
These equations are of the following form:
$a_{1} x+b_{1} y+c_{1}=0, a_{2} x+b_{2} y+c_{2}=0$
Here, $a_{1}=4, b_{1}=-5, c_{1}=-k$ and $a_{2}=2, b_{2}=-3, c_{2}=-12$
For a unique solution, we must have:
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
i.e., $\frac{4}{2} \neq \frac{-5}{-3}$
$\Rightarrow 2 \neq \frac{5}{3} \Rightarrow 6 \neq 5$
Thus, for all real values of k, the given system of equations will have a unique solution.
9.

Sol:

The given system of equations:
$k x+3 y=(k-3)$
$\Rightarrow \mathrm{kx}+3 \mathrm{y}-(\mathrm{k}-3)=0$
And, $12 \mathrm{x}+\mathrm{ky}=\mathrm{k}$
$\Rightarrow 12 \mathrm{x}+\mathrm{ky}-\mathrm{k}=0$
These equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
Here, $a_{1}=k, b_{1}=3, c_{1}=-(k-3)$ and $a_{2}=12, b_{2}=k, c_{2}=-k$
For a unique solution, we must have:
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
i.e., $\frac{k}{12} \neq \frac{3}{k}$
$\Rightarrow \mathrm{k}^{2} \neq 36 \Rightarrow \mathrm{k} \neq \pm 6$
Thus, for all real values of k, other than ± 6, the given system of equations will have a unique solution.
10.

Sol:
The given system of equations: $2 x-3 y=5$
$\Rightarrow 2 \mathrm{x}-3 \mathrm{y}-5=0$
$6 x-9 y=15$
$\Rightarrow 6 \mathrm{x}-9 \mathrm{y}-15=0$
These equations are of the following forms:
$a_{1} x+b_{1} y+c_{1}=0, a_{2} x+b_{2} y+c_{2}=0$
Here, $a_{1}=2, b_{1}=-3, c_{1}=-5$ and $a_{2}=6, b_{2}=-9, c_{2}=-15$
$\therefore \frac{a_{1}}{a_{2}}=\frac{2}{6}=\frac{1}{3}, \frac{b_{1}}{b_{2}}=\frac{-3}{-9}=\frac{1}{3}$ and $\frac{c_{1}}{c_{2}}=\frac{-5}{-15}=\frac{1}{3}$
Thus, $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
Hence, the given system of equations has an infinite number of solutions.

11.

Sol:

The given system of equations can be written as
$6 x+5 y-11=0$
$\Rightarrow 9 x+\frac{15}{2} y-21=0$
This system is of the form
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$
$a_{2} x+b_{2} y+c_{2}=0$
Here, $a_{1}=6, b_{1}=5, c_{1}=-11$ and $a_{2}=9, b_{2}=\frac{15}{2}, c_{2}=-21$
Now,
$\frac{a_{1}}{a_{2}}=\frac{6}{9}=\frac{2}{3}$
$\frac{b_{1}}{b_{2}}=\frac{5}{\frac{15}{2}}=\frac{2}{3}$
$\frac{c_{1}}{c_{2}}=\frac{-11}{-21}=\frac{11}{21}$
Thus, $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$, therefore the given system has no solution.
12.

Sol:

The given system of equations:
$\mathrm{kx}+2 \mathrm{y}=5$
$\Rightarrow \mathrm{kx}+2 \mathrm{y}-5=0$
$3 x-4 y=10$
$\Rightarrow 3 \mathrm{x}-4 \mathrm{y}-10=0$
These equations are of the forms:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$ and $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $a_{1}=k, b_{1}=2, c_{1}=-5$ and $a_{2}=3, b_{2}=-4, c_{2}=-10$
(i) For a unique solution, we must have:
$\therefore \frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$ i.e., $\frac{k}{3} \neq \frac{2}{-4} \Rightarrow \mathrm{k} \neq \frac{-3}{2}$
Thus for all real values of k other than $\frac{-3}{2}$, the given system of equations will have a unique solution.
(ii) For the given system of equations to have no solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
$\Rightarrow \frac{k}{3}=\frac{2}{-4} \neq \frac{-5}{-10}$
$\Rightarrow \frac{k}{3}=\frac{2}{-4}$ and $\frac{k}{3} \neq \frac{1}{2}$
$\Rightarrow \mathrm{k}=\frac{-3}{2}, \mathrm{k} \neq \frac{3}{2}$
Hence, the required value of k is $\frac{-3}{2}$.
13.

Sol:

The given system of equations:

$$
x+2 y=5
$$

$$
\begin{equation*}
\Rightarrow x+2 y-5=0 \tag{i}
\end{equation*}
$$

$3 \mathrm{x}+\mathrm{ky}+15=0$
These equations are of the forms:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$ and $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=1, \mathrm{~b}_{1}=2, \mathrm{c}_{1}=-5$ and $\mathrm{a}_{2}=3, \mathrm{~b}_{2}=\mathrm{k}, \mathrm{c}_{2}=15$
(i) For a unique solution, we must have:
$\therefore \frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$ i.e., $\frac{1}{3} \neq \frac{2}{k} \Rightarrow \mathrm{k} \neq 6$

Thus for all real values of k other than 6 , the given system of equations will have a unique solution.
(ii) For the given system of equations to have no solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
$\Rightarrow \frac{1}{3}=\frac{2}{k} \neq \frac{-5}{15}$
$\Rightarrow \frac{1}{3}=\frac{2}{k}$ and $\frac{2}{k} \neq \frac{-5}{15}$
$\Rightarrow \mathrm{k}=6, \mathrm{k} \neq-6$
Hence, the required value of k is 6 .
14.

Sol:

The given system of equations:
$x+2 y=3$
$\Rightarrow \mathrm{x}+2 \mathrm{y}-3=0$
And, $5 \mathrm{x}+\mathrm{ky}+7=0$
These equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $a_{1}=1, b_{1}=2, c_{1}=-3$ and $a_{2}=5, b_{2}=k, c_{2}=7$
(i) For a unique solution, we must have:
$\therefore \frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$ i.e., $\frac{1}{5} \neq \frac{2}{k} \Rightarrow \mathrm{k} \neq 10$
Thus for all real values of k other than 10 , the given system of equations will have a unique solution.
(ii) In order that the given system of equations has no solution, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
$\Rightarrow \frac{1}{5} \neq \frac{2}{k} \neq \frac{-3}{7}$
$\Rightarrow \frac{1}{5} \neq \frac{2}{k}$ and $\frac{2}{k} \neq \frac{-3}{7}$
$\Rightarrow \mathrm{k}=10, \mathrm{k} \neq \frac{14}{-3}$
Hence, the required value of k is 10 .
There is no value of k for which the given system of equations has an infinite number of solutions.
15.

Sol:

The given system of equations:
$2 x+3 y=7$,
$\Rightarrow 2 \mathrm{x}+3 \mathrm{y}-7=0$
And, $(\mathrm{k}-1) \mathrm{x}+(\mathrm{k}+2) \mathrm{y}=3 \mathrm{k}$
$\Rightarrow(\mathrm{k}-1) \mathrm{x}+(\mathrm{k}+2) \mathrm{y}-3 \mathrm{k}=0$
These equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=2, \mathrm{~b}_{1}=3, \mathrm{c}_{1}=-7$ and $\mathrm{a}_{2}=(\mathrm{k}-1), \mathrm{b}_{2}=(\mathrm{k}+2), \mathrm{c}_{2}=-3 \mathrm{k}$
For an infinite number of solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\frac{2}{(k-1)}=\frac{3}{(k+2)}=\frac{-7}{-3 k}$
$\Rightarrow \frac{2}{(k-1)}=\frac{3}{(k+2)}=\frac{7}{3 k}$
Now, we have the following three cases:
Case I:
$\frac{2}{(k-1)}=\frac{3}{k+2}$
$\Rightarrow 2(\mathrm{k}+2)=3(\mathrm{k}-1) \Rightarrow 2 \mathrm{k}+4=3 \mathrm{k}-3 \Rightarrow \mathrm{k}=7$
Case II:
$\frac{3}{(k+2)}=\frac{7}{3 k}$
$\Rightarrow 7(\mathrm{k}+2)=9 \mathrm{k} \Rightarrow 7 \mathrm{k}+14=9 \mathrm{k} \Rightarrow 2 \mathrm{k}=14 \Rightarrow \mathrm{k}=7$
Case III:
$\frac{2}{(k-1)}=\frac{7}{3 k}$
$\Rightarrow 7 \mathrm{k}-7=6 \mathrm{k} \Rightarrow \mathrm{k}=7$
Hence, the given system of equations has an infinite number of solutions when k is equal to 7.
16.

Sol:

The given system of equations:
$2 x+(k-2) y=k$
$\Rightarrow 2 \mathrm{x}+(\mathrm{k}-2) \mathrm{y}-\mathrm{k}=0$
And, $6 x+(2 k-1) y=(2 k+5)$
$\Rightarrow 6 \mathrm{x}+(2 \mathrm{k}-1) \mathrm{y}-(2 \mathrm{k}+5)=0$
These equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=2, \mathrm{~b}_{1}=(\mathrm{k}-2), \mathrm{c}_{1}=-\mathrm{k}$ and $\mathrm{a}_{2}=6, \mathrm{~b}_{2}=(2 \mathrm{k}-1), \mathrm{c}_{2}=-(2 \mathrm{k}+5)$
For an infinite number of solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\frac{2}{6}=\frac{(k-2)}{(2 k-1)}=\frac{-k}{-(2 k+5)}$
$\Rightarrow \frac{1}{3}=\frac{(k-2)}{(2 k-1)}=\frac{k}{(2 k+5)}$
Now, we have the following three cases:
Case I:
$\frac{1}{3}=\frac{(k-2)}{(2 k-1)}$
$\Rightarrow(2 \mathrm{k}-1)=3(\mathrm{k}-2)$
$\Rightarrow 2 \mathrm{k}-1=3 \mathrm{k}-6 \Rightarrow \mathrm{k}=5$
Case II:
$\frac{(k-2)}{(2 k-1)}=\frac{k}{(2 k+5)}$
$\Rightarrow(\mathrm{k}-2)(2 \mathrm{k}+5)=\mathrm{k}(2 \mathrm{k}-1)$
$\Rightarrow 2 \mathrm{k}^{2}+5 \mathrm{k}-4 \mathrm{k}-10=2 \mathrm{k}^{2}-\mathrm{k}$
$\Rightarrow \mathrm{k}+\mathrm{k}=10 \Rightarrow 2 \mathrm{k}=10 \Rightarrow \mathrm{k}=5$
Case III:
$\frac{1}{3}=\frac{k}{(2 k+5)}$
$\Rightarrow 2 \mathrm{k}+5=3 \mathrm{k} \Rightarrow \mathrm{k}=5$
Hence, the given system of equations has an infinite number of solutions when k is equal to 5.
17.

Sol:

The given system of equations:
$k x+3 y=(2 k+1)$
$\Rightarrow \mathrm{kx}+3 \mathrm{y}-(2 \mathrm{k}+1)=0$

And, $2(\mathrm{k}+1) \mathrm{x}+9 \mathrm{y}=(7 \mathrm{k}+1)$
$\Rightarrow 2(\mathrm{k}+1) \mathrm{x}+9 \mathrm{y}-(7 \mathrm{k}+1)=0$
These equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $a_{1}=k, b_{1}=3, c_{1}=-(2 k+1)$ and $a_{2}=2(k+1), b_{2}=9, c_{2}=-(7 k+1)$
For an infinite number of solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
i.e., $\frac{k}{2(k+1)}=\frac{3}{9}=\frac{-(2 k+1)}{-(7 k+1)}$
$\Rightarrow \frac{k}{2(k+1)}=\frac{1}{3}=\frac{(2 k+1)}{(7 k+1)}$
Now, we have the following three cases:
Case I:
$\frac{k}{2(k+1)}=\frac{1}{3}$
$\Rightarrow 2(\mathrm{k}+1)=3 \mathrm{k}$
$\Rightarrow 2 \mathrm{k}+2=3 \mathrm{k}$
$\Rightarrow \mathrm{k}=2$
Case II:
$\frac{1}{3}=\frac{(2 k+1)}{(7 k+1)}$
$\Rightarrow(7 \mathrm{k}+1)=6 \mathrm{k}+3$
$\Rightarrow \mathrm{k}=2$
Case III:
$\frac{k}{2(k+1)}=\frac{(2 k+1)}{(7 k+1)}$
$\Rightarrow \mathrm{k}(7 \mathrm{k}+1)=(2 \mathrm{k}+1) \times 2(\mathrm{k}+1)$
$\Rightarrow 7 \mathrm{k}^{2}+\mathrm{k}=(2 \mathrm{k}+1)(2 \mathrm{k}+2)$
$\Rightarrow 7 \mathrm{k}^{2}+\mathrm{k}=4 \mathrm{k}^{2}+4 \mathrm{k}+2 \mathrm{k}+2$
$\Rightarrow 3 \mathrm{k}^{2}-5 \mathrm{k}-2=0$
$\Rightarrow 3 \mathrm{k}^{2}-6 \mathrm{k}+\mathrm{k}-2=0$
$\Rightarrow 3 \mathrm{k}(\mathrm{k}-2)+1(\mathrm{k}-2)=0$
$\Rightarrow(3 \mathrm{k}+1)(\mathrm{k}-2)=0$
$\Rightarrow \mathrm{k}=2$ or $\mathrm{k}=\frac{-1}{3}$
Hence, the given system of equations has an infinite number of solutions when k is equal to 2.
18.

Sol:

The given system of equations:
$5 \mathrm{x}+2 \mathrm{y}=2 \mathrm{k}$
$\Rightarrow 5 \mathrm{x}+2 \mathrm{y}-2 \mathrm{k}=0$
And, $2(\mathrm{k}+1) \mathrm{x}+\mathrm{ky}=(3 \mathrm{k}+4)$
$\Rightarrow 2(\mathrm{k}+1) \mathrm{x}+\mathrm{ky}-(3 \mathrm{k}+4)=0$
These equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=5, \mathrm{~b}_{1}=2, \mathrm{c}_{1}=-2 \mathrm{k}$ and $\mathrm{a}_{2}=2(\mathrm{k}+1), \mathrm{b}_{2}=\mathrm{k}, \mathrm{c}_{2}=-(3 \mathrm{k}+4)$
For an infinite number of solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\frac{5}{2(k+1)}=\frac{2}{k}=\frac{-2 k}{-(3 k+4)}$
$\Rightarrow \frac{5}{2(k+1)}=\frac{2}{k}=\frac{2 k}{(3 k+4)}$
Now, we have the following three cases:
Case I:
$\frac{5}{2(k+1)}=\frac{2}{k}$
$\Rightarrow 2 \times 2(\mathrm{k}+1)=5 \mathrm{k}$
$\Rightarrow 4(\mathrm{k}+1)=5 \mathrm{k}$
$\Rightarrow 4 \mathrm{k}+4=5 \mathrm{k}$
$\Rightarrow \mathrm{k}=4$
Case II:
$\frac{2}{k}=\frac{2 k}{(3 k+4)}$
$\Rightarrow 2 \mathrm{k}^{2}=2 \times(3 \mathrm{k}+4)$
$\Rightarrow 2 \mathrm{k}^{2}=6 \mathrm{k}+8 \Rightarrow 2 \mathrm{k}^{2}-6 \mathrm{k}-8=0$
$\Rightarrow 2\left(\mathrm{k}^{2}-3 \mathrm{k}-4\right)=0$
$\Rightarrow \mathrm{k}^{2}-4 \mathrm{k}+\mathrm{k}-4=0$
$\Rightarrow \mathrm{k}(\mathrm{k}-4)+1(\mathrm{k}-4)=0$
$\Rightarrow(\mathrm{k}+1)(\mathrm{k}-4)=0$
$\Rightarrow(\mathrm{k}+1)=0$ or $(\mathrm{k}-4)=0$
$\Rightarrow \mathrm{k}=-1$ or $\mathrm{k}=4$
Case III:
$\frac{5}{2(k+1)}=\frac{2 k}{(3 k+4)}$
$\Rightarrow 15 \mathrm{k}+20=4 \mathrm{k}^{2}+4 \mathrm{k}$
$\Rightarrow 4 \mathrm{k}^{2}-11 \mathrm{k}-20=0$
$\Rightarrow 4 \mathrm{k}^{2}-16 \mathrm{k}+5 \mathrm{k}-20=0$
$\Rightarrow 4 \mathrm{k}(\mathrm{k}-4)+5(\mathrm{k}-4)=0$
$\Rightarrow(\mathrm{k}-4)(4 \mathrm{k}+5)=0$
$\Rightarrow \mathrm{k}=4$ or $\mathrm{k}=\frac{-5}{4}$
Hence, the given system of equations has an infinite number of solutions when k is equal to 4.
19.

Sol:

The given system of equations:
$(k-1) x-y=5$
$\Rightarrow(\mathrm{k}-1) \mathrm{x}-\mathrm{y}-5=0$
And, $(k+1) x+(1-k) y=(3 k+1)$
$\Rightarrow(k+1) x+(1-k) y-(3 k+1)=0$
These equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=(\mathrm{k}-1), \mathrm{b}_{1}=-1, \mathrm{c}_{1}=-5$ and $\mathrm{a}_{2}=(\mathrm{k}+1), \mathrm{b}_{2}=(1-\mathrm{k}), \mathrm{c}_{2}=-(3 \mathrm{k}+1)$
For an infinite number of solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
i.e., $\frac{(\mathrm{k}-1)}{(k+1)}=\frac{-1}{-(k-1)}=\frac{-5}{-(3 k+1)}$
$\Rightarrow \frac{(\mathrm{k}-1)}{(k+1)}=\frac{1}{(k-1)}=\frac{5}{(3 k+1)}$
Now, we have the following three cases:
Case I:
$\frac{(\mathrm{k}-1)}{(k+1)}=\frac{1}{(k-1)}$
$\Rightarrow(\mathrm{k}-1)^{2}=(\mathrm{k}+1)$
$\Rightarrow \mathrm{k}^{2}+1-2 \mathrm{k}=\mathrm{k}+1$
$\Rightarrow \mathrm{k}^{2}-3 \mathrm{k}=0 \Rightarrow \mathrm{k}(\mathrm{k}-3)=0$
$\Rightarrow \mathrm{k}=0$ or $\mathrm{k}=3$
Case II:
$\frac{1}{(k-1)}=\frac{5}{(3 k+1)}$
$\Rightarrow 3 \mathrm{k}+1=5 \mathrm{k}-5$
$\Rightarrow 2 \mathrm{k}=6 \Rightarrow \mathrm{k}=3$
Case III:
$\frac{(\mathrm{k}-1)}{(k+1)}=\frac{5}{(3 k+1)}$
$\Rightarrow(3 \mathrm{k}+1)(\mathrm{k}-1)=5(\mathrm{k}+1)$
$\Rightarrow 3 \mathrm{k}^{2}+\mathrm{k}-3 \mathrm{k}-1=5 \mathrm{k}+5$
$\Rightarrow 3 \mathrm{k}^{2}-2 \mathrm{k}-5 \mathrm{k}-1-5=0$
$\Rightarrow 3 \mathrm{k}^{2}-7 \mathrm{k}-6=0$
$\Rightarrow 3 \mathrm{k}^{2}-9 \mathrm{k}+2 \mathrm{k}-6=0$
$\Rightarrow 3 \mathrm{k}(\mathrm{k}-3)+2(\mathrm{k}-3)=0$
$\Rightarrow(\mathrm{k}-3)(3 \mathrm{k}+2)=0$
$\Rightarrow(\mathrm{k}-3)=0$ or $(3 \mathrm{k}+2)=0$
$\Rightarrow \mathrm{k}=3$ or $\mathrm{k}=\frac{-2}{3}$
Hence, the given system of equations has an infinite number of solutions when k is equal to 3.
20.

Sol:

The given system of equations can be written as
$(k-3) x+3 y-k=0$
$\mathrm{kx}+\mathrm{ky}-12=0$
This system is of the form:
$a_{1} x+b_{1} y+c_{1}=0$
$\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $a_{1}=k, b_{1}=3, c_{1}=-k$ and $a_{2}=k, b_{2}=k, c_{2}=-12$
For the given system of equations to have a unique solution, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\Rightarrow \frac{k-3}{k}=\frac{3}{k}=\frac{-k}{-12}$
$\Rightarrow \mathrm{k}-3=3$ and $\mathrm{k}^{2}=36$
$\Rightarrow \mathrm{k}=6$ and $\mathrm{k}= \pm 6$
$\Rightarrow \mathrm{k}=6$
Hence, $\mathrm{k}=6$.
21.

Sol:

The given system of equations can be written as $(a-1) x+3 y=2$
$\Rightarrow(\mathrm{a}-1) \mathrm{x}+3 \mathrm{y}-2=0$
and $6 x+(1-2 b) y=6$
$\Rightarrow 6 \mathrm{x}+(1-2 \mathrm{~b}) \mathrm{y}-6=0$
These equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$
$a_{2} x+b_{2} y+c_{2}=0$
where, $a_{1}=(a-1), b_{1}=3, c_{1}=-2$ and $a_{2}=6, b_{2}=(1-2 b), c_{2}=-6$
For an infinite number of solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\Rightarrow \frac{a-1}{6}=\frac{3}{(1-2 b)}=\frac{-2}{-6}$
$\Rightarrow \frac{a-1}{6}=\frac{3}{(1-2 b)}=\frac{1}{3}$
$\Rightarrow \frac{a-1}{6}=\frac{1}{3}$ and $\frac{3}{(1-2 b)}=\frac{1}{3}$
$\Rightarrow 3 \mathrm{a}-3=6$ and $9=1-2 \mathrm{~b}$
$\Rightarrow 3 \mathrm{a}=9$ and $2 \mathrm{~b}=-8$
$\Rightarrow \mathrm{a}=3$ and $\mathrm{b}=-4$
$\therefore \mathrm{a}=3$ and $\mathrm{b}=-4$
22.

Sol:

The given system of equations can be written as
$(2 a-1) x+3 y=5$
$\Rightarrow(2 a-1) x+3 y-5=0$
and $3 x+(b-1) y=2$
$\Rightarrow 3 \mathrm{x}+(\mathrm{b}-1) \mathrm{y}-2=0$
These equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $a_{1}=(2 a-1), b_{1}=3, c_{1}=-5$ and $a_{2}=3, b_{2}=(b-1), c_{2}=-2$
For an infinite number of solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\Rightarrow \frac{(2 a-1)}{3}=\frac{3}{(b-1)}=\frac{-5}{-2}$
$\Rightarrow \frac{(2 a-1)}{6}=\frac{3}{(b-1)}=\frac{5}{2}$
$\Rightarrow \frac{(2 a-1)}{6}=\frac{5}{2}$ and $\frac{3}{(b-1)}=\frac{5}{2}$
$\Rightarrow 2(2 \mathrm{a}-1)=15$ and $6=5(\mathrm{~b}-1)$
$\Rightarrow 4 \mathrm{a}-2=15$ and $6=5 \mathrm{~b}-5$
$\Rightarrow 4 \mathrm{a}=17$ and $5 \mathrm{~b}=11$
$\therefore \mathrm{a}=\frac{17}{4}$ and $\mathrm{b}=\frac{11}{5}$
23.

Sol:

The given system of equations can be written as
$2 \mathrm{x}-3 \mathrm{y}=7$
$\Rightarrow 2 \mathrm{x}-3 \mathrm{y}-7=0$
and $(a+b) x-(a+b-3) y=4 a+b$
$\Rightarrow(a+b) x-(a+b-3) y-4 a+b=0$
These equations are of the following form:
$a_{1} x+b_{1} y+c_{1}=0, a_{2} x+b_{2} y+c_{2}=0$
Here, $\mathrm{a}_{1}=2, \mathrm{~b}_{1}=-3, \mathrm{c}_{1}=-7$ and $\mathrm{a}_{2}=(\mathrm{a}+\mathrm{b}), \mathrm{b}_{2}=-(\mathrm{a}+\mathrm{b}-3), \mathrm{c}_{2}=-(4 \mathrm{a}+\mathrm{b})$
For an infinite number of solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\frac{2}{a+b}=\frac{-3}{-(a+b-3)}=\frac{-7}{-(4 a+b)}$
$\Rightarrow \frac{2}{a+b}=\frac{3}{(a+b-3)}=\frac{7}{(4 a+b)}$
$\Rightarrow \frac{2}{a+b}=\frac{7}{(4 a+b)}$ and $\frac{3}{(a+b-3)}=\frac{7}{(4 a+b)}$
$\Rightarrow 2(4 \mathrm{a}+\mathrm{b})=7(\mathrm{a}+\mathrm{b})$ and $3(4 \mathrm{a}+\mathrm{b})=7(\mathrm{a}+\mathrm{b}-3)$
$\Rightarrow 8 \mathrm{a}+2 \mathrm{~b}=7 \mathrm{a}+7 \mathrm{~b}$ and $12 \mathrm{a}+3 \mathrm{~b}=7 \mathrm{a}+7 \mathrm{~b}-21$
$\Rightarrow 4 \mathrm{a}=17$ and $5 \mathrm{~b}=11$
$\therefore \mathrm{a}=5 \mathrm{~b}$
and $5 \mathrm{a}=4 \mathrm{~b}-21$
On substituting $\mathrm{a}=5 \mathrm{~b}$ in (iv), we get:
$25 \mathrm{~b}=4 \mathrm{~b}-21$
$\Rightarrow 21 \mathrm{~b}=-21$
$\Rightarrow \mathrm{b}=-1$
On substituting $\mathrm{b}=-1$ in (iii), we get:
$\mathrm{a}=5(-1)=-5$
$\therefore \mathrm{a}=-5$ and $\mathrm{b}=-1$.
24.

Sol:

The given system of equations can be written as
$2 x+3 y=7$
$\Rightarrow 2 \mathrm{x}+3 \mathrm{y}-7=0$
and $(a+b+1) x-(a+2 b+2) y=4(a+b)+1$
$(a+b+1) x-(a+2 b+2) y-[4(a+b)+1]=0$
These equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $a_{1}=2, b_{1}=3, c_{1}=-7$ and $a_{2}=(a+b+1), b_{2}=(a+2 b+2), c_{2}=-[4(a+b)+1]$
For an infinite number of solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\frac{2}{(a+b+1)}=\frac{3}{(a+2 b+2)}=\frac{-7}{-[4(a+b)+1]}$
$\Rightarrow \frac{2}{(a+b+1)}=\frac{3}{(a+2 b+2)}=\frac{7}{[4(a+b)+1]}$
$\Rightarrow \frac{2}{(a+b+1)}=\frac{3}{(a+2 b+2)}$ and $\frac{3}{(a+2 b+2)}=\frac{7}{[4(a+b)+1]}$
$\Rightarrow 2(\mathrm{a}+2 \mathrm{~b}+2)=3(\mathrm{a}+\mathrm{b}+1)$ and $3[4(\mathrm{a}+\mathrm{b})+1]=7(\mathrm{a}+2 \mathrm{~b}+2)$
$\Rightarrow 2 \mathrm{a}+4 \mathrm{~b}+4=3 \mathrm{a}+3 \mathrm{~b}+3$ and $3(4 \mathrm{a}+4 \mathrm{~b}+1)=7 \mathrm{a}+14 \mathrm{~b}+14$
$\Rightarrow \mathrm{a}-\mathrm{b}-1=0$ and $12 \mathrm{a}+12 \mathrm{~b}+3=7 \mathrm{a}+14 \mathrm{~b}+14$
$\Rightarrow \mathrm{a}-\mathrm{b}=1$ and $5 \mathrm{a}-2 \mathrm{~b}=11$
$\mathrm{a}=(\mathrm{b}+1)$
$5 a-2 b=11$
On substituting $a=(b+1)$ in (iv), we get:
$5(b+1)-2 b=11$
$\Rightarrow 5 \mathrm{~b}+5-2 \mathrm{~b}=11$
$\Rightarrow 3 \mathrm{~b}=6$
$\Rightarrow \mathrm{b}=2$
On substituting $b=2$ in (iii), we get:
$\mathrm{a}=3$
$\therefore \mathrm{a}=3$ and $\mathrm{b}=2$.
25.

Sol:

The given system of equations can be written as
$2 x+3 y-7=0$
$(a+b) x+(2 a-b) y-21=0$
This system is of the form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $a_{1}=2, b_{1}=3, c_{1}=-7$ and $a_{2}=a+b, b_{2}=2 a-b, c_{2}=-21$
For the given system of linear equations to have an infinite number of solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\Rightarrow \frac{2}{a+b}=\frac{3}{2 a-b}=\frac{-7}{-21}$
$\Rightarrow \frac{2}{a+b}=\frac{-7}{-21}=\frac{1}{3}$ and $\frac{3}{2 a-b}=\frac{-7}{-21}=\frac{1}{3}$
$\Rightarrow \mathrm{a}+\mathrm{b}=6$ and $2 \mathrm{a}-\mathrm{b}=9$
Adding $\mathrm{a}+\mathrm{b}=6$ and $2 \mathrm{a}-\mathrm{b}=9$, we get
$3 \mathrm{a}=15 \Rightarrow \mathrm{a}=\frac{15}{3}=3$
Now substituting $\mathrm{a}=5$ in $\mathrm{a}+\mathrm{b}=6$, we have
$5+b=6 \Rightarrow b=6-5=1$
Hence, $a=5$ and $b=1$.
26.

Sol:

The given system of equations can be written as
$2 x+3 y-7=0$
$2 \mathrm{ax}+(\mathrm{a}+\mathrm{b}) \mathrm{y}-28=0$
This system is of the form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$
$\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=2, \mathrm{~b}_{1}=3, \mathrm{c}_{1}=-7$ and $\mathrm{a}_{2}=2 \mathrm{a}, \mathrm{b}_{2}=\mathrm{a}+\mathrm{b}, \mathrm{c}_{2}=-28$
For the given system of linear equations to have an infinite number of solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\Rightarrow \frac{2}{2 a}=\frac{3}{a+b}=\frac{-7}{-28}$
$\Rightarrow \frac{2}{2 a}=\frac{-7}{-28}=\frac{1}{4}$ and $\frac{3}{a+b}=\frac{-7}{-28}=\frac{1}{4}$
$\Rightarrow \mathrm{a}=4$ and $\mathrm{a}+\mathrm{b}=12$
Substituting $\mathrm{a}=4$ in $\mathrm{a}+\mathrm{b}=12$, we get
$4+\mathrm{b}=12 \Rightarrow \mathrm{~b}=12-4=8$
Hence, $\mathrm{a}=4$ and $\mathrm{b}=8$.
27.

Sol:

The given system of equations:

$$
\begin{equation*}
8 x+5 y=9 \tag{i}
\end{equation*}
$$

$8 x+5 y-9=0$
$k x+10 y=15$
$\mathrm{kx}+10 \mathrm{y}-15=0$
These equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=8, \mathrm{~b}_{1}=5, \mathrm{c}_{1}=-9$ and $\mathrm{a}_{2}=\mathrm{k}, \mathrm{b}_{2}=10, \mathrm{c}_{2}=-15$
In order that the given system has no solution, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
i.e., $\frac{8}{k}=\frac{5}{10} \neq \frac{-9}{-15}$
i.e., $\frac{8}{k}=\frac{1}{2} \neq \frac{3}{5}$
$\frac{8}{k}=\frac{1}{2}$ and $\frac{8}{k} \neq \frac{3}{5}$
$\Rightarrow \mathrm{k}=16$ and $\mathrm{k} \neq \frac{40}{3}$
Hence, the given system of equations has no solutions when k is equal to 16 .
28.

Sol:

The given system of equations:
$k x+3 y=3$
$\mathrm{kx}+3 \mathrm{y}-3=0$
$12 x+k y=6$
$12 x+k y-6=0$
These equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=\mathrm{k}, \mathrm{b}_{1}=3, \mathrm{c}_{1}=-3$ and $\mathrm{a}_{2}=12, \mathrm{~b}_{2}=\mathrm{k}, \mathrm{c}_{2}=-6$
In order that the given system has no solution, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
i.e., $\frac{k}{12}=\frac{3}{k} \neq \frac{-3}{-6}$
$\frac{k}{12}=\frac{3}{k}$ and $\frac{3}{k} \neq \frac{1}{2}$
$\Rightarrow \mathrm{k}^{2}=36$ and $\mathrm{k} \neq 6$
$\Rightarrow \mathrm{k}= \pm 6$ and $\mathrm{k} \neq 6$
Hence, the given system of equations has no solution when k is equal to -6 .
29.

Sol:

The given system of equations:

$$
\begin{equation*}
3 x-y-5=0 \tag{i}
\end{equation*}
$$

And, $6 \mathrm{x}-2 \mathrm{y}+\mathrm{k}=0$
These equations are of the following form:
$a_{1} x+b_{1} y+c_{1}=0, a_{2} x+b_{2} y+c_{2}=0$
where, $\mathrm{a}_{1}=3, \mathrm{~b}_{1}=-1, \mathrm{c}_{1}=-5$ and $\mathrm{a}_{2}=6, \mathrm{~b}_{2}=-2, \mathrm{c}_{2}=\mathrm{k}$
In order that the given system has no solution, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
i.e., $\frac{3}{6}=\frac{-1}{-2} \neq \frac{-5}{k}$
$\Rightarrow \frac{-1}{-2} \neq \frac{-5}{k} \Rightarrow \mathrm{k} \neq-10$
Hence, equations (i) and (ii) will have no solution if $\mathrm{k} \neq-10$.
30.

Sol:

The given system of equations can be written as

$$
\begin{equation*}
\mathrm{kx}+3 \mathrm{y}+3-\mathrm{k}=0 \tag{i}
\end{equation*}
$$

$12 \mathrm{x}+\mathrm{ky}-\mathrm{k}=0$
This system of the form:
$a_{1} x+b_{1} y+c_{1}=0$
$a_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=\mathrm{k}, \mathrm{b}_{1}=3, \mathrm{c}_{1}=3-\mathrm{k}$ and $\mathrm{a}_{2}=12, \mathrm{~b}_{2}=\mathrm{k}, \mathrm{c}_{2}=-\mathrm{k}$

For the given system of linear equations to have no solution, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
$\Rightarrow \frac{k}{12}=\frac{3}{k} \neq \frac{3-k}{-k}$
$\Rightarrow \frac{k}{12}=\frac{3}{k}$ and $\frac{3}{k} \neq \frac{3-k}{-k}$
$\Rightarrow \mathrm{k}^{2}=36$ and $-3 \neq 3-\mathrm{k}$
$\Rightarrow \mathrm{k}= \pm 6$ and $\mathrm{k} \neq 6$
$\Rightarrow \mathrm{k}=-6$
Hence, $\mathrm{k}=-6$.
31.

Sol:

The given system of equations:

$$
\begin{equation*}
5 x-3 y=0 \tag{i}
\end{equation*}
$$

$2 \mathrm{x}+\mathrm{ky}=0$
These equations are of the following form:
$a_{1} x+b_{1} y+c_{1}=0, a_{2} x+b_{2} y+c_{2}=0$
where, $a_{1}=5, b_{1}=-3, c_{1}=0$ and $a_{2}=2, b_{2}=k, c_{2}=0$
For a non-zero solution, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}$
$\Rightarrow \frac{5}{2}=\frac{-3}{k}$
$\Rightarrow 5 \mathrm{k}=-6 \Rightarrow \mathrm{k}=\frac{-6}{5}$
Hence, the required value of k is $\frac{-6}{5}$.

Linear equations in two variables - 3E
32.

Sol:

Let the cost of a chair be ₹ x and that of a table be ₹ y, then
$5 x+4 y=5600$
$4 x+3 y=4340$
Multiplying (i) by 3 and (ii) by 4 , we get
$15 x-16 x=16800-17360$
$\Rightarrow-\mathrm{x}=-560$
$\Rightarrow \mathrm{x}=560$
Substituting $x=560$ in (i), we have
$5 \times 560+4 y=5600$
$\Rightarrow 4 \mathrm{y}=5600-2800$
$\Rightarrow \mathrm{y}=\frac{2800}{4}=700$
Hence, the cost of a chair and that a table are respectively ₹ 560 and ₹ 700 .
33.

Sol:

Let the cost of a spoon be Rs.x and that of a fork be Rs.y. Then
$23 x+17 y=1770$
$17 x+23 y=1830$
Adding (i) and (ii), we get
$40 x+40 y=3600$
$\Rightarrow \mathrm{x}+\mathrm{y}=90$
Now, subtracting (ii) from (i), we get
$6 x-6 y=-60$
$\Rightarrow \mathrm{x}-\mathrm{y}=-10$
Adding (iii) and (iv), we get
$2 \mathrm{x}=80 \Rightarrow \mathrm{x}=40$
Substituting $x=40$ in (iii), we get
$40+y=90 \Rightarrow y=50$
Hence, the cost of a spoon that of a fork is Rs. 40 and Rs. 50 respectively.
34.

Sol:

Let x and y be the number of 50-paisa and 25-paisa coins respectively. Then $x+y=50$
$0.5 x+0.25 y=19.50$
Multiplying (ii) by 2 and subtracting it from (i), we get
$0.5 y=50-39$
$\Rightarrow \mathrm{y}=\frac{11}{0.5}=22$
Subtracting y $=22$ in (i), we get
$x+22=50$
$\Rightarrow \mathrm{x}=50-22=28$
Hence, the number of 25 -paisa and 50 -paisa coins is 22 and 28 respectively.
35.

Sol:

Let the larger number be x and the smaller number be y .
Then, we have:
$x+y=137$
$x-y=43$
On adding (i) and (ii), we get
$2 \mathrm{x}=180 \Rightarrow \mathrm{x}=90$
On substituting $x=90$ in (i), we get
$90+y=137$
$\Rightarrow \mathrm{y}=(137-90)=47$
Hence, the required numbers are 90 and 47 .
36.

Sol:

Let the first number be x and the second number be y . Then, we have:
$2 x+3 y=92$
$4 x-7 y=2$

On multiplying (i) by 7 and (ii) by 3 , we get
$14 x+21 y=644$
$12 x-21 y=6$ (iv)

On adding (iii) and (iv), we get
$26 x=650$
$\Rightarrow x=25$
On substituting $x=25$ in (i), we get
$2 \times 25+3 y=92$
$\Rightarrow 50+3 y=92$
$\Rightarrow 3 y=(92-50)=42$
$\Rightarrow \mathrm{y}=14$
Hence, the first number is 25 and the second number is 14 .
37.

Sol:

Let the first number be x and the second number be y .
Then, we have:
$3 x+y=142$
$4 x-y=138$
On adding (i) and (ii), we get
$7 \mathrm{x}=280$
$\Rightarrow x=40$
On substituting $x=40$ in (i), we get:
$3 \times 40+y=142$
$\Rightarrow \mathrm{y}=(142-120)=22$
$\Rightarrow y=22$
Hence, the first number is 40 and the second number is 22 .
38.

Sol:

Let the greater number be x and the smaller number be y .
Then, we have:
$25 \mathrm{x}-45=\mathrm{y}$ or $2 \mathrm{x}-\mathrm{y}=45$
$2 y-21=x$ or $-x+2 y=21$
On multiplying (i) by 2 , we get:
$4 x-2 y=90$
On adding (ii) and (iii), we get
$3 x=(90+21)=111$
$\Rightarrow \mathrm{x}=37$

On substituting $x=37$ in (i), we get
$2 \times 37-y=45$
$\Rightarrow 74-\mathrm{y}=45$
$\Rightarrow \mathrm{y}=(74-45)=29$
Hence, the greater number is 37 and the smaller number is 29 .
39.

Sol:

We know:
Dividend $=$ Divisor \times Quotient + Remainder
Let the larger number be x and the smaller be y.

Then, we have:
$3 \mathrm{x}=\mathrm{y} \times 4+8$ or $3 \mathrm{x}-4 \mathrm{y}=8$
$5 y=x \times 3+5$ or $-3 x+5 y=5$
On adding (i) and (ii), we get:
$y=(8+5)=13$
On substituting $y=13$ in (i) we get
$3 x-4 \times 13=8$
$\Rightarrow 3 \mathrm{x}=(8+52)=60$
$\Rightarrow \mathrm{x}=20$
Hence, the larger number is 20 and the smaller number is 13 .
40.

Sol:

Let the required numbers be x and y .
Now, we have:
$\frac{x+2}{y+2}=\frac{1}{2}$
By cross multiplication, we get:
$2 x+4=y+2$
$\Rightarrow 2 \mathrm{x}-\mathrm{y}=-2$
Again, we have:
$\frac{x-4}{y-4}=\frac{5}{11}$
By cross multiplication, we get:
$11 \mathrm{x}-44=5 \mathrm{y}-20$
$\Rightarrow 11 \mathrm{x}-5 \mathrm{y}=24$
On multiplying (i) by 5 , we get:
$10 x-5 y=-10$
On subtracting (iii) from (ii), we get:
$x=(24+10)=34$
On substituting $x=34$ in (i), we get:
$2 \times 34-y=-2$
$\Rightarrow 68-\mathrm{y}=-2$
$\Rightarrow y=(68+2)=70$
Hence, the required numbers are 34 and 70.
41.

Sol:

Let the larger number be x and the smaller number be y .
Then, we have:
$\mathrm{x}-\mathrm{y}=14$ or $\mathrm{x}=14+\mathrm{y}$
$x^{2}-y^{2}=448$
On substituting $\mathrm{x}=14+\mathrm{y}$ in (ii) we get
$(14+y)^{2}-y^{2}=448$
$\Rightarrow 196+y^{2}+28 y-y^{2}=448$
$\Rightarrow 196+28 y=448$
$\Rightarrow 28 y=(448-196)=252$
$\Rightarrow \mathrm{y}=\frac{252}{28}=9$
On substituting $y=9$ in (i), we get:
$\mathrm{x}=14+9=23$
Hence, the required numbers are 23 and 9 .
42.

Sol:

Let the tens and the units digits of the required number be x and y, respectively.
Required number $=(10 x+y)$
$\mathrm{x}+\mathrm{y}=12$
Number obtained on reversing its digits $=(10 y+x)$
$\therefore(10 y+x)-(10 x+y)=18$
$\Rightarrow 10 \mathrm{y}+\mathrm{x}-10 \mathrm{x}-\mathrm{y}=18$
$\Rightarrow 9 y-9 x=18$
$\Rightarrow \mathrm{y}-\mathrm{x}=2$
On adding (i) and (ii), we get:
$2 \mathrm{y}=14$
$\Rightarrow y=7$
On substituting y $=7$ in (i) we get
$\mathrm{x}+7=12$
$\Rightarrow \mathrm{x}=(12-7)=5$
Number $=(10 x+y)=10 \times 5+7=50+7=57$
Hence, the required number is 57 .
43.

Sol:

Let the tens and the units digits of the required number be x and y , respectively.
Required number $=(10 x+y)$
$10 \mathrm{x}+\mathrm{y}=7(\mathrm{x}+\mathrm{y})$
$10 x+7 y=7 x+7 y$ or $3 x-6 y=0$
Number obtained on reversing its digits $=(10 y+x)$
$(10 x+y)-27=(10 y+x)$
$\Rightarrow 10 x-x+y-10 y=27$
$\Rightarrow 9 \mathrm{x}-9 \mathrm{y}=27$
$\Rightarrow 9(\mathrm{x}-\mathrm{y})=27$
$\Rightarrow \mathrm{x}-\mathrm{y}=3$
On multiplying (ii) by 6 , we get:
$6 x-6 y=18$
On subtracting (i) from (ii), we get:
$3 \mathrm{x}=18$
$\Rightarrow x=6$
On substituting $x=6$ in (i) we get
$3 \times 6-6 y=0$
$\Rightarrow 18-6 y=0$
$\Rightarrow 6 y=18$
$\Rightarrow y=3$
Number $=(10 x+y)=10 \times 6+3=60+3=63$
Hence, the required number is 63 .
44.

Sol:

Let the tens and the units digits of the required number be x and y, respectively.
Required number $=(10 x+y)$
$x+y=15$
Number obtained on reversing its digits $=(10 y+x)$
$\therefore(10 \mathrm{y}+\mathrm{x})-(10 \mathrm{x}+\mathrm{y})=9$
$\Rightarrow 10 \mathrm{y}+\mathrm{x}-10 \mathrm{x}-\mathrm{y}=9$
$\Rightarrow 9 y-9 x=9$
$\Rightarrow y-x=1$
On adding (i) and (ii), we get:
$2 \mathrm{y}=16$
$\Rightarrow y=8$
On substituting $y=8$ in (i) we get
$x+8=15$
$\Rightarrow \mathrm{x}=(15-8)=7$
Number $=(10 \mathrm{x}+\mathrm{y})=10 \times 7+8=70+8=78$
Hence, the required number is 78 .
45.

Sol:

Let the tens and the units digits of the required number be x and y, respectively.
Required number $=(10 x+y)$
$10 x+y=4(x+y)+3$
$\Rightarrow 10 x+y=4 x+4 y+3$
$\Rightarrow 6 \mathrm{x}-3 \mathrm{y}=3$
$\Rightarrow 2 \mathrm{x}-\mathrm{y}=1$
Again, we have:
$10 \mathrm{x}+\mathrm{y}+18=10 \mathrm{y}+\mathrm{x}$
$\Rightarrow 9 x-9 y=-18$
$\Rightarrow x-y=-2$
On subtracting (ii) from (i), we get:
$\mathrm{x}=3$
On substituting $x=3$ in (i) we get
$2 \times 3-y=1$
$\Rightarrow \mathrm{y}=6-1=5$
Required number $=(10 x+y)=10 \times 3+5=30+5=35$
Hence, the required number is 35 .
46.

Sol:

We know:
Dividend $=$ Divisor \times Quotient + Remainder

Let the tens and the units digits of the required number be x and y, respectively.
Required number $=(10 x+y)$
$10 x+y=(x+y) \times 6+0$
$\Rightarrow 10 \mathrm{x}-6 \mathrm{x}+\mathrm{y}-6 \mathrm{y}=0$
$\Rightarrow 4 \mathrm{x}-5 \mathrm{y}=0$
Number obtained on reversing its digits $=(10 y+x)$
$\therefore 10 \mathrm{x}+\mathrm{y}-9=10 \mathrm{y}+\mathrm{x}$
$\Rightarrow 9 x-9 y=9$
$\Rightarrow \mathrm{x}-\mathrm{y}=1$
On multiplying (ii) by 5 , we get:
$5 x-5 y=5$
On subtracting (i) from (iii), we get:
$\mathrm{x}=5$
On substituting $x=5$ in (i) we get
$4 \times 5-5 y=0$
$\Rightarrow 20-5 y=0$
$\Rightarrow y=4$
\therefore The number $=(10 x+y)=10 \times 5+4=50+4=54$
Hence, the required number is 54 .
47.

Sol:

Let the tens and the units digits of the required number be x and y, respectively.
Then, we have:
$\mathrm{xy}=35$
Required number $=(10 x+y)$
Number obtained on reversing its digits $=(10 y+x)$
$\therefore(10 \mathrm{x}+\mathrm{y})+18=10 \mathrm{y}+\mathrm{x}$
$\Rightarrow 9 x-9 y=-18$
$\Rightarrow 9(y-x)=18$
$\Rightarrow \mathrm{y}-\mathrm{x}=2$

We know:
$(y+x)^{2}-(y-x)^{2}=4 x y$
$\Rightarrow(y+x)= \pm \sqrt{(y-x)^{2}+4 x y}$
$\Rightarrow(y+x)= \pm \sqrt{4+4 \times 35}= \pm \sqrt{144}= \pm 12$
$\Rightarrow \mathrm{y}+\mathrm{x}=12 \quad \ldots \ldots .$. (iii) $(\because \mathrm{x}$ and y cannot be negative $)$
On adding (ii) and (iii), we get:
$2 \mathrm{y}=2+12=14$
$\Rightarrow y=7$
On substituting $y=7$ in (ii) we get
$7-\mathrm{x}=2$
$\Rightarrow \mathrm{x}=(7-2)=5$
\therefore The number $=(10 \mathrm{x}+\mathrm{y})=10 \times 5+7=50+7=57$
Hence, the required number is 57 .
48.

Sol:

Let the tens and the units digits of the required number be x and y, respectively.
Then, we have:
$\mathrm{xy}=18$
Required number $=(10 x+y)$
Number obtained on reversing its digits $=(10 y+x)$
$\therefore(10 x+y)-63=10 y+x$
$\Rightarrow 9 x-9 y=63$
$\Rightarrow 9(\mathrm{x}-\mathrm{y})=63$
$\Rightarrow \mathrm{x}-\mathrm{y}=7$
We know:

$$
\begin{aligned}
&(x+y)^{2}-(x-y)^{2}=4 x y \\
& \Rightarrow(x+y)= \pm \sqrt{(x-y)^{2}+4 x y} \\
& \Rightarrow(x+y)= \pm \sqrt{49+4 \times 18} \\
&= \pm \sqrt{49+72} \\
&= \pm \sqrt{121}= \pm 11
\end{aligned}
$$

$\Rightarrow \mathrm{x}+\mathrm{y}=11 \quad \ldots \ldots .$. (iii) $(\because \mathrm{x}$ and y cannot be negative)
On adding (ii) and (iii), we get:
$2 \mathrm{x}=7+11=18$
$\Rightarrow x=9$
On substituting $x=9$ in (ii) we get
$9-y=7$
$\Rightarrow y=(9-7)=2$
\therefore Number $=(10 \mathrm{x}+\mathrm{y})=10 \times 9+2=90+2=92$
Hence, the required number is 92 .
49.

Sol:

Let x be the ones digit and y be the tens digit. Then
Two digit number before reversing $=10 y+x$
Two digit number after reversing $=10 \mathrm{x}+\mathrm{y}$
As per the question
$(10 y+x)+(10 x+y)=121$
$\Rightarrow 11 \mathrm{x}+11 \mathrm{y}=121$
$\Rightarrow x+y=11$
Since the digits differ by 3 , so
$x-y=3$
Adding (i) and (ii), we get
$2 x=14 \Rightarrow x=7$
Putting $x=7$ in (i), we get
$7+y=11 \Rightarrow y=4$
Changing the role of x and $y, x=4$ and $y=7$
Hence, the two-digit number is 74 or 47 .
50.

Sol:

Let the required fraction be $\frac{x}{y}$.
Then, we have:
$\mathrm{x}+\mathrm{y}=8$
And, $\frac{x+3}{y+3}=\frac{3}{4}$
$\Rightarrow 4(\mathrm{x}+3)=3(\mathrm{y}+3)$
$\Rightarrow 4 \mathrm{x}+12=3 \mathrm{y}+9$

$$
\begin{equation*}
\Rightarrow 4 x-3 y=-3 \tag{ii}
\end{equation*}
$$

On multiplying (i) by 3 , we get:
$3 x+3 y=24$
On adding (ii) and (iii), we get:
$7 \mathrm{x}=21$
$\Rightarrow \mathrm{x}=3$
On substituting $x=3$ in (i), we get:
$3+y=8$
$\Rightarrow \mathrm{y}=(8-3)=5$
$\therefore \mathrm{x}=3$ and $\mathrm{y}=5$
Hence, the required fraction is $\frac{3}{5}$.
51.

Sol:

Let the required fraction be $\frac{x}{y}$.
Then, we have:
$\frac{x+2}{y}=\frac{1}{2}$
$\Rightarrow 2(\mathrm{x}+2)=\mathrm{y}$
$\Rightarrow 2 \mathrm{x}+4=\mathrm{y}$
$\Rightarrow 2 \mathrm{x}-\mathrm{y}=-4$
Again, $\frac{x}{y-1}=\frac{1}{3}$
$\Rightarrow 3 \mathrm{x}=1(\mathrm{y}-1)$
$\Rightarrow 3 \mathrm{x}-\mathrm{y}=-1$
On subtracting (i) from (ii), we get:
$\mathrm{x}=(-1+4)=3$
On substituting $x=3$ in (i), we get:
$2 \times 3-y=-4$
$\Rightarrow 6-\mathrm{y}=-4$
$\Rightarrow \mathrm{y}=(6+4)=10$
$\therefore \mathrm{x}=3$ and $\mathrm{y}=10$
Hence, the required fraction is $\frac{3}{10}$.
52.

Sol:

Let the required fraction be $\frac{x}{y}$.
Then, we have:

$$
\begin{align*}
& y=x+11 \\
& \Rightarrow y-x=11 \tag{i}\\
& \text { Again, } \frac{x+8}{y+8}=\frac{3}{4} \\
& \Rightarrow 4(x+8)=3(y+8) \\
& \Rightarrow 4 x+32=3 y+24 \\
& \Rightarrow 4 x-3 y=-8 \tag{ii}
\end{align*}
$$

On multiplying (i) by 4 , we get:
$4 y-4 x=44$
On adding (ii) and (iii), we get:
$y=(-8+44)=36$
On substituting $y=36$ in (i), we get:
$36-x=11$
$\Rightarrow \mathrm{x}=(36-11)=25$
$\therefore \mathrm{x}=25$ and $\mathrm{y}=36$
Hence, the required fraction is $\frac{25}{36}$.
53.

Sol:

Let the required fraction be $\stackrel{x}{y}$.
Then, we have:
$\frac{x-1}{y+2}=\frac{1}{2}$
$\Rightarrow 2(\mathrm{x}-1)=1(\mathrm{y}+2)$
$\Rightarrow 2 \mathrm{x}-2=\mathrm{y}+2$
$\Rightarrow 2 \mathrm{x}-\mathrm{y}=4$
Again, $\frac{x-7}{y-2}=\frac{1}{3}$
$\Rightarrow 3(\mathrm{x}-7)=1(\mathrm{y}-2)$
$\Rightarrow 3 \mathrm{x}-21=\mathrm{y}-2$
$\Rightarrow 3 \mathrm{x}-\mathrm{y}=19$
On subtracting (i) from (ii), we get:
$x=(19-4)=15$
On substituting $x=15$ in (i), we get:
$2 \times 15-y=4$
$\Rightarrow 30-\mathrm{y}=4$
$\Rightarrow \mathrm{y}=26$
$\therefore \mathrm{x}=15$ and $\mathrm{y}=26$
Hence, the required fraction is $\frac{15}{26}$.
54.

Sol:

Let the required fraction be x / y
As per the question
$x+y=4+2 x$
$\Rightarrow \mathrm{y}-\mathrm{x}=4$
After changing the numerator and denominator
New numerator $=\mathrm{x}+3$
New denominator $=y+3$
Therefore
$\frac{x+3}{y+3}=\frac{2}{3}$
$\Rightarrow 3(\mathrm{x}+3)=2(\mathrm{y}+3)$
$\Rightarrow 3 \mathrm{x}+9=2 \mathrm{y}+6$
$\Rightarrow 2 \mathrm{y}-3 \mathrm{x}=3$
Multiplying (i) by 3 and subtracting (ii), we get:
$3 \mathrm{y}-2 \mathrm{y}=12-3$
$\Rightarrow y=9$
Now, putting $\mathrm{y}=9$ in (i), we get:
$9-\mathrm{x}=4 \Rightarrow \mathrm{x}=9-4=5$
Hence, the required fraction is $\frac{5}{9}$.
55.

Sol:

Let the larger number be x and the smaller number be y .
Then, we have:
$x+y=16$
And, $\frac{1}{x}+\frac{1}{y}=\frac{1}{3}$
$\Rightarrow 3(\mathrm{x}+\mathrm{y})=\mathrm{xy}$
$\Rightarrow 3 \times 16=x y \quad$ [Since from (i), we have: $x+y=16$]
$\therefore \mathrm{xy}=48$
We know:
$(x-y)^{2}=(x+y)^{2}-4 x y$
$(x-y)^{2}=(16)^{2}-4 \times 48=256-192=64$
$\therefore(\mathrm{x}-\mathrm{y})= \pm \sqrt{64}= \pm 8$
Since x is larger and y is smaller, we have:
$x-y=8$ \qquad .(iv)
On adding (i) and (iv), we get:
$2 \mathrm{x}=24$
$\Rightarrow \mathrm{x}=12$
On substituting $x=12$ in (i), we get:
$12+y=16 \Rightarrow y=(16-12)=4$
Hence, the required numbers are 12 and 4 .
56.

Sol:

Let the number of students in classroom A be x
Let the number of students in classroom B be y.
If 10 students are transferred from A to B , then we have:
$x-10=y+10$
$\Rightarrow \mathrm{x}-\mathrm{y}=20$
If 20 students are transferred from B to A, then we have:
$2(y-20)=x+20$
$\Rightarrow 2 \mathrm{y}-40=\mathrm{x}+20$
$\Rightarrow-x+2 y=60$

On adding (i) and (ii), we get:
$y=(20+60)=80$
On substituting $y=80$ in (i), we get:
$x-80=20$
$\Rightarrow \mathrm{x}=(20+80)=100$
Hence, the number of students in classroom A is 100 and the number of students in classroom B is 80 .
57.

Sol:

Let fixed charges be Rs.x and rate per km be Rs.y.
Then as per the question
$x+80 y=1330$
$x+90 y=1490$
Subtracting (i) from (ii), we get
$10 y=160 \Rightarrow y=\frac{160}{}=16$
10
Now, putting $\mathrm{y}=16$, we have
$x+80 \times 16=1330$
$\Rightarrow \mathrm{x}=1330-1280=50$

Hence, the fixed charges be Rs. 50 and the rate per km is Rs. 16 .
58.

Sol:

Let the fixed charges be Rs.x and the cost of food per day be Rs.y.
Then as per the question
$x+25 y=4500$
$x+30 y=5200$
Subtracting (i) from (ii), we get
$5 \mathrm{y}=700 \Rightarrow \mathrm{y}=\underline{700}=140$
5
Now, putting $y=140$, we have
$x+25 \times 140=4500$
$\Rightarrow \mathrm{x}=4500-3500=1000$

Hence, the fixed charges be Rs. 1000 and the cost of the food per day is Rs. 140.
59.

Sol:

Let the amounts invested at 10% and 8% be Rs.x and Rs.y respectively.
Then as per the question
$\frac{x \times 10 \times 1}{100}=\frac{y \times 8 \times 1}{100}=1350$
$10 x+8 y=135000$
After the amounts interchanged but the rate being the same, we have
$\frac{x \times 8 \times 1}{100}=\frac{y \times 10 \times 1}{100}=1350-45$
$8 x+10 y=130500$
Adding (i) and (ii) and dividing by 9, we get
$2 \mathrm{x}+2 \mathrm{y}=29500$
Subtracting (ii) from (i), we get
$2 \mathrm{x}-2 \mathrm{y}=4500$
Now, adding (iii) and (iv), we have
$4 \mathrm{x}=34000$
$x=\frac{34000}{4}=8500$
Putting $x=8500$ in (iii), we get
$2 \times 8500+2 y=29500$
$2 \mathrm{y}=29500-17000=12500$
$y=\frac{12500}{2}=6250$
Hence, the amounts invested are Rs. 8,500 at 10% and Rs. 6,250 at 8%.
60.

Sol:

Let the monthly income of A and B are Rs.x and Rs.y respectively.
Then as per the question
$\frac{x}{y}=\frac{5}{4}$
$\Rightarrow \mathrm{y}=\frac{4 x}{5}$
Since each save Rs.9,000, so
Expenditure of A = Rs. $(\mathrm{x}-9000)$
Expenditure of $\mathrm{B}=$ Rs. $(\mathrm{y}-9000)$
The ratio of expenditures of A and B are in the ratio 7:5.
$\therefore \frac{x-9000}{y-9000}=\frac{7}{5}$
$\Rightarrow 7 \mathrm{y}-63000=5 \mathrm{x}-45000$
$\Rightarrow 7 \mathrm{y}-5 \mathrm{x}=18000$
From (i), substitute $y=\frac{4 x}{5}$ in (ii) to get
$7 \times \frac{4 x}{5}-5 \mathrm{x}=18000$
$\Rightarrow 28 \mathrm{x}-25 \mathrm{x}=90000$
$\Rightarrow 3 \mathrm{x}=90000$
$\Rightarrow \mathrm{x}=30000$
Now, putting $x=30000$, we get
$y=\frac{4 \times 30000}{5}=4 \times 6000=24000$
Hence, the monthly incomes of A and B are Rs. 30,000 and Rs.24,000.
61.

Sol:

Let the cost price of the chair and table be Rs.x and Rs.y respectively.
Then as per the question
Selling price of chair + Selling price of table $=1520$
$\frac{100+25}{100} \times x+\frac{100+10}{100} \times y=1520$
$\Rightarrow \frac{125}{100} \mathrm{x}+\frac{110}{100} \mathrm{y}=1520$
$\Rightarrow 25 \mathrm{x}+22 \mathrm{y}-30400=0$
When the profit on chair and table are 10% and 25% respectively, then
$\frac{100+10}{100} \times \mathrm{x}+\frac{100+25}{100} \times \mathrm{y}=1535$
$\Rightarrow \frac{110}{100} \mathrm{x}+\frac{125}{100} \mathrm{y}=1535$
$\Rightarrow 22 \mathrm{x}+25 \mathrm{y}-30700=0$
Solving (i) and (ii) by cross multiplication, we get
$\frac{x}{(22)(-30700)-(25)(-30400)}=\frac{y}{(-30400)(22)-(-30700)(25)}=\frac{1}{(25)(25)-(22)(22)}$
$\Rightarrow \frac{x}{7600-6754}=\frac{y}{7675-6688}=\frac{100}{3 \times 47}$
$\Rightarrow \frac{x}{846}=\frac{y}{987}=\frac{100}{3 \times 47}$
$\Rightarrow \mathrm{x}=\frac{100 \times 846}{3 \times 47}, \mathrm{y}=\frac{100 \times 987}{3 \times 47}$
$\Rightarrow x=600, y=700$
Hence, the cost of chair and table are Rs. 600 and Rs. 700 respectively.
62.

Sol:

Let X and Y be the cars starting from points A and B , respectively and let their speeds be x km / h and $\mathrm{y} \mathrm{km} / \mathrm{h}$, respectively.
Then, we have the following cases:
Case I: When the two cars move in the same direction In this case, let the two cars meet at point M.

Distance covered by car X in 7 hours $=7 \mathrm{x} \mathrm{km}$
Distance covered by car Y in 7 hours $=7 \mathrm{ykm}$
$\therefore A M=(7 x) \mathrm{km}$ and $B M=(7 y) \mathrm{km}$
$\Rightarrow(\mathrm{AM}-\mathrm{BM})=\mathrm{AB}$
$\Rightarrow(7 x-7 y)=70$
$\Rightarrow 7(\mathrm{x}-\mathrm{y})=70$
$\Rightarrow(\mathrm{x}-\mathrm{y})=10$
Case II: When the two cars move in opposite directions
In this case, let the two cars meet at point N .
Distance covered by car X in 1 hour $=\mathrm{xkm}$
Distance covered by car Y in 1 hour $=y \mathrm{~km}$
$\therefore \mathrm{AN}=\mathrm{xkm}$ and $\mathrm{BN}=\mathrm{ykm}$
$\Rightarrow \mathrm{AN}+\mathrm{BN}=\mathrm{AB}$
$\Rightarrow x+y=70$
On adding (i) and (ii), we get:
$2 \mathrm{x}=80$
$\Rightarrow \mathrm{x}=40$
On substituting $x=40$ in (i), we get:
$40-\mathrm{y}=10$
$\Rightarrow y=(40-10)=30$
Hence, the speed of car X is $40 \mathrm{~km} / \mathrm{h}$ and the speed of car Y is $30 \mathrm{~km} / \mathrm{h}$.
63.

Sol:

Let the original speed be x kmph and let the time taken to complete the journey be y hours.
\therefore Length of the whole journey $=(x y) \mathrm{km}$
Case I:
When the speed is $(x+5) \mathrm{kmph}$ and the time taken is $(y-3)$ hrs:
Total journey $=(x+5)(y-3) \mathrm{km}$
$\Rightarrow(\mathrm{x}+5)(\mathrm{y}-3)=\mathrm{xy}$
$\Rightarrow x y+5 y-3 x-15=x y$
$\Rightarrow 5 y-3 x=15$
Case II:
When the speed is $(x-4) \mathrm{kmph}$ and the time taken is $(\mathrm{y}+3) \mathrm{hrs}$:
Total journey $=(x-4)(y+3) k m$
$\Rightarrow(x-4)(y+3)=x y$
$\Rightarrow x y-4 y+3 x-12=x y$
$\Rightarrow 3 x-4 y=12$
On adding (i) and (ii), we get:
$y=27$
On substituting $\mathrm{y}=27$ in (i), we get:
$5 \times 27-3 x=15$
$\Rightarrow 135-3 \mathrm{x}=15$
$\Rightarrow 3 \mathrm{x}=120$
$\Rightarrow \mathrm{x}=40$
\therefore Length of the journey $=(x y) \mathrm{km}=(40 \times 27) \mathrm{km}=1080 \mathrm{~km}$
64.

Sol:

Let the speed of the train and taxi be $x \mathrm{~km} / \mathrm{h}$ and $\mathrm{y} \mathrm{km} / \mathrm{h}$ respectively. Then as per the question
$\frac{3}{x}+\frac{2}{y}=\frac{11}{200}$

When the speeds of the train and taxi are 260 km and 240 km respectively, then
$\frac{260}{x}+\frac{240}{y}=\frac{11}{2}+\frac{6}{60}$
$\Rightarrow \frac{13}{x}+\frac{12}{y}=\frac{28}{100}$
Multiplying (i) by 6 and subtracting (ii) from it, we get
$\frac{18}{x}-\frac{13}{x}=\frac{66}{200}-\frac{28}{100}$
$\Rightarrow \frac{5}{x}=\frac{10}{200} \Rightarrow \mathrm{x}=100$
Putting $\mathrm{x}=100$ in (i), we have
$\frac{3}{100}+\frac{2}{y}=\frac{11}{200}$
$\Rightarrow \frac{2}{y}=\frac{11}{200}-\frac{3}{100}=\frac{1}{40}$
$\Rightarrow \mathrm{y}=80$
Hence, the speed of the train and that of the taxi are $100 \mathrm{~km} / \mathrm{h}$ and $80 \mathrm{~km} / \mathrm{h}$ respectively.
65.

Sol:

Let the speed of the car A and B be $x \mathrm{~km} / \mathrm{h}$ and $\mathrm{y} \mathrm{km} / \mathrm{h}$ respectively. Let $\mathrm{x}>y$.
Case-1: When they travel in the same direction

From the figure
$\mathrm{AC}-\mathrm{BC}=160$
$\Rightarrow \mathrm{x} \times 8-\mathrm{y} \times 8=160$
$\Rightarrow \mathrm{x}-\mathrm{y}=20$
Case-2: When they travel in opposite direction

From the figure
$\mathrm{AC}+\mathrm{BC}=160$
$\Rightarrow \mathrm{x} \times 2+\mathrm{y} \times 2=160$
$\Rightarrow \mathrm{x}+\mathrm{y}=80$
Adding (i) and (ii), we get
$2 \mathrm{x}=100 \Rightarrow \mathrm{x}=50 \mathrm{~km} / \mathrm{h}$

Putting $x=50$ in (ii), we have
$50+\mathrm{y}=80 \Rightarrow \mathrm{y}=80-50=30 \mathrm{~km} / \mathrm{h}$
Hence, the speeds of the cars are $50 \mathrm{~km} / \mathrm{h}$ and $30 \mathrm{~km} / \mathrm{h}$.
66.

Sol:

Let the speed of the sailor in still water be $x \mathrm{~km} / \mathrm{h}$ and that of the current $\mathrm{y} \mathrm{km} / \mathrm{h}$.
Speed downstream $=(x+y) k m / h$
Speed upstream $=(x-y) \mathrm{km} / \mathrm{h}$
As per the question
$(x+y) \times \frac{40}{60}=8$
$\Rightarrow \mathrm{x}+\mathrm{y}=12$
When the sailor goes upstream, then
$(x-y) \times 1=8$
$x-y=8$
Adding (i) and (ii), we get
$2 \mathrm{x}=20 \Rightarrow \mathrm{x}=10$
Putting $x=10$ in (i), we have
$10+y=12 \Rightarrow y=2$
Hence, the speeds of the sailor in still water and the current are $10 \mathrm{~km} / \mathrm{h}$ and $2 \mathrm{~km} / \mathrm{h}$ respectively.
67.

Sol:

Let the speed of the boat in still water be $\mathrm{xkm} / \mathrm{h}$ and the speed of the stream be $\mathrm{y} \mathrm{km} / \mathrm{h}$.
Then we have
Speed upstream $=(x-y) k m / h r$
Speed downstream $=(x+y) \mathrm{km} / \mathrm{hr}$
Time taken to cover 12 km upstream $=\frac{12}{(x-y)} \mathrm{hrs}$
Time taken to cover 40 km downstream $=\frac{40}{(x+y)} \mathrm{hrs}$
Total time taken $=8 \mathrm{hrs}$
$\therefore \frac{12}{(x-y)}+\frac{40}{(x+y)}=8$
Again, we have:

Time taken to cover 16 km upstream $=\frac{16}{(x-y)} \mathrm{hrs}$
Time taken to cover 32 km downstream $=\frac{32}{(x+y)} \mathrm{hrs}$
Total time taken $=8 \mathrm{hrs}$
$\therefore \frac{16}{(x-y)}+\frac{32}{(x+y)}=8$
Putting $\frac{1}{(x-y)}=\mathrm{u}$ and $\frac{1}{(x+y)}=\mathrm{v}$ in (i) and (ii), we get:
$12 u+40 v=8$
$3 u+10 v=2$
And, $16 u+32 v=8$
$\Rightarrow 2 \mathrm{u}+4 \mathrm{v}=1$
On multiplying (a) by 4 and (b) by 10, we get:
$12 u+40 v=8$
And, $20 u+40 v=10$
On subtracting (iii) from (iv), we get:
$8 \mathrm{u}=2$
$\Rightarrow \mathrm{u}=\frac{2}{8}=\frac{1}{4}$
On substituting $\mathrm{u}=\frac{1}{4}$ in (iii), we get:
$40 \mathrm{v}=5$
$\Rightarrow \mathrm{v}=\frac{5}{40}=\frac{1}{8}$
Now, we have:
$\mathrm{u}=\frac{1}{4}$
$\Rightarrow \frac{1}{(x-y)}=\frac{1}{4} \Rightarrow x-y=4$
$\mathrm{v}=\frac{1}{8}$
$\Rightarrow \frac{1}{(x+y)}=\frac{1}{8} \Rightarrow x+y=8$
On adding (v) and (vi), we get:
$2 \mathrm{x}=12$
$\Rightarrow x=6$
On substituting $x=6$ in (v), we get:
$6-y=4$
$y=(6-4)=2$
\therefore Speed of the boat in still water $=6 \mathrm{~km} / \mathrm{h}$
And, speed of the stream $=2 \mathrm{~km} / \mathrm{h}$
68.

Sol:
Let us suppose that one man alone can finish the work in x days and one boy alone can finish it in y days.
\therefore One man's one day's work $=\frac{1}{x}$
And, one boy's one day's work $=\frac{1}{y}$
2 men and 5 boys can finish the work in 4 days.
$\therefore(2$ men's one day's work $)+(5$ boys' one day's work $)=\frac{1}{4}$
$\Rightarrow \frac{2}{x}+\frac{5}{y}=\frac{1}{4}$
$\Rightarrow 2 u+5 v=\frac{1}{4}$
.......(i) Here, $\frac{1}{x}=\mathrm{u}$ and $\frac{1}{y}=\mathrm{v}$
Again, 3 men and 6 boys can finish the work in 3days.
$\therefore(3$ men's one day's work $)+(6$ boys' one day's work $)=\frac{1}{3}$
$\Rightarrow \frac{3}{x}+\frac{6}{y}=\frac{1}{3}$
$\Rightarrow 3 u+6 v=\frac{1}{3} \quad \ldots \ldots$. (ii) Here, $\frac{1}{x}=u$ and $\frac{1}{y}=v$
On multiplying (iii) from (iv), we get:
$3 \mathrm{u}=\left(\frac{5}{3}-\frac{6}{4}\right)=\frac{2}{12}=\frac{1}{6}$
$\Rightarrow \mathrm{u}=\frac{1}{6 \times 3}=\frac{1}{18} \Rightarrow \frac{1}{x}=\frac{1}{18} \Rightarrow \mathrm{x}=18$
On substituting $u=\frac{1}{18}$ in (i), we get:
$2 \times \frac{1}{18}+5 \mathrm{v}=\frac{1}{4} \Rightarrow 5 \mathrm{v}=\left(\frac{1}{4}-\frac{1}{9}\right)=\frac{5}{36}$
$\Rightarrow \mathrm{v}=\left(\frac{5}{36} \times \frac{1}{5}\right)=\frac{1}{36} \Rightarrow \frac{1}{y}=\frac{1}{36} \Rightarrow \mathrm{y}=36$
Hence, one man alone can finish the work is 18days and one boy alone can finish the work in 36 days.
69.

Sol:

Let the length of the room be x meters and he breadth of the room be y meters.
Then, we have:
Area of the room = xy
According to the question, we have:
$x=y+3$
$\Rightarrow \mathrm{x}-\mathrm{y}=3$
And, $(x+3)(y-2)=x y$
$\Rightarrow \mathrm{xy}-2 \mathrm{x}+3 \mathrm{y}-6=\mathrm{xy}$
$\Rightarrow 3 y-2 x=6$
On multiplying (i) by 2 , we get:
$2 x-2 y=6$
On adding (ii) and (iii), we get:
$y=(6+6)=12$
On substituting $y=12$ in (i), we get:
$\mathrm{x}-12=3$
$\Rightarrow \mathrm{x}=(3+12)=15$
Hence, the length of the room is 15 meters and its breadth is 12 meters.
70.

Sol:

Let the length and the breadth of the rectangle be $x \mathrm{~m}$ and $\mathrm{y} m$, respectively.
\therefore Area of the rectangle $=(x y)$ sq.m
Case 1:
When the length is reduced by 5 m and the breadth is increased by 3 m :
New length $=(x-5) m$
New breadth $=(y+3) m$
\therefore New area $=(x-5)(y+3)$ sq.m
$\therefore x y-(x-5)(y+3)=8$
$\Rightarrow x y-[x y-5 y+3 x-15]=8$
$\Rightarrow x y-x y+5 y-3 x+15=8$
$\Rightarrow 3 x-5 y=7$
Case 2:
When the length is increased by 3 m and the breadth is increased by 2 m :
New length $=(x+3) \mathrm{m}$
New breadth $=(y+2) \mathrm{m}$
\therefore New area $=(x+3)(y+2)$ sq.m
$\Rightarrow(x+3)(y+2)-x y=74$
$\Rightarrow[x y+3 y+2 x+6]-x y=74$
$\Rightarrow 2 x+3 y=68$

On multiplying (i) by 3 and (ii) by 5, we get:
$9 x-15 y=21$
$10 x+15 y=340$
On adding (iii) and (iv), we get:
$19 \mathrm{x}=361$
$\Rightarrow x=19$
On substituting $x=19$ in (iii), we get:
$9 \times 19-15 y=21$
$\Rightarrow 171-15 y=21$
$\Rightarrow 15 y=(171-21)=150$
$\Rightarrow \mathrm{y}=10$
Hence, the length is 19 m and the breadth is 10 m .
71.

Sol:

Let the length and the breadth of the rectangle be $x \mathrm{~m}$ and y m , respectively. Case 1: When length is increased by 3 m and the breadth is decreased by 4 m : $x y-(x+3)(y-4)=67$
$\Rightarrow x y-x y+4 x-3 y+12=67$
$\Rightarrow 4 x-3 y=55$
Case 2: When length is reduced by 1 m and breadth is increased by 4 m :
$(x-1)(y+4)-x y=89$
$\Rightarrow x y+4 x-y-4-x y=89$
$\Rightarrow 4 x-y=93$
Subtracting (i) and (ii), we get:
$2 \mathrm{y}=38 \Rightarrow \mathrm{y}=19$
On substituting y = 19 in (ii), we have
$4 \mathrm{x}-19=93$
$\Rightarrow 4 \mathrm{x}=93+19=112$
$\Rightarrow \mathrm{x}=28$
Hence, the length $=28 \mathrm{~m}$ and breadth $=19 \mathrm{~m}$.
72.

Sol:

Let the basic first class full fare be Rs.x and the reservation charge be Rs.y.
Case 1: One reservation first class full ticket cost Rs.4, 150
$x+y=4150$
Case 2: One full and one and half reserved first class tickets cost Rs.6,255
$(\mathrm{x}+\mathrm{y})+\left(\frac{1}{2} x+y\right)=6255$
$\Rightarrow 3 \mathrm{x}+4 \mathrm{y}=12510$
Substituting $y=4150-x$ from (i) in (ii), we get
$3 x+4(4150-x)=12510$
$\Rightarrow 3 \mathrm{x}-4 \mathrm{x}+16600=12510$
$\Rightarrow \mathrm{x}=16600-12510=4090$
Now, putting $x=4090$ in (i), we have
$4090+y=4150$
$\Rightarrow y=4150-4090=60$
Hence, cost of basic first class full fare $=$ Rs.4,090 and reseryation charge $=$ Rs. 60 .
73.

Sol:

Let the present age of the man be x years and that of his son be y years.
After 5 years man's age $=x+5$
After 5 years ago son's age $=y+5$
As per the question
$x+5=3(y+5)$
$\Rightarrow \mathrm{x}-3 \mathrm{y}=10$
5 years ago man's age $=x-5$
5 years ago son's age $=y-5$
As per the question
$x-5=7(y-5)$
$\Rightarrow \mathrm{x}-7 \mathrm{y}=-30$
Subtracting (ii) from (i), we have
$4 y=40 \Rightarrow y=10$
Putting $y=10$ in (i), we get
$x-3 \times 10=10$
$\Rightarrow \mathrm{x}=10+30=40$

Hence, man's present age $=40$ years and son's present age $=10$ years.
74.

Sol:

Let the man's present age be x years.
Let his son's present age be y years.
According to the question, we have:
Two years ago:
Age of the man $=$ Five times the age of the son
$\Rightarrow(\mathrm{x}-2)=5(\mathrm{y}-2)$
$\Rightarrow \mathrm{x}-2=5 \mathrm{y}-10$
$\Rightarrow x-5 y=-8$
Two years later:
Age of the man $=$ Three times the age of the son +8
$\Rightarrow(x+2)=3(y+2)+8$
$\Rightarrow x+2=3 y+6+8$
$\Rightarrow \mathrm{x}-3 \mathrm{y}=12$
Subtracting (i) from (ii), we get:
$2 \mathrm{y}=20$
$\Rightarrow y=10$
On substituting $y=10$ in (i), we get:
$x-5 \times 10=-8$
$\Rightarrow \mathrm{x}-50=-8$
$\Rightarrow \mathrm{x}=(-8+50)=42$
Hence, the present age of the man is 42 years and the present age of the son is 10 years.
75.

Sol:

Let the mother's present age be x years.
Let her son's present age be y years.
Then, we have:
$x+2 y=70$
And, $2 x+y=95$

On multiplying (ii) by 2 , we get:
$4 x+2 y=190$
On subtracting (i) from (iii), we get:
$3 x=120$
$\Rightarrow x=40$
On substituting $x=40$ in (i), we get:
$40+2 y=70$
$\Rightarrow 2 \mathrm{y}=(70-40)=30$
$\Rightarrow \mathrm{y}=15$
Hence, the mother's present age is 40 years and her son's present age is 15 years.
76.

Sol:

Let the woman's present age be x years.
Let her daughter's present age be y years.
Then, we have:
$x=3 y+3$
$\Rightarrow \mathrm{x}-3 \mathrm{y}=3$
After three years, we have:
$(x+3)=2(y+3)+10$
$\Rightarrow \mathrm{x}+3=2 \mathrm{y}+6+10$
$\Rightarrow \mathrm{x}-2 \mathrm{y}=13$
Subtracting (ii) from (i), we get:
$-y=(3-13)=-10$
$\Rightarrow \mathrm{y}=10$
On substituting $y=10$ in (i), we get:
$x-3 \times 10=3$
$\Rightarrow \mathrm{x}-30=3$
$\Rightarrow \mathrm{x}=(3+30)=33$
Hence, the woman's present age is 33 years and her daughter's present age is 10 years.
77.

Sol:

Let the actual price of the tea and lemon set be Rs.x and Rs.y respectively.
When gain is Rs.7, then
$\frac{y}{100} \times 15-\frac{x}{100} \times 5=7$
$\Rightarrow 3 y-x=140$
When gain is Rs.14, then
$\frac{y}{100} \times 5+\frac{x}{100} \times 10=14$
$\Rightarrow \mathrm{y}+2 \mathrm{x}=280$
Multiplying (i) by 2 and adding with (ii), we have
$7 \mathrm{y}=280+280$
$\Rightarrow y=\frac{560}{7}=80$
Putting $y=80$ in (ii), we get
$80+2 \mathrm{x}=280$
$\Rightarrow \mathrm{x}=\frac{200}{2}=100$
Hence, actual price of the tea set and lemon set are Rs. 100 and Rs. 80 respectively.
78.

Sol:

Let the fixed charge be Rs.x and the charge for each extra day be Rs.y.
In case of Mona, as per the question
$x+4 y=27$
In case of Tanvy, as per the question
$x+2 y=21$
Subtracting (ii) from (i), we get
$2 \mathrm{y}=6 \Rightarrow \mathrm{y}=3$
Now, putting $\mathrm{y}=3$ in (ii), we have
$x+2 \times 3=21$
$\Rightarrow \mathrm{x}=21-6=15$

Hence, the fixed charge be Rs. 15 and the charge for each extra day is Rs.3.
79.

Sol:

Let x litres and y litres be the amount of acids from 50% and 25% acid solutions respectively. As per the question
50% of $x+25 \%$ of $y=40 \%$ of 10
$\Rightarrow 0.50 \mathrm{x}+0.25 \mathrm{y}=4$
$\Rightarrow 2 \mathrm{x}+\mathrm{y}=16$
Since, the total volume is 10 liters, so
$x+y=10$
Subtracting (ii) from (i), we get
x = 6
Now, putting $x=6$ in (ii), we have
$6+y=10 \Rightarrow y=4$
Hence, volume of 50% acid solution $=6$ litres and volume of 25% acid solution $=4$ litres.
80.

Sol:

Let $\mathrm{x} g$ and $\mathrm{y} g$ be the weight of 18 -carat and 12-carat gold respectively.
As per the given condition
$\frac{18 x}{24}+\frac{12 y}{24}=\frac{120 \times 16}{24}$
$\Rightarrow 3 \mathrm{x}+2 \mathrm{y}=320$
And
$\mathrm{x}+\mathrm{y}=120$
Multiplying (ii) by 2 and subtracting from (i), we get
$x=320-240=80$
Now, putting $x=80$ in (ii), we have
$80+y=120 \Rightarrow y=40$
Hence, the required weight of 18 -carat and 12-carat gold bars are 80 g and 40 g respectively.
81.

Sol:

Let x litres and y litres be respectively the amount of 90% and 97% pure acid solutions.
As per the given condition
$0.90 x+0.97 y=21 \times 0.95$
$\Rightarrow 0.90 x+0.97 y=21 \times 0.95$
And
$x+y=21$
From (ii), substitute $y=21-x$ in (i) to get

$$
\begin{aligned}
& 0.90 x+0.97(21-x)=21 \times 0.95 \\
& \Rightarrow 0.90 x+0.97 \times 21-0.97 x=21 \times 0.95
\end{aligned}
$$

$\Rightarrow 0.07 \mathrm{x}=0.97 \times 21-21 \times 0.95$
$\Rightarrow \mathrm{x}=\frac{21 \times 0.02}{0.07}=6$
Now, putting $x=6$ in (ii), we have
$6+y=21 \Rightarrow y=15$
Hence, the request quantities are 6 litres and 15 litres.
82.

Sol:

Let x and y be the supplementary angles, where $\mathrm{x}>\mathrm{y}$.
As per the given condition
$\mathrm{x}+\mathrm{y}=180^{0}$
And
$x-y=18^{0}$
Adding (i) and (ii), we get
$2 \mathrm{x}=198^{0} \Rightarrow \mathrm{x}=99^{0}$
Now, substituting $x=99^{\circ}$ in (ii), we have
$99^{0}-\mathrm{y}=18^{0} \Rightarrow \mathrm{x}=99^{0}-18^{0}=81^{0}$
Hence, the required angles are 99° and 81°.
83.

Sol:

$\because \angle C-\angle B=9^{0}$
$\therefore y^{0}-(3 x-2)^{0}=9^{0}$
$\Rightarrow y^{0}-3 x^{0}+2^{0}=9^{0}$
$\Rightarrow y^{0}-3 x^{0}=7^{0}$
The sum of all the angles of a triangle is 180°, therefore
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow \mathrm{x}^{0}+(3 \mathrm{x}-2)^{0}+\mathrm{y}^{0}=180^{0}$
$\Rightarrow 4 \mathrm{x}^{0}+\mathrm{y}^{0}=182^{0}$
Subtracting (i) from (ii), we have
$7 \mathrm{x}^{0}=182^{0}-7^{0}=175^{0}$
$\Rightarrow \mathrm{x}^{0}=25^{0}$
Now, substituting $x^{0}=25^{0}$ in (i), we have
$y^{0}=3 x^{0}+7^{0}=3 \times 25^{0}+7^{0}=82^{0}$
Thus
$\angle \mathrm{A}=\mathrm{x}^{0}=25^{0}$

