RD SHARMA

Solutions

Class 9 Maths

Chapter 9

Ex 9.1

Q1) In a \triangle ABC, if \angle A = 55 0 , \angle B = 40 0 , Find \angle C.

Solution:

Given Data:

$$\angle B = 55^{\circ}$$
, $\angle B = 40^{\circ}$, then $\angle C = ?$

We know that

In a ΔABC sum of all angles of a triangle is 180 0

i.e.,
$$\angle A + \angle B + \angle C = 180^{0}$$

$$\Rightarrow 55^{0} + 40^{0} + \angle C = 180^{0}$$

$$\Rightarrow 95^0 + \angle C = 180^0$$

$$\Rightarrow \angle C = 180^0 - 95^0$$

$$\Rightarrow \angle C = 85^{\circ}$$

Q2) If the angles of a triangle are in the ratio 1:2:3, determine three angles

Solution:

Given that,

Angles of a triangle are in the ratio 1:2:3

Let the angles be x, 2x, 3x

∴ We know that,

Sum of all angles of triangles is 180^{0}

$$x+2x+3x = 180^0$$

$$=>6x = 180^{0}$$

$$=>X = \frac{180^0}{6}$$

$$=>x=30^0$$

Since $x=30^0$

$$2x = 2(30)^0 = 60^0$$

$$3x = 3(30)^0 = 90^0$$

Therefore, angles are 30^0 , 60^0 , 90^0

Q3) The angles of a triangle are $(x-40^0)$, $(x-20^0)$ and $(\frac{1}{2}x-10^0)$. Find the value of x.

Solution:

Given that,

The angles of a triangle are

$$(x-40^0)$$
, $(x-20^0)$ and $(\frac{1}{2}x-10^0)$

We know that,

Sum of all angles of triangle is 180^{0}

$$\therefore (x - 40^0) + (x - 20^0) + (\frac{1}{2}x - 10^0) = 180^0$$

$$2x + \frac{1}{2}x - 70^0 = 180^0$$

$$\frac{5}{2}x = 180^0 + 70^0$$

$$5x = 2(250)^0$$

$$\mathbf{x} = \frac{500^0}{5}$$

$$x = 100^{0}$$

Q4) The angles of a triangle are arranged in ascending order of magnitude. If the difference between two consecutive angles is 10^0 , find the three angles.

Solution:

Given that,

The difference between two consecutive angles is $10^{0}\,$

Let x, $x+10^0$, $x+20^0$ be the consecutive angles that differ by 10^0

We know that.

Sum of all angles in a triangle is 180°

$$x+x+10^0+x+20^0=180^0$$

$$3x+30^0 = 180^0$$

$$=>3x = 180^0 - 30^0$$

$$=>3x = 150^0$$

$$=>x=50^0$$

Therefore, the required angles are

$$x = 50^0$$

$$x+10^0 = 50^0 + 10^0 = 60^0$$

$$x+20^0 = 50^0 + 20^0 = 70^0$$

As the difference between two consecutive angles is 10^{0} , the three angles are 50^{0} , 60^{0} , 70^{0} .

Q5) Two angles of a triangle are equal and the third angle is greater than each of those angles by 30° . Determine all the angles of the triangle.

Solution:

Given that,

Two angles of a triangle are equal and the third angle is greater than each of those angles by 30° .

Let x, x, $x+30^0$ be the angles of a triangle

We know that,

Sum of all angles in a triangle is 180°

$$x + x + x + 30^0 = 180^0$$

$$3x + 30^0 = 180^0$$

$$3x = 180^0 - 30^0$$

$$3x = 150^0$$

$$x = 50^0$$

Therefore, the three angles are 50^{0} , 50^{0} , 80^{0} .

Q6) If one angle of a triangle is equal to the sum of the other two, show that the triangle is a right angle triangle.

Solution:

If one angle of a triangle is equal to the sum of the other two angles

$$\Rightarrow \angle B = \angle A + \angle C$$

In $\triangle ABC$,

Sum of all angles of a triangle is 180^0

$$=> \angle A + \angle B + \angle C = 180^{\circ}$$

$$=> \angle B + \angle B = 180^0 [\angle B = \angle A + \angle C]$$

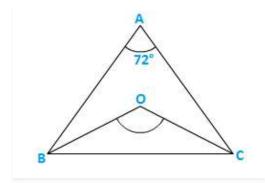
$$=>2\angle B=180^0$$

$$=> \angle B = \frac{180^{\circ}}{2}$$

$$=> \angle B = 90^0$$

Therefore, ABC is a right angled triangle.

Q7) ABC is a triangle in which $\angle A = 72^0$, the internal bisectors of angles B and C meet in O. Find the magnitude of $\angle BOC$.



Solution:

Given.

ABC is a triangle where $\angle A = 72^0$ and the internal bisector of angles B and C meeting 0.

In $\triangle ABC$,

$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$=>72^{0} + \angle B + \angle C = 180^{0}$$

$$=> \angle B + \angle C = 180^0 - 72^0$$

Dividing both sides by '2'

$$\Rightarrow \frac{\angle B}{2} + \frac{\angle C}{2} = \frac{108^0}{2}$$

$$\Rightarrow \angle OBC + \angle OCB = 54^0$$

Now, In $\triangle BOC \Rightarrow \angle OBC + \angle OCB + \angle BOC = 180^{\circ}$

$$=>54^0 + \angle BOC = 180^0$$

$$\Rightarrow \angle BOC = 180^{0} - 54^{0} = 126^{0}$$

$$\therefore \angle BOC = 126^0$$

Q8) The bisectors of base angles of a triangle cannot enclose a right angle in any case.

Solution:

In ΔXYZ ,

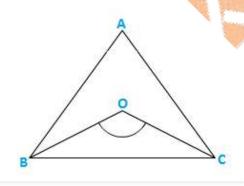
Sum of all angles of a triangle is 180°

i.e.,
$$\angle X + \angle Y + \angle Z = 180^0$$

Dividing both sides by '2'

$$\Rightarrow \frac{1}{2} \angle X + \frac{1}{2} \angle Y + \frac{1}{2} \angle Z = 180^{0}$$

$$\Rightarrow \frac{1}{2} \angle X + \angle OYZ + \angle OYZ = 90^{\circ}$$
 [: OY, OZ, $\angle Y$ and $\angle Z$]



$$\Rightarrow \angle OYZ + \angle OZY = 90^0 - \frac{1}{2} \angle X$$

Now in $\Delta Y OZ$

$$\therefore \angle Y OZ + \angle OY Z + \angle OZY = 180^0$$

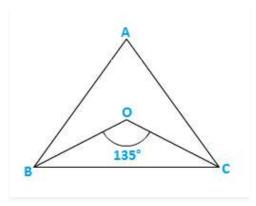
$$\Rightarrow \angle Y OZ + 90^0 - \frac{1}{2} \angle X = 180^0$$

$$\Rightarrow \angle Y OZ = 90^0 - \frac{1}{2} \angle X$$

Therefore, the bisectors of a base angle cannot enclosure right angle.

Q9) If the bisectors of the base angles of a triangle enclose an angle of 135° , prove that the triangle is a right angle.

Solution:



Given the bisectors of the base angles of a triangle enclose an angle of 135°

i.e., ∠BOC =
$$135^{0}$$

But, We know that

$$\angle BOC = 90^0 + \frac{1}{2} \angle A$$

$$=>135^0 = 90^0 + \frac{1}{2} \angle A$$

$$\Rightarrow \frac{1}{2} \angle A = 135^0 - 90^0$$

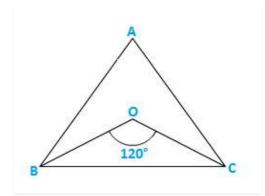
$$=> \angle A = 45^{0}(2)$$

$$=> \angle A = 90^0$$

Therefore, ΔABC is a right angle triangle that is right angled at A.

Q10) In a $\triangle ABC$, $\angle ABC = \angle ACB$ and the bisectors of $\angle ABC$ and $\angle ACB$ intersect at 0 such that $\angle BOC = 120^{0}$. Show that $\angle A = \angle B = \angle C = 60^{0}$.

Solution:



Given,

In $\triangle ABC$,

$$\angle ABC = \angle ACB$$

Dividing both sides by '2'

$$\frac{1}{2} \angle ABC = \frac{1}{2} \angle ACB$$

 $\Rightarrow \angle OBC = \angle OCB$ [: OB, OC bisects $\angle B$ and $\angle C$]

Now,

$$\angle BOC = 90^0 + \frac{1}{2} \angle A$$

$$\Rightarrow 120^0 - 90^0 = \frac{1}{2} \angle A$$

$$=>30^0*(2)=\angle A$$

$$=> \angle A = 60^0$$

Now in $\triangle ABC$

$$\angle A + \angle ABC + \angle ACB = 180^{\circ}$$
 (Sum of all angles of a triangle)

$$=>60^{0} + 2 \angle ABC = 180^{0}$$

$$[: \angle ABC = \angle ACB]$$

$$=>2\angle ABC = 180^{0} - 60^{0}$$

$$\Rightarrow \angle ABC = \frac{120^0}{2} = 60^0$$

$$\Rightarrow$$
 \angle ABC = \angle ACB

$$\therefore \angle ACB = 60^{\circ}$$

Hence Proved.

Q11) Can a triangle have:

- (i) Two right angles?
- (ii) Two obtuse angles?
- (iii) Two acute angles?
- (iv) All angles more than 60°?
- (v) All angles less than 60°?
- (vi) All angles equal to 60"?

Justify your answer in each case.

Sol:

(i) No,

Two right angles would up to 180°. So the third angle becomes zero. This is not possible, so a triangle cannot have two right angles. [Since sum of angles in a triangle is 180⁰]

(ii) No,

A triangle can't have 2 obtuse angles. Obtuse angle means more than 90° So that the sum of the two sides will exceed 180° which is not possible. As the sum of all three angles of a triangle is 180°.

(iii) Yes

A triangle can have 2 acute angles. Acute angle means less the 90" angle.

(iv) No

Having angles more than 60^0 make that sum more than 180^0 . This is not possible. [Since the sum of all the internal angles of a triangle is 180^0]

(v) No

Having all angles less than 60^0 will make that sum less than 180^0 which is not possible.[Therefore, the sum of all the internal angles of a triangle is 180^0]

(vi) Yes

A triangle can have three angles equal to 60^{0} . Then the sum of three angles equal to the 180^{0} . Such triangles are called as equilateral triangle. [Since, the sum of all the internal angles of a triangle is 180^{0}]

Q12) If each angle of a triangle is less than the sum of the other two, show that the triangle is acute angled.

Solution

Given each angle of a triangle less than the sum of the other two

$$\therefore \angle X + \angle Y + \angle Z$$

$$\Rightarrow \angle X + \angle X < \angle X + \angle Y + \angle Z$$

$$\Rightarrow 2\angle X < 180^0$$
 [Sum of all the angles of a triangle]

$$=> \angle X < 90^0$$

Similarly
$$\angle Y < 90^0$$
 and $\angle Z < 90^0$

Hence, the triangles are acute angled.

RD SHARMA

Solutions

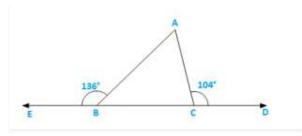
Class 9 Maths

Chapter 9

Ex 9.2

Q1) The exterior angles, obtained on producing the base of a triangle both ways are 104^{0} and 136^{0} . Find all the angles of the triangle.

Solution:



$$\angle ACD = \angle ABC + \angle BAC$$

[Exterior angle property]

Now
$$\angle ABC = 180^{0} - 136^{0} = 44^{0}$$

[Linera pair]

$$\angle ACB = 180^0 - 104^0 = 76^0$$

[Linera pair]

Now,

In ΔABC

$$\angle A + \angle ABC + \angle ACB = 180^{\circ}$$

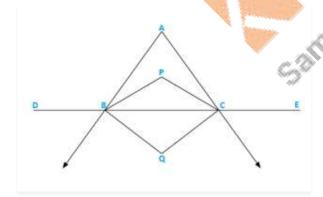
[Sum of all angles of a triangle]

$$\Rightarrow \angle A + 44^0 + 76^0 = 180^0$$

$$\Rightarrow \angle A = 180^0 - 44^0 - 76^0$$

$$\Rightarrow \angle A = 60^0$$

Q2) In a triangle ABC, the internal bisectors of $\angle B$ and $\angle C$ meet at P and the external bisectors of $\angle B$ and $\angle C$ meet at Q. Prove that $\angle BPC + \angle BQC = 180^{\circ}$.



Let
$$\angle ABD = 2x$$
 and $\angle ACE = 2y$

$$\angle ABC = 180^{0} - 2x$$
 [Linera pair]

$$\angle ACB = 180^{0} - 2y$$
 [Linera pair]

$$\angle A + \angle ABC + \angle ACB = 180^{\circ}$$
 [Sum of all angles of a triangle]

$$\Rightarrow \angle A + 180^0 - 2x + 180^0 - 2y = 180^0$$

$$\Rightarrow$$
 $-\angle A + 2x + 2y = 180^{\circ}$

$$\Rightarrow$$
 x + y = 90⁰ + $\frac{1}{2}$ \angle A

Now in $\triangle BQC$

$$x + y + \angle BQC = 180^{\circ}$$
 [Sum of all angles of a triangle]

$$\Rightarrow 90^0 + \frac{1}{2} \angle A + \angle BQC = 180^0$$

$$\Rightarrow \angle BQC = 90^0 - \frac{1}{2} \angle A \dots (i)$$

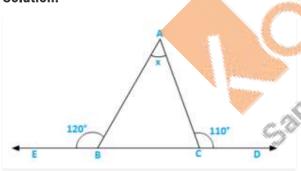
and we know that $\angle BPC = 90^0 + \frac{1}{2} \angle A \dots$ (ii)

Adding (i) and (ii) we get

$$\angle BPC + \angle BQC = 180^{\circ}$$

Hence proved.

Q3) In figure 9.30, the sides BC, CA and AB of a triangle ABC have been produced to D, E and F respectively. If $\angle ACD = 105^0$ and $\angle EAF = 45^0$, find all the angles of the triangle ABC.

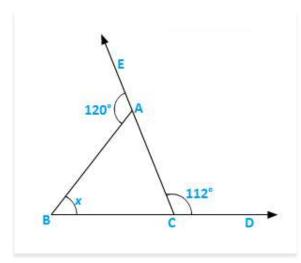


$$\angle BAC = \angle EAF = 45^{\circ}$$
 [V ertically opposite angles]

$$\angle ABC = 105^{0} - 45^{0} = 60^{0}$$
 [Exterior angle property]

$$\angle ACD = 180^{0} - 105^{0} = 75^{0}$$
 [Linear pair]

Q4) Compute the value of x in each of the following figures:

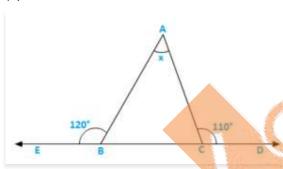


$$\angle BAC = 180^{0} - 120^{0} = 60^{0}$$
 [Linear pair]

$$\angle ACB = 180^{0} - 112^{0} = 68^{0}$$
 [Linear pair]

$$\therefore x = 180^{0} - \angle BAC - \angle ACB = 180^{0} - 60^{0} - 68^{0} = 52^{0}$$

[Sum of all angles of a triangle]



Solution:

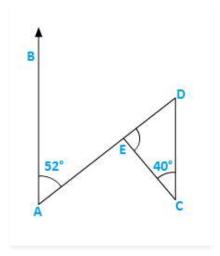
$$\angle ABC = 180^{0} - 120^{0} = 60^{0}$$
 [Linear pair]

$$\angle ABC = 180^{0} - 120^{0} = 60^{0}$$
 [Linear pair]
 $\angle ACB = 180^{0} - 110^{0} = 70^{0}$ [Linear pair]

$$\therefore$$
 e \angle BAC = x = 180⁰ - \angle ABC - \angle ACB

$$= 180^{0} - 60^{0} - 70^{0} = 50^{0}$$
 [Sum of all angles of a triangle]

(iii)



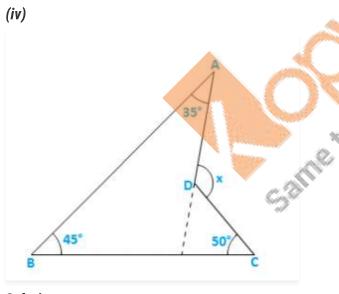
$$\angle BAE = \angle EDC = 52^0$$
 [Alternate angles]

$$\therefore \angle DEC = x = 180^0 - 40^0 - \angle EDC$$

$$= 180^0 - 40^0 - 52^0$$

$$=180^0-92^0$$

= 88⁰ [Sum of all angles of a triangle]



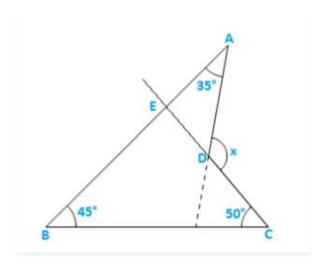
Solution:

CD is produced to meet AB at E.

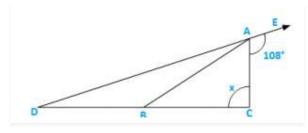
$$\angle BEC = 180^{0} - 45^{0} - 50^{0}$$

= 85^{0} [Sum of all angles of a triangle]
 $\angle AEC = 180^{0} - 85^{0} = 95^{0}$ [Linear pair]

 $\therefore x = 95^0 + 35^0 = 130^0$ [Exterior angle property]



Q5) In figure 9.35, AB divides $\angle DAC$ in the ratio 1 : 3 and AB = DB. Determine the value of x.



Solution:

Let
$$\angle BAD = Z$$
, $\angle BAC = 3Z$

$$\Rightarrow \angle BDA = \angle BAD = Z \quad (\because AB = DB)$$

Now
$$\angle BAD + \angle BAC + 108^0 = 180^0$$
 [Linear pair]

$$\Rightarrow Z + 3Z + 108^0 = 180^0$$

$$\Rightarrow$$
 4Z = 72⁰

$$\Rightarrow Z = 18^0$$

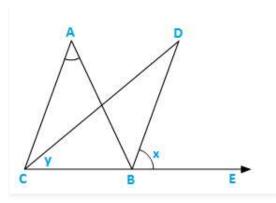
Now, In $\triangle ADC$

$$\angle ADC + \angle ACD = 108^{\circ}$$
 [Exterior angle property]

$$\Rightarrow x + 18^0 = 180^0$$

$$\Rightarrow x = 90^0$$

Q6) ABC is a triangle. The bisector of the exterior angle at B and the bisector of $\angle C$ intersect each other at D. Prove that $\angle D = \frac{1}{2} \angle A$.



Let
$$\angle ABE = 2x$$
 and $\angle ACB = 2y$

$$\angle ABC = 180^{0} - 2x$$
 [Linear pair]

$$\therefore$$
 ∠A = 180⁰ – ∠ABC – ∠ACB [Angle sum property]

$$= 180^0 - 180^0 + 2x + 2y$$

$$= 2(x - y) \qquad \dots (i)$$

Now,
$$\angle D = 180^{\circ} - \angle DBC - \angle DCB$$

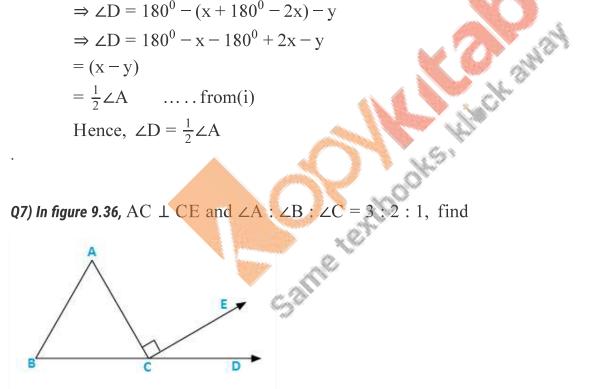
$$\Rightarrow \angle D = 180^{0} - (x + 180^{0} - 2x) - y$$

$$\Rightarrow \angle D = 180^{0} - x - 180^{0} + 2x - y$$

$$=(x-y)$$

$$=\frac{1}{2}\angle A$$
 from(i)

Hence,
$$\angle D = \frac{1}{2} \angle A$$



$$\angle A : \angle B : \angle C = 3 : 2 : 1$$

Let the angles be 3x, 2x and x

$$\Rightarrow$$
 3x + 2x + x = 180⁰ [Angle sum property]

$$\Rightarrow 6x = 180^0$$

$$\Rightarrow$$
 x = 30⁰ = \angle ACB

$$\therefore \angle ECD = 180^{0} - \angle ACB - 90^{0}$$
 [Linear pair]

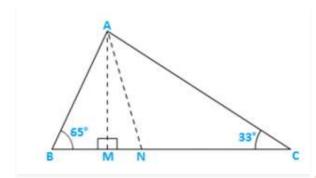
$$= 180^0 - 30^0 - 90^0$$

$$=60^{0}$$

$$\therefore \angle ECD = 60^{\circ}$$

Q8) In figure 9.37,

AM \perp BC and AN is the bisector of \angle A. If \angle B = 65 $^{\circ}$ and \angle C = 33 $^{\circ}$, find \angle MAN...



Solution:

Let
$$\angle BAN = \angle NAC = x$$
 [: AN bisects $\angle A$]

$$\therefore \angle ANM = x + 33^{\circ}$$
 [Exterior angle property]

In ΔAMB

$$\angle BAM = 90^{0} - 65^{0} = 25^{0}$$
 [Exterior angle property]

$$\therefore \angle MAN = \angle BAN - \angle BAM = (x - 25)^0$$

Now in Δ MAN,

$$(x-25)^0 + (x+33)^0 + 90^0 = 180^0$$
 [Angle sum property]

$$\Rightarrow 2x + 8^0 = 90^0$$

$$\Rightarrow 2x = 82^0$$

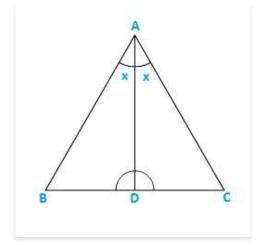
$$\Rightarrow x = 41^0$$

$$\therefore MAN = x - 25^0$$

$$=41^0-25^0$$

$$= 16^0$$

Q9) In a triangle ABC, AD bisects $\angle A$ and $\angle C > \angle B$. Prove that $\angle ADB > \angle ADC$..



$$\therefore \angle C > \angle B$$

[Given]

$$\Rightarrow \angle C + x > \angle B + x$$
 [Adding x on both sides]

$$\Rightarrow$$
 180° - \angle ADC>180^{0} - \angle ADB

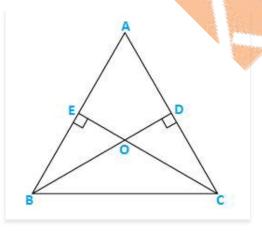
$$\Rightarrow$$
 \angle ADB $>$ \angle ADC

Hence proved.

Q10) In triangle ABC,

BD \perp AC and CE \perp AB. If BD and CE intersect at O, prove that \angle BOC = $180^{\circ} - \angle$ A.

Solution:



In quadrilateral AEOD

$$\angle A + \angle AEO + \angle EOD + \angle ADO = 360^{\circ}$$

$$\Rightarrow \angle A + 90^0 + 90^0 + \angle EOD = 360^0$$

$$\Rightarrow \angle A + \angle BOC = 180^{\circ}$$

[$\because \angle EOD = \angle BOC$ vertically opposite angles]

$$\Rightarrow \angle BOC = 180^0 - \angle A$$

Q11) In figure 9.38, AE bisects $\angle CAD$ and $\angle B = \angle C$. Prove that $AE \parallel BC$.



Solution:

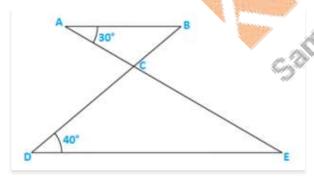
Let
$$\angle B = \angle C = x$$

Then,
 $\angle CAD = \angle B + \angle C = 2x$ (exterior angle)
 $\Rightarrow \frac{1}{2} \angle CAD = x$
 $\Rightarrow \angle EAC = x$
 $\Rightarrow \angle EAC = \angle C$
alternate interior angles for the lines AE and BC
BC
gure 9.39, AB || DE. Find $\angle ACD$.

These are alternate interior angles for the lines AE and BC

∴ AE || BC

Q12) In figure 9.39, AB || DE. Find ∠ACD.



Solution:

Since $AB \parallel DE$

∴
$$\angle ABC = \angle CDE = 40^{0}$$
 [Alternate angles]
∴ $\angle ACB = 180^{0} - \angle ABC - \angle BAC$
= $180^{0} - 40^{0} - 30^{0}$
= 110^{0}
∴ $\angle ACD = 180^{0} - 110^{0}$ [Linear pair]
= 70^{0}

- Q13). Which of the following statements are true (T) and which are false (F):
- (i) Sum of the three angles of a triangle is 180°.
- (ii) A triangle can have two right angles.
- (iii) All the angles of a triangle can be less than 60°.
- (iv) All the angles of a triangle can be greater than 60°.
- (v) All the angles of a triangle can be equal to 60°.
- (vi) A triangle can have two obtuse angles.
- (vii) A triangle can have at most one obtuse angles.
- (viii) If one angle of a triangle is obtuse, then it cannot be a right angled triangle.
- (ix) An exterior angle of a triangle is less than either of its interior opposite angles.
- (x) An exterior angle of a triangle is equal to the sum of the two interior opposite angles.
- (xi) An exterior angle of a triangle is greater than the opposite interior angles.

- (i) T
- (ii) F
- (iii) F
- (iv) F
- (v) T
- (vi) F
- (vii) T
- (viii) T
- (ix) F
- (x) T
- (xi) T

(i) Sum of the angles of a triangle is
(ii) An exterior angle of a triangle is equal to the two opposite angles.
(iii) An exterior angle of a triangle is always than either of the interior opposite angles.
(iv) A triangle cannot have more than right angles.
(v) A triangles cannot have more than obtuse angles.
Solution:
(i) 180 ⁰
(ii) Interior
(iii) Greater
(iv) One

(v) One

