Mark the correct alternative in each of the following :

Question 1.
If 7 th and 13th terms of an A.P. be 34 and 64 respectively, then its 18 th term is
(a) 87
(b) 88
(c) 89
(d) 90

Solution:
(c) 7th term $\left(a_{7}\right)=a+6 d=34$

13th term $\left(\mathrm{a}_{13}\right)=\mathrm{a}+12 \mathrm{~d}=64$
Subtracting, 6d = $30=>\mathrm{d}=5$
and $a+12 \times 5=64=>a+60=64=>a=64-60=4$
18th term $\left(a_{18}\right)=a+17 d=4+17 \times 5=4+85=89$

Question 2.

If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of ($p+$
q) terms will be
(a) 0
(b) $p-q$
(c) $p+q$
(d) $-(p+q)$

Solution:
(d)

Sum of p terms $=q$

$$
\begin{align*}
& \quad \text { i.e., } \mathrm{S}_{p}=\frac{p}{2}[2 a+(p-1) d]=q \\
& \Rightarrow p[2 a+(p-1) d]=2 q \\
& 2 a p+p(p-1) d=2 q \tag{i}\\
& \quad \text { and sum of } q \text { terms }=p
\end{align*}
$$

$$
\begin{align*}
& \text { i.e., } \mathrm{S}_{q}=\frac{q}{2}[2 a+(q-1) d]=p \\
\Rightarrow & q[2 a+(q-1) d]=2 p \\
& =2 a q+q(q-1) d=2 p \tag{ii}
\end{align*}
$$

Subtracting (ii) from (i)

$$
\begin{aligned}
& 2 a(p-q)+\left\{p^{2}-p-q^{2}+q\right\} d=2 q-2 p \\
\Rightarrow & 2 a(p-q)+\left\{p^{2}-q^{2}-(p-q)\right\} d=-2(p-q) \\
\Rightarrow & 2 a(p-q)+\{(p+q)(p-q)-(p-q)\} d \\
& =-2(p-q) \\
\Rightarrow & 2 a(p-q)+(p-q)[p+q-1] d=-2(p-q)
\end{aligned}
$$

Dividing by $(p-q)$
$2 a+(p+q-1) d=-2$

$$
\mathrm{S}_{p+q}=\frac{p+q}{2}[2 a+(p+q-1) d]
$$

$$
\begin{equation*}
=\frac{p+q}{2}[-2] \tag{i}
\end{equation*}
$$

$$
=-(p+q)
$$

Question 3.

If the sum of n terms of an A.P. be $3 n^{2}+n$ and its common difference is 6 , then its first term is
(a) 2
(b) 3
(c) 1
(d) 4

Solution:

(d)

Sum of n terms of an A.P. $=3 n^{2}+n$
and common difference $(d)=6$
Let first term be a, then
$\therefore \mathrm{S}_{n}=\frac{n}{2}[2 a+(n-1) d]=3 n^{2}+n$
$\Rightarrow \frac{n}{2}[2 a+(n-1) 6]=3 n^{2}+n$
$2 a+6 n-6=\left(3 n^{2}+n\right) \times \frac{2}{n}=n \frac{(3 n+1) \times 2}{n}$
$\Rightarrow 2 a+6 n-6=(3 n+1) 2=6 n+2$
$\Rightarrow 2 a=6 n+2-6 n+6=8$

$$
a=\frac{8}{2}=4
$$

Question 4.

The first and last terms of an A.P. are 1 and 11. If the sum of its terms is 36 , then the number of terms will be
(a) 5
(b) 6
(c) 7
(d) 8

Solution:
(b) First term of an A.P. (a) = 1

Last term (I) = 11
and sum of its terms $=36$
Let n be the number of terms and d be the common difference, then

$$
\begin{align*}
& a_{n}=1=a+(n-1) d=11 \\
\Rightarrow & 1+(n-1) d=11 \Rightarrow(n-1) d=11-1=10 \tag{i}
\end{align*}
$$

$$
\mathrm{S}_{n}=\frac{n}{2}[2 a+(n-1) d]=36
$$

$$
\begin{equation*}
\Rightarrow \frac{n}{2}[2 \times 1+10]=36 \tag{i}
\end{equation*}
$$

$\Rightarrow n(2+10)=72 \Rightarrow 12 n=72$
$\Rightarrow n=\frac{72}{12}=6$

Question 5.

If the sum of n terms of an A.P. is $3 n^{2}+5 n$ then which of its terms is 164 ?
(a) 26th
(b) 27th
(c) 28 th
(d) none of these

Solution:
(b)

Sum of n terms of an A.P. $=3 n^{2}+5 n$
Let a be the first term and d be the common difference

$$
\mathrm{S}_{n}=3 n^{2}+5 n
$$

$\therefore \mathrm{S}_{1}=3(1)^{2}+5 \times 1=3+5=8$
$S_{2}=3(2)^{2}+5 \times 2=12+10=22$
\therefore First term $(a)=8$

$$
\begin{aligned}
& a_{2}=\mathrm{S}_{2}-\mathrm{S}_{1}=22-8=14 \\
\therefore & d=a_{2}-a_{1}=14-8=6 \\
& \text { Now } a_{n}=a+(n-1) d \\
\Rightarrow & 164=8+(n-1) \times 6 \\
& 6 n-6=164-8=156 \\
& 6 n=156+6=162 \\
& n=\frac{162}{6}=27
\end{aligned}
$$

$\therefore 168$ is 27 th term

Question 6.

If the sum of it terms of an A.P. is $2 n^{2}+5 n$, then its nth term is
(a) $4 n-3$
(b) $3 n-4$
(c) $4 n+3$
(d) $3 n+4$

Solution:
(c)

Let a be the first term and d be the common
difference of an A.P. and

$$
\mathrm{S}_{n}=2 n^{2}+5 n
$$

$\therefore \mathrm{S}_{1}=2(1)^{2}+5 \times 1=2+5=7$
$S_{2}=2(2)^{2}+5 \times 2=8+10=18$
\therefore First term $\left(a_{1}\right)=7$
and second term $a_{2}=\mathrm{S}_{2}-\mathrm{S}_{1}=18-7=11$
$\therefore d=a_{2}-d_{1}=11-7=4$
Now $a_{n}=a+(n-1) d$
$=7+(n-1) 4=7+4 n-4$
$=4 n+3$

Question 7.

If the sum of three consecutive terms of an increasing A.P. is 51 and the product of the first and third of these terms is 273 , then the third term is :
(a) 13
(b) 9
(c) 21
(d) 17

Solution:
(c)

Let three consecutive terms of an increasing
A.P. be $a-d, d, a+d$ where a is the first term and d be the common difference
$\therefore a-d+a+a+d=51$
$\Rightarrow 3 a+51 \Rightarrow a=\frac{51}{3}=17$
and product of the first and third terms
$=(a-d)(a+d)=273$
$\Rightarrow a^{2}-d^{2}=273 \Rightarrow(17)^{2}-d^{2}=273$
$\Rightarrow 289-d^{2}=273$
$\Rightarrow d^{2}=289-273=16=(\pm 4)^{2}$
$\therefore d= \pm 4$
\because The A.P. is increasing
$\therefore d=4$
Now third term $=a+d$
$=17+4=21$

Question 8.

If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are
(a) $5,10,15,20$
(b) $4,10,16,22$
(c) $3,7,11,15$
(d) None of these

Solution:

(a)

4 numbers are in A.P.
Let the numbers be
$a-3 d, a-d, a+d, a+3 d$
Where a is the first term and 2 d is the common difference
Now their sum $=50$
$a-3 d+a-d+a+d+a+3 d=50$
and greatest number is 4 times the least number
$a+3 d=4(a-3 d)$
$a+3 d=4 a-12 d$
$4 a-a=3 d+12 d$
=> $3 \mathrm{a}=15 \mathrm{~d}$
$\Rightarrow a=5 d$
$\Rightarrow \frac{25}{2}=5 d \Rightarrow d=\frac{25}{2 \times 5}=\frac{5}{2}$
\therefore Numbers are

$$
\begin{aligned}
& \frac{25}{2}-3 \times \frac{5}{2}, \frac{25}{2}-\frac{5}{2}, \frac{25}{2}+\frac{5}{2}, \frac{25}{2}+3 \times \frac{5}{2} \\
& \Rightarrow \frac{10}{2}, \frac{20}{2}, \frac{30}{2}, \frac{40}{2} \\
& \Rightarrow 5,10,15,20
\end{aligned}
$$

Question 9.

Let S denotes the sum of n terms of an A.P. whose first term is a. If the common difference d is given by $d=S_{n}-\mathrm{k}_{\mathrm{n}-1}+\mathrm{S}_{\mathrm{n}-2}$ then $\mathrm{k}=$
(a) 1
(b) 2
(c) 3
(d) None of these

Solution:

(b)
S_{n} is the sum of n terms of an A.P.
a is its first term and d is common difference

$$
\begin{aligned}
& d=\mathrm{S}_{n}-k \mathrm{~S}_{n-1}+\mathrm{S}_{n-2} \\
\Rightarrow & k \mathrm{~S}_{n-1}=\mathrm{S}_{n}+\mathrm{S}_{n-2}-d \\
& =\left(a_{n}+\mathrm{S}_{n-1}\right)+\left(\mathrm{S}_{n-1}-a_{n-1}-1\right)-d \\
\qquad & \left\{\begin{array}{l}
\because \mathrm{S}_{n}=\mathrm{S}_{n-1}+a_{n} \\
\text { and } \mathrm{S}_{n-1}=a_{n-1}+\mathrm{S}_{n-2} \\
\Rightarrow \mathrm{~S}_{n-2}=\mathrm{S}_{n-1}-a_{n-1}
\end{array}\right. \\
& =a_{n}+2 \mathrm{~S}_{n-1}-a_{n-1}-d \\
& =2 \mathrm{~S}_{n-1}+a_{n}-a_{n-1}-d \\
& =2 \mathrm{~S}_{n-1}+d-d \\
& =2 \mathrm{~S}_{n-1} \\
\therefore & k=2
\end{aligned} \quad\left(\because a_{n}-a_{n-1}=d\right)
$$

Question 10.

The first and last term of an A.P. are a and I respectively. If S is the sum of all the terms of the A.P. and the common difference is given by

$$
\frac{l^{2}-a^{2}}{k-(l+a)} \text { then } k=
$$

(a) S
(b) 2 S
(c) 3 S
(d) None of these

Solution:
(b)

$$
\begin{aligned}
& \mathrm{S}=\frac{n}{2}(l+a), l=a+(n-1) d \\
& d=\frac{l^{2}-a^{2}}{k-(l+a)} \text { and also } d=\frac{l-a}{n-1} \\
\therefore & \frac{l-a}{n-1}=\frac{(l+a)(l-a)}{k-(l+a)} \\
\Rightarrow & \frac{1}{n-1}=\frac{l+a}{k-(l+a)} \Rightarrow k-(l+a)=(n-1) \\
\Rightarrow & k=(n-a) \\
\Rightarrow & k=(l+a)(n-1+1)=n(l+a) \\
& =2 \times \frac{n}{2}(l+a)=2 \times \mathrm{S} \quad\left\{\because \frac{n}{2}(l+a)=\mathrm{S}\right\} \\
= & 2 \mathrm{~S}
\end{aligned}
$$

Question 11.

If the sum of first n even natural number is equal to k times the sum of first n odd natural numbers, then $\mathrm{k}=$
(a) $\frac{1}{n}$
(b) $\frac{n-1}{n}$
(c) $\frac{n+1}{2 n}$
(d) $\frac{n+1}{n}$

Solution:
(d)

Sum of n even natural number $=n(n+1)$
and sum of n odd natural numbers $=n^{2}$
$\therefore n(n+1)=k n^{2}$
$\Rightarrow k=\frac{n(n+1)}{n^{2}}=\frac{n+1}{n}$

Question 12.

If the first, second and last term of an A.P. are a, b and $2 a$ respectively, its sum is
(a) $\frac{a b}{2(b-a)}$
(b) $\frac{a b}{b-a}$
(c) $\frac{3 a b}{2(b-a)}$
(d) None of these

Solution:
(c)

First term $\left(a_{1}\right)=a$
Second term $\left(a_{2}\right)=b$
and last term $(l)=2 a$
$\therefore d=$ Second term - first term $=b-a$
$\therefore l=a_{n}=a+(n-1) d$
$\Rightarrow 2 a=a+(n-1)(b-a) \Rightarrow(n-1)(b-a)=a$
$\Rightarrow n-1=\frac{a}{b-a} \Rightarrow n=\frac{a}{b-a}+1=\frac{a+b-a}{b-a}$
$=\frac{b}{b-a}$
$\therefore \mathrm{S}_{n}=\frac{n}{2}[a+l]=\frac{b}{2(b-a)}[a+2 a]$
$=\frac{3 a b}{2(b-a)}$

Question 13.

If S_{1} is the sum of an arithmetic progression of ' n ' odd number of terms and S_{2} is the sum of the terms of the
series in odd places, then $\frac{S_{1}}{S_{2}}=$
(a) $\frac{2 n}{n+1}$
(b) $\frac{n}{n+1}$
(c) $\frac{n+1}{2 n}$
(d) $\frac{n-1}{n}$

Solution:
(a)

Odd numbers are $1,3,5,7,9,11,13, \ldots n$
$\begin{aligned} \therefore \mathrm{S}_{1} & =\text { Sum of odd numbers }=n^{2} \\ \mathrm{~S}_{2} & =\text { Sum of number at odd places }\end{aligned}$
$3,7,11,15, \ldots$
$a=3, d=7-3=4$ and number of term $=\frac{n}{2}$
$\mathrm{S}_{2}=\frac{n}{2 \times 2}\left[2 \times 3+\left(\frac{n}{2}-1\right) \times 4\right]$
$=\frac{n}{4}[6+2 n-4]=\frac{n}{4}[2 n+2]=\frac{n(n+1)}{2}$
$\therefore \frac{\mathrm{S}_{1}}{\mathrm{~S}_{2}}=\frac{n^{2} \times 2}{n(n+1)}=\frac{2 n}{n+1}$

Question 14.
If in an A.P., $S_{n}=n^{2} p$ and $S_{m}=m^{2} p$, where S denotes the sum of r terms of the A.P., then S_{p} is equal to
(a) $12 \mathrm{p}^{3}$
(b) $m n p$
(c) p^{3}
(d) $(m+n) p^{2}$

Solution:

(c)

$$
\begin{aligned}
& \mathrm{S}_{n}=n^{2} p, \mathrm{~S}_{m}=m^{2} p \\
\therefore & \mathrm{~S}_{r}=r^{2} p \text { and } \mathrm{S}_{p}=p^{2} q=p^{3} \\
& \text { Hence } \mathrm{S}_{p}=p^{3}
\end{aligned}
$$

Question 15.

If Sn denote the sum of the first n terms of an A.P. If $S_{2 n}=3 S_{n}$, then $S_{3 n}: S_{n}$ is equal to
(a) 4
(b) 6
(c) 8
(d) 10

Solution:
(b)
$\mathrm{S}_{n}=$ Sum of n terms of an A.P.
and $\mathrm{S}_{2 n}=3 \mathrm{~S}_{n}$
$\mathrm{S}_{n}=\frac{n}{2}[2 a+(n-1) d], \mathrm{S}_{2 n}=\frac{2 n}{2}[2 a+(2 n$
$-1) d]$ and $\mathrm{S}_{3 n}=\frac{3 n}{2}[2 a+(3 n-1) d]$
We know that $\mathrm{S}_{3 n}=3\left(\mathrm{~S}_{2 n}-\mathrm{S}_{n}\right)$ and $\mathrm{S}_{2 n}=3 \mathrm{~S}_{n}$
$\frac{\mathrm{S}_{3 n}}{\mathrm{~S}_{n}}=\frac{3\left(\mathrm{~S}_{2 n}-\mathrm{S}_{n}\right)}{\mathrm{S}_{n}}=\frac{3(3 \mathrm{~S} n-\mathrm{S} n)}{\mathrm{S} n}$

$$
=\frac{3 \times 2 \mathrm{~S} n}{\mathrm{~S} n}=\frac{6}{1}
$$

$\therefore \mathrm{S}_{3 n}: \mathrm{S}_{n}=6$

Question 16.
In an $A P, S_{p}=q, S_{q}=p$ and S denotes the sum of first r terms. Then, S_{p+q} is equal to
(a) 0
(b) $-(p+q)$
(c) $p+q$
(d) $p q$

Solution:
(c) In an A.P. $S_{p}=q, S_{q}=p$
$S_{p+q}=$ Sum of $(p+q)$ terms $=$ Sum of p term + Sum of q terms $=q+p$

Question 17.
If S_{n} denotes the sum of the first r terms of an A.P. Then, $S_{3 n}:\left(S_{2 n}-S_{n}\right)$ is
(a) n
(b) $3 n$
(b) 3
(d) None of these

Solution:

(c)
$\mathrm{S}_{n}=\frac{n}{2}[2 a+(n-1) d], \mathrm{S}_{2 n}=\frac{2 n}{2}[2 a+(2 n$
-1) $d]$
and $\mathrm{S}_{3 n}=\frac{3 n}{2}[2 a+(3 n-1) d]$
Now $\mathrm{S}_{2 n}-\mathrm{S}_{n}=\frac{2 n}{2}[2 a+(2 n-1) d]-\frac{n}{2}$
$[2 a+(n-1) d]$
$=\frac{n}{2}[4 a+(4 n-2) d]-[2 a+(n-1) d]$
$=\frac{n}{2}[4 a-2 a+(4 n-2-n+1) d]=\frac{n}{2}[2 a$
$+(3 n-1) d]$
$=\frac{1}{3}\left(\mathrm{~S}_{3 n}\right)$
$\therefore \mathrm{S}_{3 n}:\left(\mathrm{S}_{3 n}-\mathrm{S}_{n}\right)=3: 1$ or $\frac{3}{1}=3$

Question 18.

If the first term of an A.P. is 2 and common difference is 4 , then the sum of its 40 term is
(a) 3200
(b) 1600
(c) 200
(d) 2800

Solution:
(a)

In an A.P.
$a=2$ and $d=4, n=40$
$\therefore \mathrm{S}_{n}=\frac{n}{2}[2 a+(n-1) d]=\frac{40}{2}[2 \times 2+(40$
$-1) \times 4]$
$=20[4+39 \times 4]=20 \times(4+156)=20 \times$
$160=3200$

Question 19.

The number of terms of the A.P. $3,7,11,15, \ldots$ to be taken so that the sum is 406 is
(a) 5
(b) 10
(c) 12
(d) 14

Solution:
(d)

The A.P. is $3,7,11,15, \ldots$
Where $a=3, d=7-3=4$ and $\operatorname{sum} \mathrm{S}_{n}=406$
$\therefore \mathrm{S}_{n}=\frac{n}{2}[2 a+(n-1) d] \Rightarrow 406=\frac{n}{2}[2 \times 3$
$\times(n-1) \times 4]$
$\Rightarrow 812=n(6+4 n-4)=812=n(4 n+2)$
$\Rightarrow 4 n^{2}+2 n-812=0 \Rightarrow 2 n^{2}+n-406=0$
$\Rightarrow 2 n^{2}+29 n-28 n-406=0 \Rightarrow n(2 n+29)-$ $14(2 n+29)=0$
$\Rightarrow(2 n+29)(n-14)=0$
$\therefore n=14$ or $\frac{-29}{2}$
But $n=\frac{-29}{2}$ is not possible

Question 20.

Sum of n terms of the series

$$
\sqrt{2}+\sqrt{8}+\sqrt{18}+\sqrt{32}+\ldots \text { is }
$$

(a) $\frac{n(n+1)}{2}$
(b) $2 n(n+1)$
(c) $\frac{n(n+1)}{\sqrt{2}}$
(d) 1

Solution:
(c)

The series is given

$$
\begin{aligned}
& \sqrt{2}+\sqrt{8}+\sqrt{18}+\sqrt{32}+\ldots . \\
\Rightarrow & \sqrt{2}+2 \sqrt{2}+3 \sqrt{2}+4 \sqrt{2}+\ldots \ldots
\end{aligned}
$$

$$
\text { Here } a=\sqrt{2} \text { and } d=2 \sqrt{2}-\sqrt{2}=\sqrt{2}
$$

$$
\therefore \mathrm{S}_{n}=\frac{n}{2}[2 a+(n-1) d]
$$

$$
=\frac{n}{2}[2 \sqrt{2}+(n-1) \sqrt{2}]
$$

$$
=\frac{n}{2} \cdot[2 \sqrt{2}+\sqrt{2} n-\sqrt{2}]
$$

$$
=\frac{n}{2}(\sqrt{2} n+\sqrt{2})
$$

$$
=\frac{n \sqrt{2}}{2}(n+1)=\frac{n(n+1)}{\sqrt{2}}
$$

Question 21.
The 9th term of an A.P. is 449 and 449th term is 9 . The term which is equal to zero is
(a) 50th
(b) 502 th
(c) 508 th
(d) None of these

Solution:
(d)

$$
\begin{align*}
& a_{n}=a+(n-1) d \\
& a_{9}=449=a+(9-1) d=a+8 d \tag{i}\\
& a_{449}=9=a+(449-1) d=a+448 d
\end{align*}
$$

Subtracting $440 d=-440 \Rightarrow d=\frac{-440}{440}=-1$

$$
\text { and } a+8 d=449 \Rightarrow a \times 8 \times(-1)=449
$$

$\Rightarrow a=449+8=.457$
$\therefore 0=a+(n-1) d$
$0=457+(n-1)(-1) \Rightarrow 0=457-n+1$
$\Rightarrow n=458$
\therefore 458th term $=0$

Question 22.

22. If $\frac{1}{x+2}, \frac{1}{x+3}, \frac{1}{x+5}$ are in A.P. then $x=$
(a) 5
(b) 3
(c) 1
(d) 2

Solution:

(c)

$$
\begin{aligned}
& \frac{1}{x+2}, \frac{1}{x+3}, \frac{1}{x+5} \text { and in A.P. } \\
\therefore & \frac{1}{x+3}-\frac{1}{x+2}=\frac{1}{x+5}-\frac{1}{x+3} \\
\Rightarrow & \frac{x+2-x-3}{(x+3)(x+2)}=\frac{x+3-x-5}{(x+5)(x+3)} \\
\Rightarrow & \frac{-1}{(x+3)(x+2)}=\frac{-2}{(x+5)(x+3)} \\
\Rightarrow & \frac{-1}{x+2}=\frac{-2}{x+5} \\
\Rightarrow & -2 x-4=-x-5 \\
\Rightarrow & -2 x+x=-5+4 \Rightarrow-x=-1 \\
\therefore & x=1
\end{aligned}
$$

Question 23.

The $n^{\text {th }}$ term of an A.P., the sum of whose n terms is S_{n}, is
(a) $\mathbf{S}_{n}+\mathbf{S}_{n-1}$
(b) $S_{n}-S_{n-1}$
(c) $\mathrm{S}_{n}+\mathrm{S}_{n+1}$
(d) $S_{n}-S_{n+1}$

Solution:

(b) S_{n} is the sum of first n terms

Last term nth term $=S_{n}-S_{n-1}$

Question 24.

The common difference of an A.P., the sum of whose n terms is S_{n}, is
(a) $\mathrm{S}_{n}-2 \mathrm{~S}_{n-1}+\mathrm{S}_{n-2}$
(b) $S_{n}-2 S_{n-1}-S_{n-2}$
(c) $\mathrm{S}_{n}-\mathrm{S}_{n-2}$
(d) $\mathrm{S}_{n}-\mathrm{S}_{n-1}$

Solution:

(a)

Sum of n terms $=\mathrm{S}_{n}$
$\therefore a_{n}=\mathrm{S}_{n}-\mathrm{S}_{n-1}$ and $a_{n-1}=\mathrm{S}_{n-1}-\mathrm{S}_{n-2}$
\therefore Common difference (d) $=a_{n}-a_{n-1}$
$=\left(\mathrm{S}_{n}-\mathrm{S}_{n-1}\right)-\left(\mathrm{S}_{n-1}-\mathrm{S}_{n-2}\right)$
$=\mathrm{S}_{n}-\mathrm{S}_{n-1}-\mathrm{S}_{n-1}+\mathrm{S}_{n-2}$
$=\mathrm{S}_{n}-2 \mathrm{~S}_{n-1}+\mathrm{S}_{n-2}$

Question 25.

If the sums of \boldsymbol{n} terms of two arithmetic

progressions are in the ratio $\frac{3 n+5}{5 n+7}$,

then their $n^{\text {th }}$ terms are in the ratio

(a) $\frac{3 n-1}{5 n-1}$
(b) $\frac{3 n+1}{5 n+1}$
(c) $\frac{5 n+1}{3 n+1}$
(d) $\frac{5 n-1}{3 n-1}$

Solution:
(b)

In first A.P. let its first term be a_{1} and common difference d_{1}
and in second A.P., first term be a_{2} and common difference d_{2}, then

$$
\begin{aligned}
& \frac{S_{n}}{S_{n}}=\frac{\frac{n}{2}\left[2 a_{1}+(n-1) d_{1}\right]}{\frac{n}{2}\left[2 a_{2}+(n-1) d_{2}\right]}=\frac{2 a_{1}+(n-1) d_{1}}{2 a_{2}+(n-1) d_{2}} \\
\therefore & \frac{2 a_{1}+(n-1) d_{1}}{2 a_{2}+(n-1) d_{2}}=\frac{3 n+5}{5 n+7}
\end{aligned}
$$

Substituting $n=2 n-1$, then

$$
\begin{aligned}
& \frac{2 a_{1}+(2 n-2) d_{1}}{2 a_{2}+(2 n-2) d_{2}}=\frac{3(2 n-1)+5}{5(2 n-1)+7} \\
\Rightarrow & \frac{a_{1}+(n-1) d_{1}}{a_{2}+(n-1) d_{2}}=\frac{6 n-3+5}{10 n-5+7}
\end{aligned}
$$

(Dividing by 2)
$\Rightarrow \frac{a_{1 n}}{a_{2 n}}=\frac{6 n+2}{10 n+2}=\frac{3 n+1}{5 n+1}$

Question 26.

If S_{n} denote the sum of n terms of an

A.P. with first term a and common

difference d such that $\frac{S_{x}}{S_{k x}}$ is independent of x, then
(a) $d=a$
(b) $d=2 a$
(c) $a=2 d$
(d) $d=-a$

Solution:

(b)
S_{n} is the sum of first n terms a is the first term and d is the common difference
$\mathrm{S}_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\frac{S_{x}}{S_{k x}}=\frac{\frac{n}{2}[2 a+(n-1) d]}{\frac{k x}{2}[2 a+(k x-1) d]}$
$\because \frac{S_{x}}{S_{k x}}$ is independent of x
$\therefore \frac{\frac{n}{2}[2 a+(x-1) d]}{\frac{k x}{2}[2 a+(k x-1) d]}$ is independent of x
$\therefore \frac{\frac{n}{2}[2 a+x d-d]}{\frac{k x}{2}[2 a+k d x-d]}$ is indepenet of x
$\Rightarrow \frac{2 a-d}{k(2 a-d)}$ is in dependent of x if $2 a-d \neq 0$ If $2 a-d=0$, then $d=2 a$

Question 27.
If the first term of an A.P. is a and nth term is b, then its common difference is
(a) $\frac{b-a}{n+1}$
(b) $\frac{b-a}{n-1}$
(c) $\frac{b-a}{n}$
(d) $\frac{b+a}{n-1}$

Solution:

(b)

In the given A.P.
First term $=a$ and nth term $=b$
$\therefore a+(n-1) d=b$
$\Rightarrow(n-1) d=b-a$
$\Rightarrow d=\frac{b-a}{n-1}$

Question 28.
The sum of first n odd natural numbers is
(a) $2 n-1$
(b) $2 n+1$
(c) n^{2}
(d) $n^{2}-1$

Solution:

(c)
$1,3,5,7$, are n odd numbers
Where $a=1$, and $d=2$
$\therefore \mathrm{S}_{n}=\frac{n}{2}[2 a+(n-1)]$
$=\frac{n}{2}[2 \times 1+(n-1) \times 2]$
$=\frac{n}{2}[2+2 n-2]=\frac{n}{2} \times 2 n$

$$
=n^{2}
$$

Question 29.
Two A.P.'s have the same common difference. The first term of one of these is 8 and that of the other is 3 . The difference between their 30th terms is
(a) 11
(b) 3
(c) 8
(d) 5

Solution:
(d) In two A.P.'s common-difference is same

Let A and a are two A.P. 's
First term of A is 8 and first term of a is 3
$A_{30}-a_{30}=8+(30-1) d-3-(30-1) d$
$=5+29 \mathrm{~d}-29 \mathrm{~d}=5$

Question 30.
If $18, a, b-3$ are in A.P., the $a+b=$
(a) 19
(b) 7
(c) 11
(d) 15

Solution:
(d) $18, \mathrm{a}, \mathrm{b}-3$ are in A.P., then $\mathrm{a}-18=-3-\mathrm{b}$
$=>a+b=-3+18=15$

Question 31.
The sum of n terms of two A.P.'s are in the ratio $5 n+4: 9 n+6$. Then, the ratio of their 18th term is
(a) $\frac{179}{321}$
(b) $\frac{178}{321}$
(c) $\frac{175}{321}$
(d) $\frac{176}{321}$

Solution:

(a)

Let a_{1}, d_{2} be the first terms of two ratios S and S^{\prime} and d_{1}, d_{2}, be their common difference respectively

Then, $\mathrm{S}_{n}=\frac{n}{2}\left[2 a_{1}+(n-1) d_{1}\right]$ and
$\mathrm{S}_{n}^{\prime}=\frac{n}{2}\left[2 a_{2}+(n-1) d_{2}\right]$

Now $\frac{\mathrm{S}_{n}}{\mathrm{~S}_{n}^{\prime}}=\frac{\frac{n}{2}\left[2 a_{1}+(n-1) d_{1}\right]}{\frac{n}{2}\left[2 a_{2}+(n-1) d_{2}\right]}$
$=\frac{2 a_{1}+(n-1) d_{1}}{2 a_{2}+(n-1) d_{2}}$
But $\frac{\mathrm{S}_{n}}{\mathrm{~S}_{n}^{\prime}}=\frac{5 n+9}{9 n+6}$
$\therefore \frac{2 a_{1}+(n-1) d_{1}}{2 a_{2}+(n-1) d_{2}}=\frac{5 n+9}{9 n+6}$
Now we have to find the ratios in 18 th term
Here $n=18$

$$
\therefore \frac{2 a_{1}+(18-1) d_{1}}{2 a_{2}+(18-1) d_{2}}=\frac{5(2 n-1)+4}{9(2 n-1)+6}
$$

$$
=\frac{5(2 \times 18-1)+4}{9(2 \times 18-1)+6}=\frac{5 \times 35+4}{9 \times 35+6}
$$

$$
=\frac{175+4}{315+6}=\frac{179}{321}
$$

Question 32.

$$
\text { If } \frac{5+9+13+\ldots \text { to } n \text { terms }}{7+9+11+\ldots \text { to }(n+1) \text { terms }}=\frac{17}{16}
$$

then $n=$

(a) 8
(b) 7
(c) 10
(d) 11

Solution:
(b)

Sum of $5+9+13+\ldots .$. to n terms
$=\frac{n}{2}[2 a+(n-1) d]$
Here $a=5, d=9-5=4$
\therefore Sum $=\frac{n}{2}[2 \times 5+(n-1) \times 4]$
$=\frac{n}{2}[10+4 n-4]$
$=\frac{n}{2}[6+4 n]=n(3+2 n)$.
and sum of $7+9+11+\ldots .$. to $(n+1)$
terms

$$
\begin{aligned}
& =\frac{n+1}{2}[2 \times 7+(n+1-1) 2] \\
& =\frac{n+1}{2}[14+2 n]=(n+1)(7+n)
\end{aligned}
$$

$\therefore \frac{5+9+13+\ldots \text { to } n \text { terms }}{7+9+11+\ldots \text { to }(n+1) \text { terms }}=\frac{17}{16}$
$\Rightarrow \frac{n(3+2 n)}{(n+1)(7+n)}=\frac{17}{16}$
$\Rightarrow 16 n(3+2 n)=17(n+1)(7+n)$
$\Rightarrow 48 n+32 n^{2}=17\left(n^{2}+8 n+7\right)$
$\Rightarrow 48 n+32 n^{2}=17 n^{2}+136 n+119$
$\Rightarrow 48 n+32 n^{2}-17 n^{2}-136 n-119=0$
$\Rightarrow 15 n^{2}-88 n-119=0$
$\Rightarrow 15 n^{2}-105 n+17 n-119=0$

$$
\left\{\begin{array}{c}
\because 15 \times(-119)=1785 \\
-1785=17 \times(105) \\
-88=17-105
\end{array}\right\}
$$

$\Rightarrow 15 n(n-7)+17(n-7)=0$
$\Rightarrow(n-7)(15 n+17)=0$
Either $n-7=0$, then $n=7$
or $15 n+13=0$, then $n=\frac{-13}{15}$ which is not
possible being fraction
$\therefore n=7$

Question 33.
The sum of n terms of an A.P. is $3 n^{2}+5 n$, then 164 is its
(a) 24th term
(b) 27th term
(c) 26th term
(d) 25th term

Solution:
(b)

Sum of n terms $\left(\mathrm{S}_{n}\right)=3 n^{2}+5 n$
\therefore Sum of $(n-1)$ terms $\left(\mathrm{S}_{n-1}\right)=3(n-1)^{2}+5$

$$
(n-1)
$$

$$
=3\left(n^{2}-2 n+1\right)+5 n-5
$$

$$
=3 n^{2}-6 n+3+5 n-5
$$

$$
=3 n^{2}-n-2
$$

$\begin{aligned} \therefore & n \text {th term }=\mathrm{S}_{n}-\mathrm{S}_{n-1} \\ \Rightarrow & a_{n}=3 n^{2}+5 n-3 n^{2}+n+2 \\ & a_{n}=6 n+2, \text { But } a_{n}=164\end{aligned}$
$\Rightarrow 6 n+2=164 \Rightarrow 6 n=164-2=162$
$\therefore n=\frac{162}{6}=27$
$\therefore 27$ th term

Question 34.

If the nth term of an A.P. is $2 n+1$, then the sum of first n terms of the A.P. is
(a) $n(n-2)$
(b) $n(n+2)$
(c) $n(n+1)$
(d) $n(n-1)$

Solution:

(b)

$$
\begin{aligned}
& a_{n}=2 n+1 \\
& a \text { or } a_{1}=2 \times 1+2=2+1=3 \\
& a_{2}=2 \times 2+1=4+1=5 \\
& \therefore d=a_{2}-a_{1}=5-3=2 \\
& \therefore \mathrm{~S}_{n}=\frac{n}{2}[2 a+(n-1) d] \\
&=\frac{n}{2}[2 \times 3+(n-1) \times 2] \\
&=\frac{n}{2}[6+2 n-2]=\frac{n}{2}[2 n+4] \\
&=n(n+2)
\end{aligned}
$$

Question 35.
If 18 th and 11 th term of an A.P. are in the ratio $3: 2$, then its 21 st and 5 th terms are in the ratio
(a) $3: 2$
(b) $3: 1$
(c) $1: 3$
(d) $2: 3$

Solution:
(b)

18th term : 11th term $=3: 2$
$\Rightarrow \frac{a_{18}}{a_{11}}=\frac{3}{2} \Rightarrow \frac{a+17 d}{a+10 d}=\frac{3}{2}$
$\Rightarrow 2 a+34 d=3 a+30 d$
$\Rightarrow 34 d-30 d=3 a-2 a \Rightarrow a=4 d$
Now $\frac{a_{21}}{a_{5}}=\frac{a+20 d}{a+4 d}=\frac{4 d+20 d}{4 d+4 d}$
$=\frac{24 d}{8 d}=\frac{3}{1}$

$$
a_{21}: a_{5}=3: 1
$$

Question 36.
The sum of first 20 odd natural numbers is
(a) 100
(b) 210
(c) 400
(d) 420 [CBSE 2012]

Solution:

(c)

First 20 odd natural numbers are
$1,3,5,7,9,11,13,15, \ldots, 39$
Here $a=1, d=2, n=20$
$\therefore \mathrm{S}_{20}=\frac{n}{2}[2 a+(n-1) d]$
$=\frac{20}{2}[2 \times 1+(20-1) \times 2]$
$=10(2+38)=10 \times 40=400$

Question 37.

The common difference of the A.P. is $\frac{1}{2 q}$,

$$
\frac{1-2 q}{2 q}, \frac{1-4 q}{2 q}, \ldots \text { is }
$$

(a) -1
(b) 1
(c) q
(d) $2 q$ [CBSE 2013]

Solution:
(a)

$$
\begin{aligned}
& \text { A.P. is } \frac{1}{2 q}, \frac{1-2 q}{2 q}, \frac{1-4 q}{2 q}, \ldots \\
& \Rightarrow \frac{1}{2 q},\left(\frac{1}{2 q}-1\right),\left(\frac{1}{2 q}-2\right), \ldots \\
& \\
& \text { Clearly } d=\left(\frac{1}{2 q}-1\right)-\frac{1}{2 q} \\
& \quad=\frac{1}{2 q}-1-\frac{1}{2 q}=-1
\end{aligned}
$$

Question 38.

The common difference of the A.P. $\frac{1}{3}$,

$$
\frac{1-3 b}{3}, \frac{1-6 b}{3}, \ldots \text { is }
$$

(a) $\frac{1}{3}$
(b) $-\frac{1}{3}$
(c) $-b$
(d) b
[CBSE 2013]

Solution:
(c)

$$
\begin{aligned}
& \text { A.P. is } \frac{1}{3}, \frac{1-3 b}{3}, \frac{1-6 b}{3}, \ldots \\
\Rightarrow & \frac{1}{3}, \frac{1}{3}-\frac{3 b}{3}, \frac{1}{3}-\frac{6 b}{3}, \ldots \\
\Rightarrow & \frac{1}{3}, \frac{1}{3}-b, \frac{1}{3}-2 b, \ldots \\
\therefore & d=\left(\frac{1}{3}-b\right)-\frac{1}{3}=\frac{1}{3}-b-\frac{1}{3}=-b
\end{aligned}
$$

Question 39.

The common difference of the A.P. 12b ,

$$
\frac{1-6 b}{2 b}, \frac{1-12 b}{2 b}, \ldots \text { is }
$$

(a) $2 b$
(b) $-2 b$
(c) 3
(d) -3
[CBSE 2013]

Solution:
(d)

$$
\begin{aligned}
& \text { A.P. is } \frac{1}{2 b}, \frac{1-6 b}{2 b}, \frac{1-12 b}{2 b}, \ldots \\
\Rightarrow & \frac{1}{2 b}, \frac{1}{2 b}-\frac{6 b}{2 b}, \frac{1}{2 b}-\frac{12 b}{2 b}, \ldots \\
\Rightarrow & \frac{1}{2 b}, \frac{1}{2 b}-3, \frac{1}{2 b}-6, \ldots \\
\therefore & d=\frac{1}{2 b}-3-\frac{1}{2 b}=-3
\end{aligned}
$$

Question 40.
If $k, 2 k-1$ and $2 k+1$ are three consecutive terms of an AP, the value of k is
(a) -2
(b) 3
(c) -3
(d) 6 [CBSE 2014]

Solution:
(b) $(2 k-1)-k=(2 k+1)-(2 k-1)$
$2 k-1-k=2$
=> $k=3$

Question 41.
The next term of the A.P. , $\sqrt{ } 7, \sqrt{ } 28, \sqrt{ } 63$,
(a) $\sqrt{ } 70$
(b) $\sqrt{ } 84$
(c) $\sqrt{ } 97$
(d) $\sqrt{ } 112$ [CBSE 2014]

Solution:

(d)

AP is $\sqrt{7}, \sqrt{28}, \sqrt{63}, \ldots$
$\Rightarrow \sqrt{7}, \sqrt{4 \times 7}, \sqrt{9 \times 7}, \ldots$
$\Rightarrow \sqrt{7}, 2 \sqrt{7}, 3 \sqrt{7}, \ldots$
\therefore Here $a=\sqrt{7}$

$$
\text { and } d=2 \sqrt{7}-\sqrt{7}=\sqrt{7}
$$

\therefore Next term $=4 \sqrt{7}$
$=\sqrt{ }(16 \times 7)=\sqrt{ } 112$

Question 42.
The first three terms of an A.P. respectively are $3 y-1,3 y+5$ and $5 y+1$. Then, y equals
(a) -3
(b) 4
(c) 5
(d) 2 [CBSE 2014]

Solution:

(c) $2(3 y+5)=3 y-1+5 y+1$
(If a, b, c are in A.P., $b-a=c-b=>2 b=a+c$)
$\Rightarrow 6 y+10=8 y$
=> $10=2 y$
$\Rightarrow>=5$

