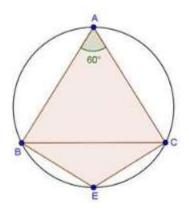
Exercise 15.5

Q1

In fig., ΔABC is an equilateral triangle. Find mzBEC.



Solution

Since, ABC is an equilateral triangle.

Then, ∠BAC = 60°

.: \(\angle BAC + \angle BEC = 180^\circ\)

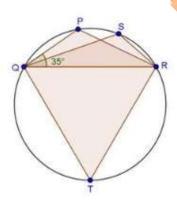
⇒ 60" + ∠BEC = 180"

⇒ ∠BEC = 180" - 60" - 120"

Opposite angles of cyclic quad.

Q2

In fig., Δ PQR is an isosceles triangle with PQ = PR and mZPQR = 35°, find mZQSR and mZQTR.



We have, ∠PQR = 35°

Since, $\square PQR$ is an isosceles triangle with PQ = PR.

Then, ∠PQR - ∠PRQ - 35°

In APQR, by angle sum property

 $\angle P + \angle PQR + \angle PRQ = 180^{\circ}$

$$\Rightarrow$$
 $\angle P = 180' - 35' - 35' = 110''$

$$\angle OSR = \angle P = 110^{\circ}$$

[Angles in same segment]

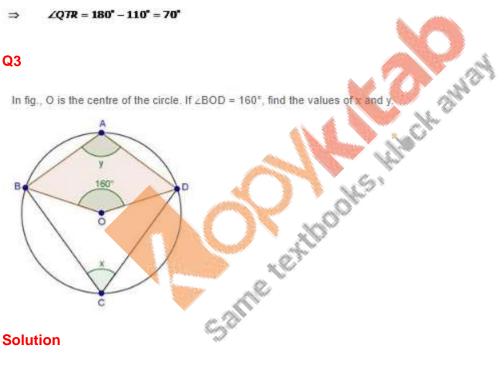
Now, ∠QSR + ∠QTR = 180°

Opposite angles of cyclic quad.

110" + ZQTR - 180"

$$\Rightarrow$$
 $\angle QTR = 180^{\circ} - 110^{\circ} = 70^{\circ}$

Q3



We have, ∠BOD = 160°

By degree measure theorem

$$\angle BOD = 2\angle BCD$$

$$\Rightarrow x = \frac{160^{\circ}}{2} = 80^{\circ}$$

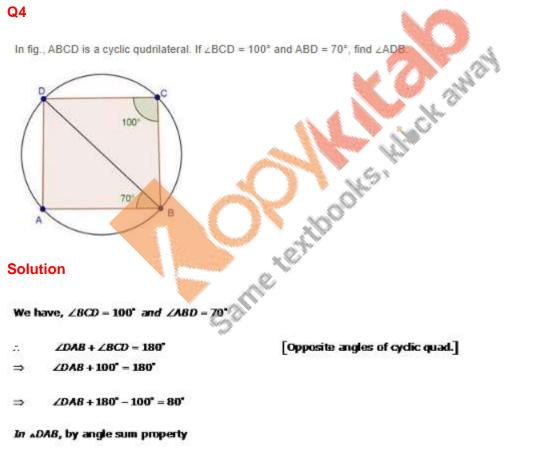
∠BAD + ∠BCD = 180°

Opposite angles of cydic quad.

$$\Rightarrow$$
 $y + x = 180°$

$$\Rightarrow$$
 $y + 80^{\circ} = 180$

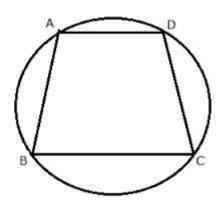
Q4



$$\Rightarrow$$
 $/DAB + 100^{\circ} - 180^{\circ}$

In ADAB, by angle sum property

If ABCD is a cyclic quadrilateral in which AD \parallel BC. Prove that \angle B = \angle C.



Solution

Since, ABCD is a cyclic quadrilateral with AD || BC

Then,
$$\angle A + \angle C = 180^\circ$$

And,
$$\angle A + \angle B = 180^{\circ}$$

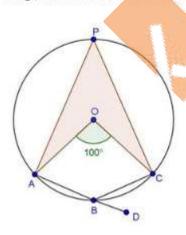
[Opposite angles of cyclic quad.]

Compare equations (1) and (2)

$$\angle B - \angle C$$

Q6

In fig., O is the centre of the circle, find ∠CBD.



We have, ∠AOC = 100°

By degree measure theorem

 $\angle AOC = 2\angle APC$

$$\Rightarrow \angle APC = \frac{100^{\circ}}{2} = 50^{\circ}$$

∠APC + ∠ABC = 180°

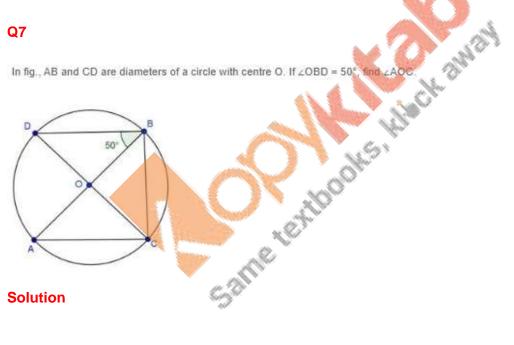
[Opposite angles of cyclic quad.]

 $\angle ABC + \angle CBD = 180^{\circ}$

[Linear pair of angles]

130" + ∠CBD = 180"

∠CBD = 180° - 130° = 50°



We have, ∠080 = 50°

Since, A8 and CD are diameters of circle then O is the centre of the circle.

.. \(\angle DBC = 90^\circ\)

Angle in semicirde

- ⇒ ∠DBO + ∠OBC = 90°
- ⇒ 50" + ∠OBC = 90"
- ⇒ ∠OBC = 90° 50° = 40°

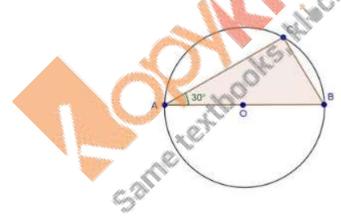
By degree measure theorem

⇒ ∠AOC - 2 x 40° - 80°

Q8

On a semi-circle with AB as diameter, a point C is taken, so that $m(\angle CAB) = 30^\circ$. Find $m(\angle ACB)$ and $m(\angle ABC)$.

Solution



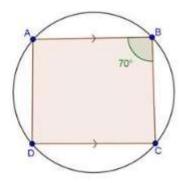
We have, ∠CA8 = 30°

Angle in semidrde

In ABC, by angle sum property

Q9

Solution



[Opposite angles of cyclic quad.]

We have, ∠8 = 70°

Since, ABCD is a cyclic quadrilateral

Then, $\angle B + \angle D = 180^{\circ}$

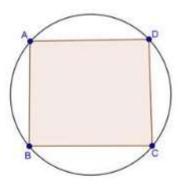
Since, AB || DC

Then,
$$\angle B + \angle C = 180^{\circ}$$

Now, $\angle A + \angle C = 180^{\circ}$

Q10

In a cyclic quadrilateral ABCD, if $m \angle A = 3(m \angle C)$. find $m \angle A$.



We have, $\angle A = 3\angle C$

Let
$$\angle C = x$$

Then, $\angle A = 3x$

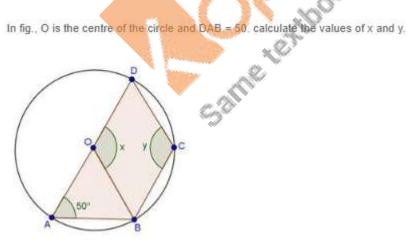
ZA + ZC = 180°

Opposite angles of cyclic quad.

$$\Rightarrow x - \frac{180^{\circ}}{4} - 45^{\circ}$$

= 135

Q11



We have, ∠DAB = 50°

By degree measure theorem

$$\angle BOD = 2\angle BAD$$

$$\Rightarrow x - 2 \times 50^{\circ} - 100^{\circ}$$

Since, ABCD is a cyclic quadrilateral

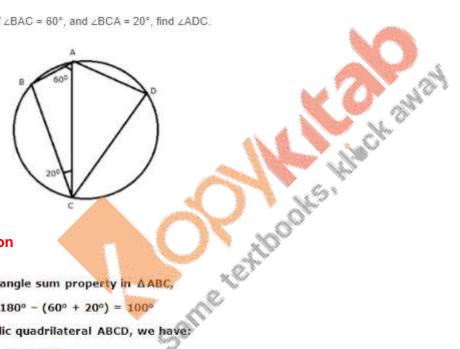
Then, $\angle A + \angle C = 180^{\circ}$

$$\Rightarrow$$
 50° + y = 180°

$$\Rightarrow$$
 $y = 180^{\circ} - 50^{\circ} = 130^{\circ}$

Q12

In fig., if ∠BAC = 60°, and ∠BCA = 20°, find ∠ADC.



Solution

Using angle sum property in AABC,

$$\angle B = 180^{\circ} - (60^{\circ} + 20^{\circ}) = 100^{\circ}$$

In cyclic quadrilateral ABCD, we have:

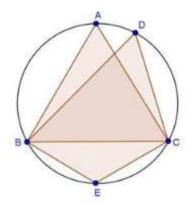
$$\angle B + \angle D = 180^{\circ}$$

Q13

RD Sharma Solutions Class 9

Ch 15 - Circles

In fig., if ABC is an equilateral triangle. Find ∠BDC and ∠BEC.



Solution

Since, ABC is an equilateral triangle

Then, $\angle BAC = 60^{\circ}$

.: ∠BDC = ∠BAC = 60°

[Angles in same segment]

Since, quad. ABEC is a cyclic quadrilateral.

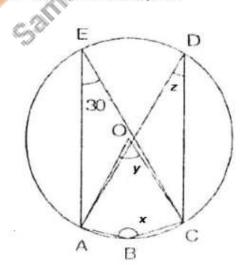
Then, $\angle BAC + \angle BEC = 180^{\circ}$

⇒ 60° + ∠BEC = 180°

⇒ ∠BEC = 180° - 60° - 120°

Q14

In fig., O is the centre of the circle. If $ZCEA = 30^{\circ}$, find the values of x, y and z.



We have, ∠AEC = 30°

Since, quad. ABCE is a cyclic quadrilateral.

Then, \(\alpha BC + \alpha BC = 180 \)

$$\Rightarrow x = 180^{\circ} - 30^{\circ} = 150^{\circ}$$

By degree measure theorem

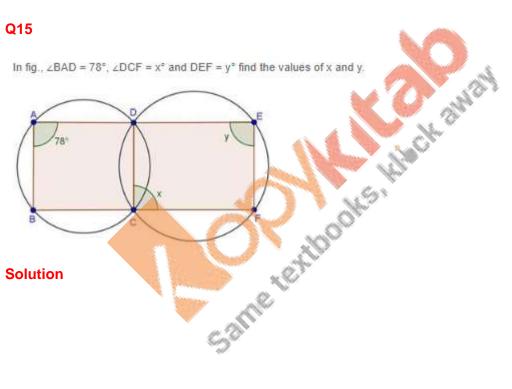
$$\Rightarrow y = 2 \times 30^{\circ} = 60^{\circ}$$

[Angles in same segment]

z = 30° \Rightarrow

Q15

In fig., $\angle BAD = 78^{\circ}$, $\angle DCF = x^{\circ}$ and DEF = y° find the values of x and y.



We have, $\angle BAD = 78^\circ$, $\angle DCF = x^\circ$ and $\angle DEF = y^\circ$

Since, ABCD is a cyclic quadrilateral.

Then, $\angle BAD + \angle BCD = 180^{\circ}$

$$\Rightarrow$$
 $\angle BCD = 180^{\circ} - 78^{\circ} = 102^{\circ}$

Now, ∠BCD + ∠DCF = 180*

[Linear pair of angles]

$$\Rightarrow$$
 $x = 180^{\circ} - 102^{\circ} = 78^{\circ}$

Since, DCFE is a cyclic quadrilateral

Then, $x + y = 180^{\circ}$

$$\Rightarrow$$
 $y = 180^{\circ} - 78^{\circ} = 102^{\circ}$

Q16

In a cyclic quadrilateral ABCD, if $\angle A - \angle C = 60^\circ$, prove that the smaller of two is 60° .

Solution

We have

---(1

Since, ABCD is a cyclic quardilateral

Then $\angle A + \angle C = 180^{\circ}$

---(2)

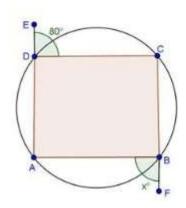
Add equations (1) and (2)

$$\angle A - \angle C + \angle A + \angle C = 60^{\circ} + 180^{\circ}$$

$$\Rightarrow$$
 $\angle A = \frac{240}{2} = 120^\circ$

Put value of ∠A in equation (2)

In fig., ABCD is cyclic qudrilateral. Find the value of x.



Solution

∠EDC + ∠CDA = 180°

Since, ABCD is a cyclic quadrilateral.

$$\angle ADC + \angle ABC = 180^{\circ}$$

Now, $\angle ABC + \angle ABF = 180^{\circ}$

Q18

ABCD is a cyclic quadrilateral in which:

Courtion

ZEDC + ZCDA = 180°

$$\Rightarrow 80^{\circ} + ZCDA = 180^{\circ}$$
 $\Rightarrow ZCDA = 180^{\circ} - 80^{\circ} = 100^{\circ}$

Since, ABCD is a cyclic quadrilateral.

ZADC + ZABC = 180°

 $\Rightarrow ZABC = 180^{\circ} - 100^{\circ} = 80^{\circ}$

Now, ZABC + ZABF = 180°

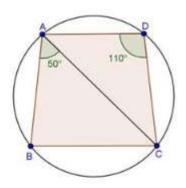
 $\Rightarrow 80^{\circ} + x^{\circ} = 180^{\circ}$
 $\Rightarrow 80^{\circ} + x^{\circ} = 180^{\circ}$
 $\Rightarrow x = 180^{\circ} - 80^{\circ} = 100^{\circ}$

ABCD is a cyclic quadrilateral in which:

(i) BC || AD, ZADC = 110° and ZBAC = 50°. Find ZDAC.

RD Sharma Solutions Class 9

Ch 15 - Circles



Since, ABCD is a cyclic quadrilateral.

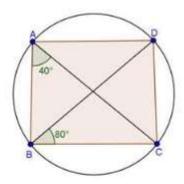
Then, \(\alpha ABC + \alpha ADC = 180 \cdot \)

- ZABC+110" = 180"
- ZABC = 180" 110" = 70"

Since, AD || BC

ABCD is a cyclic quadrilateral in which:

(ii) \(\text{\infty} \) \(\text{\infty} \) and \(\text{\infty} \) ABC = 40°. Find \(\text{\infty} \) Find \(\text{\infty} \) BC. Solution



 $\angle BAC = \angle BDC = 40^{\circ}$

[Angles in same segment]

In ABDC, by angle sum property

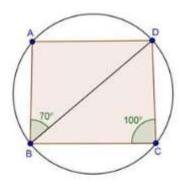
$$\angle DBC + \angle BCD + \angle BDC = 180^{\circ}$$

$$\Rightarrow$$
 80° + $\angle BCD$ + 40° = 180°

Q20

ABCD is a cyclic quadrilateral in which:

(ii) ∠BCD = 100" and ∠ABD = 70". Find ∠ADB.



Since, ABCD is a cyclic quadrilateral.

Then, $\angle BAD + \angle BCD = 180^{\circ}$

- ⇒ ∠8AD + 100" = 180"
- ⇒ ∠8AD = 180° 100° = 80°

In ABD, by angle sum property

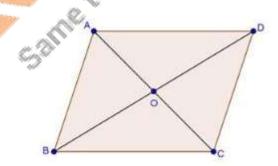
∠ABD + ∠ADB + ∠BAD - 180°

- ⇒ 70" + ∠AD8 +80" = 180"
- ⇒ ∠AD8 180° 70° 80° 30°

Q21

Prove that the circles described on the four sides of a rhombus as diameters, pass through the point of intersection of its diagonals.

Solution



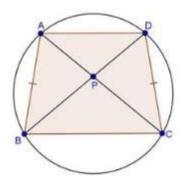
Let ABCD be a rhombus such that its diagonals AC and BD intersect at O. Since, the diagonals of a rhombus intersect at right angle.

Now, $\angle AOB = 90^{\circ} \Rightarrow$ circle described on AB as diameter will pass through O. Similarly, all the circles described on BC, AD and CD as diameters pass through O.

Q22

If the two sides of a pair of opposite sides of a cyclic quadrilateral are equal, prove that its diagonals are equal.

Solution



Given ABCD is a cyclic quadrilateral in which AB = DC

(1)

Toprove AC = BD

Proof In APAB and APDC

AB - DC

 $\angle BAP = \angle CDP$

 $\angle PBA = \angle PCD$

[Given]
[Angles in the same segment]
[Angles in same segment]

Then, APAB = APDC

PA = PD

PC - PBand

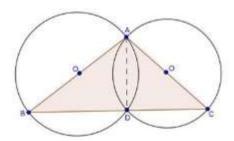
Add equation (1) and (2)

PA + PC = PD + PB

AC = BD

Q23

Circles are described on the sides of a triangle as diameters, prove that the circles on any two sides intersect each other on the third side (or third side produced).



Since, A8 is a diameter

Then, ∠ADB - 90°

---(1)

[Angle in semidrde]

Since, AC is a diameter

Then, $\angle ADC = 90^{\circ}$

---(2)

[Angle in semicirde]

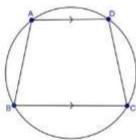
Add equations (1) and (2)

Then, BDC is a line

Hence, the circles on any two sides intersect each other on the third side.

Q24

ABCD is a cyclic trapezium with AD \parallel BC. If $\angle B = 70^\circ$, determine other three angles of the trapezium.



We have

ABCD is a cyclic trapezium with AD \parallel BC and \angle B = 70°.

Since, ABCD is a cyclic quadrilateral

Then, $\angle B + \angle D = 180^{\circ}$

Since, AD || BC

Then, $\angle A + \angle B = 180^\circ$

ZA + 70" = 180"

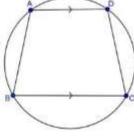
ZA = 180° - 70° = 110°

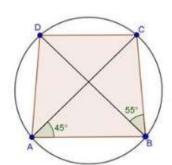
Since, ABCD is a cyclic quadrilateral

Then, $\angle A + \angle C = 180^\circ$

Q25

In fig., ABCD is cyclic quadrilaterial in which AC an BD are its diagonals. If ∠DBC = 55° and ∠BAC = 45°, find ∠BCD.





Since angles in the same segment of a circle are equal.

$$\angle DAB = \angle CAD + \angle BAC = 55^{\circ} + 45^{\circ} = 100^{\circ}$$

But, \(\textstyle DAB + \(\textstyle BCD = 180^\circ\)

Opposite angles of a cyclic quadrilateral

∴ ∠BCD = 180° - 100° = 80°

Q26

Prove that the perpendicular bisectors of the sides of a cyclic quadrilateral are concurrent.

Solution

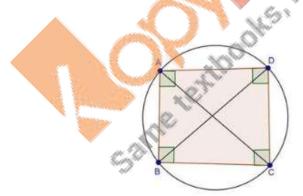
Let ABCD be a cyclic quadrilateral, and let O be the centre of the corresponding circle. Then, each side of quadrilateral ABCD is a chord of the circle and the perpendicular bisector of a chord always passes through the centre of the circle.

So, right bisectors of the sides of quadrilateral ABCD will pass through the centre O of the corresponding circle.

Q27

Prove that the centre of the circle circumscribing the cyclic rectangle ABCD is the point of intersection of its diagonals.

Solution



Let O be the centre of the circle circumscribing the cyclic rectangle ABCD. Since \angle ABC = 90° and AC is a chord of the circle, so, AC is a diameter of the circle. Similarly, BD is a diameter.

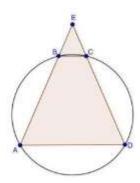
Hence, point of intersection of AC and BD is the centre of the circle.

Q28

ABCD is a cyclic quadrilateral in which AB and CD when produced meet in E and EA = ED. Prove that:

- (i) AD || BC
- (ii) EB EC.

Solution



Given ABCD is a cyclic quadrilateral in which EA = ED

To prove (i) AD || BC

(ii) EB = EC

Proof (i) Since EA = ED

Then, $\angle EAD = \angle EDA$

Since, ABCD is a cyclic quadrilateral

Then, $\angle ABC + \angle ADC = 180^{\circ}$

But ∠ABC + ∠EBC = 180"

then, $\angle ADC = EBC$

Compare equations (1) and (2)

ZEAD - ZEBC

Since, corresponding angles are equal

Then, BC || AD

(ii) From equation (3)

ZEAD - ZEBC

Similarly ZEDA - ZECB

Compare equations (1)(3) and (4)

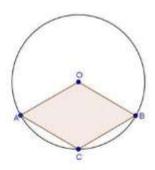
∠EBC = ∠ECB

EB - EC

[Opposite angles to equal sides]

Q29

Prove that the angle in a segment shorter than a semicirde is greater than a right angle.



Given:- $\angle ACB$ is an angle in minor segment.

To prove:- ∠ACB > 90"

Proof:- By degree measure theorem

Reflex ∠AOB = 2∠ACB And reflex ∠AOB > 180°

Then, 2\(\angle ACB > 180\)

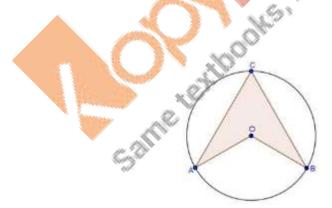
$$\Rightarrow \angle AC8 > \frac{180^{\circ}}{2}$$

⇒ ∠AC8 > 90°

Q30

Prove that the angle in a segment greater than a semi-circle is less than a right angle.

Solution



Given:- ZACB is an angle in major segment.

To prove: - ZACB < 90°

Proof:- By degree measure theorem

∠AOB = 2∠ACB

And ∠AO8 < 180*

Then, 2/ACB < 180°

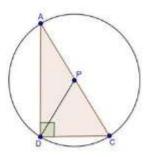
$$\Rightarrow \angle ACB < \frac{180^{\circ}}{2}$$

⇒ ∠AC8 < 90°
</p>

Q31

Prove that the line segment joining the mid-point of the hypotenuse of a right triangle to its opposite vertex is half of the hypotenuse.

Solution



Let $\triangle ABC$ be a right triangle right angled at B. Let P be the mid-point of hypotenuse AC. Draw a circle with centre at P and AC as a diameter.

Since, $\angle ABC = 90^{\circ}$. Therefore, the circle passes through B.

Also,
$$AP = CP = Radius$$

$$AP = BP = CP$$

Hence,
$$BP = \frac{1}{2}AC$$