RD Sharma Solutions Class 9 Chapter 11 Coordinate Geometry Ex 11.2

Question 1.

The exterior angles obtained on producing the base of a triangle both ways are 104° and 136°. Find all the angles of the triangle.

Solution:

In \triangle ABC, base BC is produced both ways to D and E respectivley forming \angle ABE = 104° and \angle ACD = 136°

Question 2.

In the figure, the sides BC, CA and AB of a \triangle ABC have been produced to D, E and F respectively. If \angle ACD = 105° and \angle EAF = 45°, find all the angles of the \triangle ABC.

Solution: In \triangle ABC, sides BC, CA and BA are produced to D, E and F respectively. \angle ACD = 105° and \angle EAF = 45° $\angle ACD + \angle ACB = 180^{\circ}$ (Linear pair) \Rightarrow 105° + \angle ACB = 180° ⇒ ∠ACB = 180°- 105° = 75° \angle BAC = \angle EAF (Vertically opposite angles) S. Marik away = 45° But \angle BAC + \angle ABC + \angle ACB = 180° \Rightarrow 45° + \angle ABC + 75° = 180° \Rightarrow 120° + \angle ABC = 180° ⇒ ∠ABC = 180°- 120° $\therefore \angle ABC = 60^{\circ}$ Hence $\angle ABC = 60^\circ$, $\angle BCA = 75^\circ$ and $\angle BAC = 45^{\circ}$

Question 3. Compute the value of x in each of the following figures:

Same ter

 $\angle ACD = 112^{\circ} \text{ and } \angle BAE = 120^{\circ}$ $\angle ACB + \angle ACD = 180^{\circ}$ (Linear pair) $\Rightarrow \angle ACB + 112^\circ = 180^\circ$ $\Rightarrow \angle ACB = 180^\circ - 112^\circ = 68^\circ$ Similarly, Hisch away (Linear pair) $\angle BAE + \angle BAC = 180^{\circ}$ \Rightarrow 120° + \angle BAC = 180° $\Rightarrow \angle BAC = 180^\circ - 120^\circ = 60^\circ$ But $\angle BAC + \angle ABC + \angle BCA = 180^{\circ}$ (Angles of a triangle) $\Rightarrow 60^{\circ} + x + 68^{\circ} = 180^{\circ}$ \Rightarrow 128° + x = 180° \Rightarrow x = 180° - 128° = 52° $\therefore x = 52^{\circ}$ (ii) In \triangle ABC, side BC is produced to either side to D and E respectively ∠ABE = 120° and ∠ACD =110° × (2) $\therefore \angle ABE + \angle ABC = 180^{\circ}$ (Linear pair) Same

$$B$$
 x 112° C D

In the figure, AC \perp CE and $\angle A$: $\angle B$: $\angle C$ = 3:2:1, find the value of \angle ECD.

Solution: In $\triangle ABC$, $\angle A : \angle B : \angle C = 3 : 2 : 1$ BC is produced to D and CE $\perp AC$ $\because \angle A + \angle B + \angle C = 180^{\circ}$ (Sum of angles of a triangles) Let $\angle A = 3x$, then $\angle B = 2x$ and $\angle C = x$ $\therefore 3x + 2x + x = 180^{\circ} \Rightarrow 6x = 180^{\circ}$ $\Rightarrow x = 180 \cdot 6 = 30^{\circ}$ $\therefore \angle A = 3x = 3 \times 30^{\circ} = 90^{\circ}$ $\angle B = 2x = 2 \times 30^{\circ} = 60^{\circ}$ $\angle C = x = 30^{\circ}$ In $\triangle ABC$, Ext. $\angle ACD = \angle A + \angle B$

Question 6.

Which of the following statements are true (T) and which are false (F):

(i) Sum of the three angles of a triangle is 180°.

- (ii) A triangle can have two right angles.
- (iii) All the angles of a triangle can be less than 60°.

(iv) All the angles of a triangle can be greater than 60° .

(v) All the angles of a triangle can be equal to 60° .

(vi) A triangle can have two obtuse angles.

(vii) A triangle can have at most one obtuse angles.

(viii) If one angle of a triangle is obtuse, then it cannot be a right angled triangle.

(ix) An exterior angle of a triangle is less than either of its interior opposite angles.

(x) An exterior angle of a triangle is equal to the sum of the two interior opposite angles.

(xi) An exterior angle of a triangle is greater than the opposite interior angles. Solution:

(i) True.

(ii) False. A right triangle has only one right angle.

(iii) False. In this, the sum of three angles will be less than 180° which is not true.

(iv) False. In this, the sum of three angles will be more than 180° which is not true.

(v) True. As sum of three angles will be 180° which is true.

(vi) False. A triangle has only one obtuse angle.

(vii) True.

(viii)True.

(ix) False. Exterior angle of a triangle is always greater than its each interior opposite angles.

(x) True.

(xi) True.

Question 7.

Fill in the blanks to make the following statements true:

(i) Sum of the angles of a triangle is

(ii) An exterior angle of a triangle is equal to the two opposite angles.

(iii) An exterior angle of a triangle is always than either of the interior opposite angles.

(iv) A triangle cannot have more than right angles

(v) A triangles cannot have more than obtuse angles.

Solution:

(i) Sum of the angles of a triangle is 180°.

(ii) An exterior angle of a triangle is equal to the two interior opposite angles.

(iii) An exterior angle of a triangle is always greater than either of the interior opposite angles.

(iv) A triangle cannot have more than one right angles.

(v) A triangles cannot have more than one obtuse angles.

Question 8.

In a \triangle ABC, the internal bisectors of \angle B and \angle C meet at P and the external bisectors of \angle B and \angle C meet at Q. Prove that \angle BPC + \angle BQC = 180°.

Solution:

Given : In $\triangle ABC$, sides AB and AC are produced to D and E respectively. Bisectors of interior $\angle B$ and $\angle C$ meet at P and bisectors of exterior angles B and C meet at Q.

50%

Solution: In the figure,

в∕45°

 $\angle ABC = 45^\circ$, $\angle BAD = 35^\circ$ and $\angle BCD = 50^\circ$ Join BD and produce it E

Question 10.

In the figure, AB divides $\angle D$ AC in the ratio 1 \cdot 3 and AB = DB. Determine the value of Х.

Solution: In the figure AB = DB

Question 11.

ABC is a triangle. The bisector of the exterior angle at B and the bisector of $\angle C$ intersect each other at D. Prove that $\angle D = 12 \angle A$. Solution:

Given : In ∠ABC, CB is produced to E bisectors of ext. ∠ABE and into ∠ACB meet at D.

To prove :
$$\angle D = \frac{1}{2}A$$

Proof : In \triangle BDC, Ext. $\angle ABE = \angle A + \angle C$

$$\frac{1}{2} \angle ABE = \frac{1}{2} \angle A + \frac{1}{2} \angle C$$
$$\angle 1 = \frac{1}{2} \angle A + \angle 4 \qquad \dots (i)$$

$$\frac{1}{2} \angle ABE = \frac{1}{2} \angle A + \frac{1}{2} \angle C$$

$$\angle 1 = \frac{1}{2} \angle A + \angle 4 \qquad \dots(i)$$
(:: CD is bisector of $\angle C$)
In $\triangle BDC$,
Ext. $\angle 2 = \angle D + \angle 4$

$$\Rightarrow \angle D = \angle 2 - \angle 4$$

$$= \angle 1 - \angle 4 \qquad (: BD is bisector of $\angle ABE$)
$$= \left(\frac{1}{2} \angle A + \angle 4\right) - \angle 4 \qquad [From (i)]$$

$$= \frac{1}{2} \angle A + \angle 4 - \angle 4$$

$$= \frac{1}{2} \angle A$$
Hence $\angle D = \frac{1}{2} \angle A$$$

Question 12.

In the figure, AM \perp BC and AN is the bisector of \angle A. If \angle B = 65° and \angle C = 33°, find ∠MAN.

Question 13. In a AABC, AD bisects $\angle A$ and $\angle C > \angle B$. Prove that $\angle ADB > \angle ADC$. Solution:

Given : In $\triangle ABC$, $\angle C > \angle B$ and AD is the bisector of $\angle A$

To prove : ∠ADB > ∠ADC Proof: In $\triangle ABC$, AD is the bisector of $\angle A$ ∴∠1 = ∠2 In ∆ADC, Ext. ∠ADB = ∠I+ ∠C $\Rightarrow \angle C = \angle ADB - \angle 1 \dots (i)$ Similarly, in $\triangle ABD$, Ext. $\angle ADC = \angle 2 + \angle B$ $\Rightarrow \angle B = \angle ADC - \angle 2 \dots (ii)$ From (i) and (ii) $\therefore \angle C > \angle B$ (Given) $\therefore (\angle ADB - \angle 1) > (\angle ADC - \angle 2)$ But ∠1 = ∠2 $\therefore \angle ADB > \angle ADC$

M.S. March SMEN Question 14. In \triangle ABC, BD \perp AC and CE \perp AB. If BD and CE intersect at O, prove that \angle BOC = 180°-∠A. Solution:

Given : In $\triangle ABC$, BD $\perp AC$ and CE $\perp AB$ BD and CE intersect each other at O

To prove : $\angle BOC = 180^\circ - \angle A$ Proof: In quadrilateral ADOE $\angle A + \angle D + \angle DOE + \angle E = 360^{\circ}$ (Sum of angles of quadrilateral) $\Rightarrow \angle A + 90^{\circ} + \angle DOE + 90^{\circ} = 360^{\circ}$ ∠A + ∠DOE = 360° - 90° - 90° = 180°

But ∠BOC = ∠DOE (Vertically opposite angles) $\Rightarrow \angle A + \angle BOC = 180^{\circ}$ ∴ ∠BOC = 180° – ∠A

Question 15.

In the figure, AE bisects \angle CAD and \angle B = \angle C. Prove that AE || BC.

Solution:

Given : In AABC, BA is produced and AE is the bisector of ∠CAD ∠B = ∠C

