RD Sharma Solutions Class 9 Chapter 11 Coordinate Geometry Ex 11.2

Question 1.
The exterior angles obtained on producing the base of a triangle both ways are 104° and 136°. Find all the angles of the triangle.
Solution:
In $\triangle A B C$, base $B C$ is produced both ways to D and E respectivley forming $\angle A B E=$ 104° and $\angle A C D=136^{\circ}$

$\because \angle \mathrm{ABC}+\angle \mathrm{ABE}=180^{\circ}$
(Linear pair)
$\Rightarrow \angle \mathrm{ABC}+104^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{ABC}=180^{\circ}-104^{\circ}$
$\therefore \angle \mathrm{ABC}=76^{\circ}$
Similarly, $\angle \mathrm{ACB}+\angle \mathrm{ACD}=180^{\circ}$
$\Rightarrow \angle \mathrm{ACB}+136^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{ACB}=180^{\circ}-136^{\circ}=44^{\circ}$
But $\angle \mathrm{ABC}+\angle \mathrm{ACB}+\angle \mathrm{BAC}=180^{\circ}$
(Angles of a triangle)
$\Rightarrow 76^{\circ}+44^{\circ}+\angle \mathrm{BAC}=180^{\circ}$
$\Rightarrow 120^{\circ}+\angle \mathrm{BAC}=180^{\circ}$
$\Rightarrow \angle \mathrm{BAC}=180^{\circ}-120^{\circ}=60^{\circ}$
Hence angles of the triangle are
$60^{\circ}, 76^{\circ}, 44^{\circ}$

Question 2.
In the figure, the sides $B C, C A$ and $A B$ of a $\triangle A B C$ have been produced to D, E and F respectively. If $\angle A C D=105^{\circ}$ and $\angle E A F=45^{\circ}$, find all the angles of the $\triangle A B C$.

Solution:
In $\triangle A B C$, sides $B C, C A$ and $B A$ are produced to D, E and F respectively.
$\angle A C D=105^{\circ}$ and $\angle E A F=45^{\circ}$
$\angle A C D+\angle A C B=180^{\circ}$ (Linear pair)
$\Rightarrow 105^{\circ}+\angle A C B=180^{\circ}$
$\Rightarrow \angle A C B=180^{\circ}-105^{\circ}=75^{\circ}$
$\angle B A C=\angle E A F$ (Vertically opposite angles)
$=45^{\circ}$
But $\angle \mathrm{BAC}+\angle \mathrm{ABC}+\angle \mathrm{ACB}=180^{\circ}$
$\Rightarrow 45^{\circ}+\angle A B C+75^{\circ}=180^{\circ}$
$\Rightarrow 120^{\circ}+\angle A B C=180^{\circ}$
$\Rightarrow \angle A B C=180^{\circ}-120^{\circ}$
$\therefore \angle A B C=60^{\circ}$
Hence $\angle A B C=60^{\circ}, \angle B C A=75^{\circ}$
and $\angle B A C=45^{\circ}$

Question 3.
Compute the value of x in each of the following figures:

Solution:
(i) In $\triangle A B C$, sides $B C$ and $C A$ are produced to D and E respectively

$\angle \mathrm{ACD}=112^{\circ}$ and $\angle \mathrm{BAE}=120^{\circ}$
$\angle \mathrm{ACB}+\angle \mathrm{ACD}=180^{\circ} \quad$ (Linear pair)
$\Rightarrow \angle \mathrm{ACB}+112^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{ACB}=180^{\circ}-112^{\circ}=68^{\circ}$
Similarly,
$\angle \mathrm{BAE}+\angle \mathrm{BAC}=180^{\circ} \quad$ (Linear pair)
$\Rightarrow 120^{\circ}+\angle \mathrm{BAC}=180^{\circ}$
$\Rightarrow \angle \mathrm{BAC}=180^{\circ}-120^{\circ}=60^{\circ}$
But $\angle \mathrm{BAC}+\angle \mathrm{ABC}+\angle \mathrm{BCA}=180^{\circ}$
(Angles of a triangle)
$\Rightarrow 60^{\circ}+x+68^{\circ}=180^{\circ}$
$\Rightarrow 128^{\circ}+x=180^{\circ} \Rightarrow x=180^{\circ}-128^{\circ}=52^{\circ}$
$\therefore x=52^{\circ}$
(ii) In $\triangle A B C$, side $B C$ is produced to either side to D and E respectively $\angle A B E=120^{\circ}$ and $\angle A C D=110^{\circ}$
$\because \angle A B E+\angle A B C=180^{\circ}$ (Linear pair)

$$
\begin{aligned}
& \Rightarrow 120^{\circ}+\angle \mathrm{ABC}=180^{\circ} \\
& \Rightarrow \angle \mathrm{ABC}=180^{\circ}-120^{\circ}=60^{\circ} \\
& \text { Similarly, } \\
& \angle \mathrm{ACB}+\angle \mathrm{ACD}=180^{\circ} \quad \text { (Linear pair) } \\
& \Rightarrow \angle \mathrm{ACB}+110^{\circ}=180^{\circ} \\
& \Rightarrow \angle \mathrm{ACB}=180^{\circ}-110^{\circ}=70^{\circ} \\
& \mathrm{But} \angle \mathrm{BAC}+\angle \mathrm{ABC}+\angle \mathrm{ACB}=180^{\circ} \\
& \quad \text { (Angles of a triangle) } \\
& \Rightarrow x+60^{\circ}+70^{\circ}=180^{\circ} \\
& \Rightarrow x+130^{\circ}=180^{\circ} \Rightarrow x=180^{\circ}-130^{\circ} \\
& \therefore x=50^{\circ} \\
& \text { (iii) In the figure, } \mathrm{BA} \| \mathrm{DC}
\end{aligned}
$$

$\angle \mathrm{BAD}=52^{\circ}$ and $\angle \mathrm{DCE}=40^{\circ}$
$\because \mathrm{BA} \| \mathrm{DC}$ and AD is the transversal
$\therefore \angle \mathrm{ABD}=\angle \mathrm{BDC} \quad$ (Alternate angles)
$\therefore \angle \mathrm{ADC}=52^{\circ}$ or $\angle \mathrm{EDC}=52^{\circ}$
Now in $\triangle \mathrm{DCE}$,
$\angle \mathrm{EDC}+\angle \mathrm{ECD}+\angle \mathrm{DEC}=180^{\circ}$
(Angles of a triangle)
$\Rightarrow 52^{\circ}+40^{\circ}+x=180^{\circ}$
$\Rightarrow 92^{\circ}+x=180^{\circ} \Rightarrow x=180^{\circ}-92^{\circ}$
$\therefore x=88^{\circ}$
Question 4.
In the figure, $A C \perp C E$ and $\angle A: \angle B: \angle C=3: 2: 1$, find the value of $\angle E C D$.

Solution:
In $\triangle A B C, \angle A: \angle B: \angle C=3: 2: 1$
$B C$ is produced to D and $C E \perp A C$
$\because \angle A+\angle B+\angle C=180^{\circ}$ (Sum of angles of a triangles)
Let $\angle A=3 x$, then $\angle B=2 x$ and $\angle C=x$
$\therefore 3 \mathrm{x}+2 \mathrm{x}+\mathrm{x}=180^{\circ} \Rightarrow 6 \mathrm{x}=180^{\circ}$
$\Rightarrow x=180.6=30^{\circ}$
$\therefore \angle \mathrm{A}=3 \mathrm{x}=3 \times 30^{\circ}=90^{\circ}$
$\angle B=2 x=2 \times 30^{\circ}=60^{\circ}$
$\angle C=x=30^{\circ}$
In $\triangle A B C$,
Ext. $\angle A C D=\angle A+\angle B$
$\Rightarrow 90^{\circ}+\angle E C D=90^{\circ}+60^{\circ}=150^{\circ}$
$\therefore \angle E C D=150^{\circ}-90^{\circ}=60^{\circ}$
Question 5.
In the figure, $A B|\mid D E$, find $\angle A C D$.

Solution:
In the figure, $A B|\mid D E$
$A E$ and $B D$ intersect each other at $C \angle B A C=30^{\circ}$ and $\angle C D E=40^{\circ}$
$\because \mathrm{AB}|\mid \mathrm{DE}$
$\therefore \angle A B C=\angle C D E$ (Alternate angles)

$\Rightarrow \angle A B C=40^{\circ}$
In $\triangle A B C, B C$ is produced
Ext. $\angle A C D=\operatorname{Int} . \angle A+\angle B$
$=30^{\circ}+40^{\circ}=70^{\circ}$

Question 6.
Which of the following statements are true (T) and which are false (F):
(i) Sum of the three angles of a triangle is 180°.
(ii) A triangle can have two right angles.
(iii) All the angles of a triangle can be less than 60°.
(iv) All the angles of a triangle can be greater than 60°.
(v) All the angles of a triangle can be equal to 60°.
(vi) A triangle can have two obtuse angles.
(vii) A triangle can have at most one obtuse angles.
(viii) If one angle of a triangle is obtuse, then it cannot be a right angled triangle.
(ix) An exterior angle of a triangle is less than either of its interior opposite angles.
(x) An exterior angle of a triangle is equal to the sum of the two interior opposite angles.
(xi) An exterior angle of a triangle is greater than the opposite interior angles.

Solution:
(i) True.
(ii) False. A right triangle has only one right angle.
(iii) False. In this, the sum of three angles will be less than 180° which is not true.
(iv) False. In this, the sum of three angles will be more than 180° which is not true.
(v) True. As sum of three angles will be 180° which is true.
(vi) False. A triangle has only one obtuse angle.
(vii) True.
(viii)True.
(ix) False. Exterior angle of a triangle is always greater than its each interior opposite angles.
(x) True.
(xi) True.

Question 7.

Fill in the blanks to make the following statements true:
(i) Sum of the angles of a triangle is \qquad ...
(ii) An exterior angle of a triangle is equal to the two opposite angles.
(iii) An exterior angle of a triangle is always \qquad than either of the interior opposite angles.
(iv) A triangle cannot have more than
right angles.
(v) A triangles cannot have more than obtuse angles.
Solution:
(i) Sum of the angles of a triangle is 180°.
(ii) An exterior angle of a triangle is equal to the two interior opposite angles.
(iii) An exterior angle of a triangle is always greater than either of the interior opposite angles.
(iv) A triangle cannot have more than one right angles.
(v) A triangles cannot have more than one obtuse angles.

Question 8.
In a $\triangle A B C$, the internal bisectors of $\angle B$ and $\angle C$ meet at P and the external bisectors of $\angle B$ and $\angle C$ meet at Q. Prove that $\angle B P C+\angle B Q C=180^{\circ}$.
Solution:
Given : In $\triangle A B C$, sides $A B$ and $A C$ are produced to D and E respectively. Bisectors of interior $\angle \mathrm{B}$ and $\angle \mathrm{C}$ meet at P and bisectors of exterior angles B and C meet at Q .

To prove: $\angle B P C+\angle B Q C=180^{\circ}$
Proof : $\because \mathrm{PB}$ and PC are the internal bisectors of $\angle \mathrm{B}$ and $\angle \mathrm{C}$
$\angle B P C=90^{\circ}+12 \angle A . .$. (i)
Similarly, QB and QC are the bisectors of exterior angles B and C
$\therefore \angle B Q C=90^{\circ}+12 \angle A$...(ii)
Adding (i) and (ii),
$\angle B P C+\angle B Q C=90^{\circ}+12 \angle A+90^{\circ}-12 \angle A$
$=90^{\circ}+90^{\circ}=180^{\circ}$
Hence $\angle B P C+\angle B Q C=180^{\circ}$
Question 9.
In the figure, compute the value of x.

Solution:
In the figure,
$\angle A B C=45^{\circ}, \angle B A D=35^{\circ}$ and $\angle B C D=50^{\circ}$ Join $B D$ and produce it E

In $\triangle \mathrm{ABD}$,
Ext. $\angle 1=\angle \mathrm{A}+\angle 3$
and in $\triangle \mathrm{CBD}$,
Ext. $\angle 2=\angle \mathrm{C}+\angle 4$
Adding, we get
$\angle 1+\angle 2=\angle \mathrm{A}+\angle 3+\angle \mathrm{C}+\angle 4$
$\Rightarrow x=\angle \mathrm{A}+\angle 3+\angle 4+\angle \mathrm{C}$
$\Rightarrow x=\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}$
$\Rightarrow x=35^{\circ}+45^{\circ}+50^{\circ}=130^{\circ}$
$\therefore x=130^{\circ}$

Question 10.
In the figure, $A B$ divides $\angle D A C$ in the ratio 1.3 and $A B=D B$. Determine the value of x.

Solution:
In the figure $A B=D B$

AB divides $\angle \mathrm{DAC}$ in the ratio $1: 3$ and $\angle \mathrm{CAE}=108^{\circ}$
But $\angle \mathrm{CAE}+\angle \mathrm{DAC}=180^{\circ} \quad$ (Linear pair)
$\Rightarrow 108^{\circ}+\angle \mathrm{DAC}=180^{\circ}$
$\Rightarrow \angle \mathrm{DAC}=180^{\circ}-108^{\circ}=72^{\circ}$
$\because \mathrm{AB}$ divides it in the ratio $1: 3$
$\therefore \angle \mathrm{DAB}=\frac{72^{\circ} \times 1}{1+3}=\frac{72^{\circ} \times 1}{4}=18^{\circ}$
and $\angle \mathrm{CAB}=\frac{72^{\circ}}{4} \times 3=54^{\circ}$
$\because \mathrm{AB}=\mathrm{BD}$
$\therefore \angle \mathrm{DAB}=\angle \mathrm{ADB}=18^{\circ}$
Now in $\triangle A D C$,
Ext. $\angle \mathrm{CAE}=\angle \mathrm{BDA}+\angle \mathrm{ACD}$
$\Rightarrow 108^{\circ}=18^{\circ}+x$
$\Rightarrow x=108^{\circ}-18^{\circ}=90^{\circ}$
$\therefore x=90^{\circ}$

Question 11.

$A B C$ is a triangle. The bisector of the exterior angle at B and the bisector of $\angle C$ intersect each other at D. Prove that $\angle D=12 \angle A$.
Solution:
Given : In $\angle A B C, C B$ is produced to E bisectors of ext. $\angle A B E$ and into $\angle A C B$ meet at D.

To prove : $\angle \mathrm{D}=\frac{1}{2} \mathrm{~A}$
Proof: In $\triangle \mathrm{BDC}$,
Ext. $\angle \mathrm{ABE}=\angle \mathrm{A}+\angle \mathrm{C}$

$$
\begin{gather*}
\frac{1}{2} \angle \mathrm{ABE}=\frac{1}{2} \angle \mathrm{~A}+\frac{1}{2} \angle \mathrm{C} \\
\angle 1=\frac{1}{2} \angle \mathrm{~A}+\angle 4 \tag{i}
\end{gather*}
$$

($\because \mathrm{CD}$ is bisector of $\angle \mathrm{C}$)
In $\triangle \mathrm{BDC}$,
Ext. $\angle 2=\angle \mathrm{D}+\angle 4$
$\Rightarrow \angle \mathrm{D}=\angle 2-\angle 4$
$=\angle 1-\angle 4 \quad(\because \mathrm{BD}$ is bisector of $\angle \mathrm{ABE})$
$=\left(\frac{1}{2} \angle \mathrm{~A}+\angle 4\right)-\angle 4$
[From (i)]
$=\frac{1}{2} \angle \mathrm{~A}+\angle 4-\angle 4$
$=\frac{1}{2} \angle \mathrm{~A}$
Hence $\angle \mathrm{D}=\frac{1}{2} \angle \mathrm{~A}$
Question 12.
In the figure, $A M \perp B C$ and $A N$ is the bisector of $\angle A$. If $\angle B=65^{\circ}$ and $\angle C=33^{\circ}$, find $\angle M A N$.

Solution:
In $\triangle \mathrm{ABC}, \angle \mathrm{B}=65^{\circ}, \angle \mathrm{C}=33^{\circ}$
$\mathrm{AM} \perp \mathrm{BC}$ and AN is bisector of $\angle \mathrm{A}$
$\because \mathrm{AM} \perp \mathrm{BC}$
$\therefore \angle \mathrm{AMC}=90^{\circ}$
$\Rightarrow \angle \mathrm{AMN}=90^{\circ}$
In $\triangle \mathrm{ABC}$,
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
(Sum of angles of a triangle)
$\Rightarrow \angle \mathrm{A}+65^{\circ}+33^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{A}+98^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{A}=180^{\circ}-98^{\circ}=82^{\circ}$
$\because \mathrm{AN}$ is the bisector of $\angle \mathrm{A}$
$\therefore \angle \mathrm{NAC}=\angle \mathrm{NAB}=\frac{1}{2} \angle \mathrm{~A}$

$$
=\frac{1}{2} \times 82^{\circ}=41^{\circ}
$$

In $\triangle \mathrm{AMN}$,
Ext. $\angle \mathrm{ANM}=\angle \mathrm{C}+\angle \mathrm{NAC}$
$=33^{\circ}+41=74^{\circ}$
In $\triangle \mathrm{MAN}$,
$\angle \mathrm{MAN}+\angle \mathrm{AMN}+\angle \mathrm{ANM}=180^{\circ}$
(Angles of a triangle)

$$
\begin{aligned}
& \angle \mathrm{MAN}+90^{\circ}+74^{\circ}=180^{\circ} \\
\Rightarrow & \angle \mathrm{MAN}+164^{\circ}=180^{\circ} \\
\Rightarrow & \angle \mathrm{MAN}=180^{\circ}-164^{\circ}=16^{\circ} \\
& \text { Hence } \angle \mathrm{MAN}=16^{\circ}
\end{aligned}
$$

Question 13.
In a $A A B C, A D$ bisects $\angle A$ and $\angle C>\angle B$. Prove that $\angle A D B>\angle A D C$.
Solution:

Given: In $\triangle A B C$,
$\angle C>\angle B$ and $A D$ is the bisector of $\angle A$

To prove: $\angle A D B>\angle A D C$
Proof: In $\triangle A B C, A D$ is the bisector of $\angle A$
$\therefore \angle 1=\angle 2$
In $\triangle A D C$,
Ext. $\angle A D B=\angle I+\angle C$
$\Rightarrow \angle C=\angle A D B-\angle 1$
Similarly, in $\triangle A B D$,
Ext. $\angle A D C=\angle 2+\angle B$
$\Rightarrow \angle B=\angle A D C-\angle 2$...
From (i) and (ii)
$\because \angle C>\angle B$ (Given)
$\therefore(\angle A D B-\angle 1)>(\angle A D C-\angle 2)$
But $\angle 1=\angle 2$
$\therefore \angle A D B>\angle A D C$

Question 14.
In $\triangle A B C, B D \perp A C$ and $C E \perp A B$. If $B D$ and $C E$ intersect at O, prove that $\angle B O C=180^{\circ}-$ $\angle A$.
Solution:
Given : In $\triangle A B C, B D \perp A C$ and $C E \perp A B B D$ and $C E$ intersect each other at 0

To prove: $\angle B O C=180^{\circ}-\angle A$
Proof: In quadrilateral ADOE
$\angle A+\angle D+\angle D O E+\angle E=360^{\circ}$ (Sum of angles of quadrilateral)
$\Rightarrow \angle A+90^{\circ}+\angle D O E+90^{\circ}=360^{\circ}$
$\angle A+\angle D O E=360^{\circ}-90^{\circ}-90^{\circ}=180^{\circ}$

But $\angle B O C=\angle D O E$ (Vertically opposite angles)
$\Rightarrow \angle A+\angle B O C=180^{\circ}$
$\therefore \angle B O C=180^{\circ}-\angle A$

Question 15.
In the figure, $A E$ bisects $\angle C A D$ and $\angle B=\angle C$. Prove that $A E \| B C$.

Solution:
Given : In $A A B C, B A$ is produced and $A E$ is the bisector of $\angle C A D$ $\angle B=\angle C$

B

To prove : AE || BC
Proof: In $\triangle A B C, B A$ is produced
\therefore Ext. $\angle C A D=\angle B+\angle C$
$\Rightarrow 2 \angle E A C=\angle C+\angle C(\because A E$ is the bisector of $\angle C A E)(\because \angle B=\angle C)$
$\Rightarrow 2 \angle E A C=2 \angle C$
$\Rightarrow \angle E A C=\angle C$
But there are alternate angles
$\therefore A E \| B C$

