RD Sharma
Solutions
Class 11 Maths
Chapter 15
Ex15.6



Linear Inequations Ex 15.6 Q1(i)

We have,
Zr+3Y €6, Fx+2y €5, x=0,¥ 20

Converting the given inequation into equations, the inequations reduce o 2x + 3y = &,
Sx+2y =6 x=0andy=0

Region represented by 2x + 3y <&
Putting x = O inequation 2x + 3y = &
&
typtir e
we gety = =
Futting y = 0 in the equation 2% + 3y =6,

&
we getx == =3,
9 3

. This line 2x + 3y = & meets the coordinate axes at (0,2} and (3,0). Draw a thick line joining
these points. we find that {0,0] safisfies inequation 2x + 3y =6.

Region represented by 3x + 2y =&
Futting x = 0 in the equation

3 +2y =6, we gety=g=3.
Futting y =0 in the equation
I +2¥ =6, we getx=g=2.

. This line 3x + 2y = & meets the coordinate axes at {0,3) and (2,0). Craw a thick line joining
these points. we find that (0,0] safisfies inequation 3x + 2y =6.

Regionrepresented by x 20 and y =0
Clearty ¥ = 0 and y = 0 represent the first quadrant,



Linear Inequations Ex 15.6 Q1{ii)
Wie have,
Zx 43y 26, x+dy £4, x20,p=0

Converfing the inequations into eguations, the inequations'reduce 0 2x + 3y =6,
x+dy =4 x=0andy =0.

Region represented by 2x + 3y <&
PUtingx = 0N 2x + 3y = &,
&
we gety == =2
gty =3
PULting ¥ = 0N 2x + 3y = &,

&
we gety=_- =3,
9 2

» The line 2x + 3y = & meets the coordinate axes at (0,2) and (3,0). Draw a thick line joining

these points,
Mow, putingx=0and y=0in2Zx+3y 26 =026



Clearly, we find that {0,0) safisfies inequation 2x + 3y <6
Regionrepresented by x + 4y = 4
Puttingx =0inx + 4y = 4
4
we gel, y =— =1
get ¥ 2

PULNG ¥ = 0 IN X + 4y = 4,
we getx = 4

. The line x + 4y = 4 meets the coordinate axes at [0,1) and [4,0). Draw a thick line joining

these points,
MNow, puting x =0, ¥y =0
inx+dy =4 we get0 =4

Clearly, we find that [0,0) safisfies inequationx + 4p =4,

Regionrepresented by x 20 andy 2O
Cleady x = 0 and ¥ = 0 represent the first quadrant.
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Linear Inequations Ex 15.6 QA1(iii)

We have,
X-—y 21, N+2¥ 58 Zx+yz2,
x20andy =0

Converting the inequations into eguations, we obtain
X¥=y =1 X+2Z¥y=8 2x+y =2,
x=0andy =0.

Regonrepresented by x -y =1
PUttingx =0inx -y =1,

we gety = -1
Puttingy =0 inx -y =1,
we getx =1

. Theline x -y = 1 meets the coordinate axesat (0,-1) and {1,0]. Draw a thick line joining

these points,
Mow, putingx =0andy =0inx -y =1
inx-y =1, wegset, 0=1

Clearly, we find that [0,0) safisfiesineguationx -y <1
Region represented by x +2y =&
PULNg X = 01N X + 2y = G,
a3
we get, ¥ = 2= 4
FLY=5

Putting y =0 inx+2y =8,
we getx =15,

. Theline x + 2y =8 meets the coordinate axes at (8,0) and {0,4). Draw a thick line joining

these points.
Mow, putingx =0, ¥y =0
inx+2y =8, we get0 =8

Clearly, we find that (0,0) safisfies inequationx +2y =8



Regionrepresented by Zx +y 2 2
FUdingx =01in 27 +y =2, we gety =2

PULting ¥ =0 in 2x +y =2, wegetx=§=1.

The line 2x +y = 2meets the coordinate axes at {0,2) and (1,0). Draw a thick line
joining these points,
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Linear Inequations Ex 15.6 Q1(iv)
Wie have,
X+y 21, Tx+39y 63, ¥ 26,
Y 25 xz0andy =0

Convering the inequatons into equations, we obtain
X+y =1 Tx+9Y =63 ¥ =05,
¥=5 x=0andy=0

Regon represented by x + vy = 1,
Futdingx=0inx +¥ =1, we gety =1
Puttingy = 0inx+y =1,we getx =1



The line x + y = 1 meets the coordinate axes at [0,1) and {1,0). join these point by
a thick line.

Mow, putingx=0andy =0inx+y 21, weget0z1
This is not possible

» {0,0) is not satisfies the inequality x +y 2 1. So, the porion not containing the origin
is represented by the inequationx +y =1,

Region represented by Zx + 9y 263
Puttingx =01in 7x + 9y =63, we gef, y =—= =7

Puttingy =0 in Yx + 9y =63, we getx =§ =9

The line 7x + 9y = 63 meets the coordinete axes of [0,7) and [9,0]. Jointhese
points by a thick line.

Mow, puttingx =0andy =10
in 7x +9 £ 63, weget, 0263

we find {D,D} satisfies the inequality 7x + 9y £ 63, So, the portion containing

the origin represents the solution set of the inequation 7x + 9w £ 63,

Fegion represented by x = & Clearly, » = 6 iz adine parallel to y-axis at a distance
of 6 units from the origin. Since {EI,EI:] satisfies the inequation » £ 6. so, the

portion lying on the left side of ¥ = 6 is the region represented by » = 6.

Region represented by v £ & Clearly, v = 5 is a line parallel to x-axis at a distance
§ from it. since {0,0) satisfies by the given inequation.

Region represented by x 20 and v = ¢ dearly, » = 0 and y = 0 represent the first quadrant.

The common region of the abowve six regions represents the solution set of the given inequation
as shown below,
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Linear Inequations Ex 15.6 Q1(v)
Wi have,
2Zx+ 3y =35, y23 x22 xzo0andy z0

Converting the inequations into equations, we get
2%+ =35 y=3 x=2 x=0andy=0

Region represented by 2x + 3y <35

Putting x = 01N 2x + 3y = 35, we gety =3_35

Putting y = 0 in 2x + 3y = 35, we getx=3—25

. Theline 2x + 3y = 35 meets the coordinate axes at (033—5J and (32—5 OJ. joining these point by

a thick line.

Mowr, puting x = 0 and ¥ = 0 M 2% + 3y <35, we et 0 £35,
Clearly, [0,0) satisfies the inequality 2x + 3y =35, So, the portion containing the ofgin represents
the solution 2x + 3y =35

Region represented by vy 23
Cleardy, ¥y = 3is aline parallel to x-axis at a distance 3 units from the origin, Since {0,0) does not

safisfies the inequation v 2 3.
S0, the portion not containing the originis represented by the y = 3

Region represented by x = 2
Cleardy, x =2 iz aline parallel to y-axiz at a distance of 2 units from the origin. Since {0,0) does not
safisfies the inequation x = 2. 50, the portion not containing the originis represented by the given

inequation.

Region represented by x 20 and y =@ clearly, x 20 and y 2 0 represent the first quadrant.

The common region of the above five regions represents the solution set of the given ineguations as
shown bel o,
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