RD Sharma Solutions Class 11 Maths Chapter 15 Ex 15 6

Linear Inequations Ex 15.6 Q1(i)

We have,

$$2x + 3y \le 6$$
, $3x + 2y \le 6$, $x \ge 0$, $y \ge 0$

Converting the given inequation into equations, the inequations reduce to 2x + 3y = 6, 3x + 2y = 6, x = 0 and y = 0.

Region represented by
$$2x + 3y \le 6$$
:

Putting
$$x = 0$$
 inequation $2x + 3y = 6$
we get $y = \frac{6}{3} = 2$.

Putting
$$y = 0$$
 in the equation $2x + 3y = 6$,
we get $x = \frac{6}{3} = 3$.

we get
$$x = -3$$

.. This line
$$2x + 3y = 6$$
 meets the coordinate axes at (0,2) and (3,0). Draw a thick line joining these points, we find that (0,0) satisfies inequation $2x + 3y \le 6$.

Region represented by
$$3x + 2y \le 6$$
:
Putting $x = 0$ in the equation

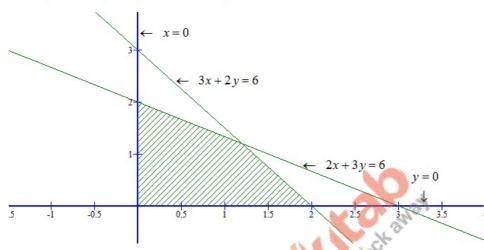
$$3x + 2y = 6$$
, we get $y = \frac{6}{2} = 3$.

Putting
$$y = 0$$
 in the equation

$$3x + 2y = 6$$
, we get $x = \frac{6}{2} = 2$.

.. This line
$$3x + 2y = 6$$
 meets the coordinate axes at (0,3) and (2,0). Draw a thick line joining these points, we find that (0,0) satisfies inequation $3x + 2y \le 6$.

Region represented by
$$x \ge 0$$
 and $y \ge 0$:
Clearly $x \ge 0$ and $y \ge 0$ represent the first quadrant.



Linear Inequations Ex 15.6 Q1(ii)

We have,

$$2x + 3y \le 6$$
, $x + 4y \le 4$, $x \ge 0$, $y \ge 0$

Converting the inequations into equations, the inequations reduce to 2x + 3y = 6, x + 4y = 4, x = 0 and y = 0.

Region represented by $2x + 3y \le 6$:

Putting x = 0 in 2x + 3y = 6

Putting
$$x = 0$$
 in $2x + 3y = 6$,
we get $y = \frac{6}{3} = 2$

Putting
$$y = 0$$
 in $2x + 3y = 6$,

we get
$$x = \frac{6}{2} = 3$$
.

... The line 2x + 3y = 6 meets the coordinate axes at (0,2) and (3,0). Draw a thick line joining these points.

Now, putting x = 0 and y = 0 in $2x + 3y \le 6 \implies 0 \le 6$

Clearly, we find that (0,0) satisfies inequation $2x + 3y \le 6$

Region represented by $x + 4y \le 4$

Putting x = 0 in x + 4y = 4

we get, $y = \frac{4}{4} = 1$

Putting y = 0 in x + 4y = 4, we get x = 4

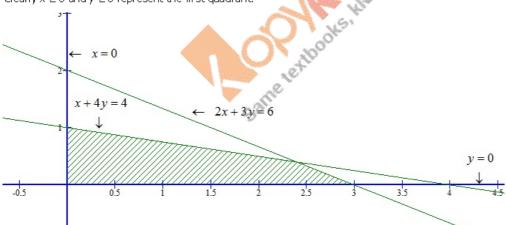
.. The line x + 4y = 4 meets the coordinate axes at (0,1) and (4,0). Draw a thick line joining these points.

Now, putting x = 0, y = 0in $x + 4y \le 4$, we get $0 \le 4$

Clearly, we find that (0,0) satisfies inequation $x+4y \le 4$.

Region represented by $x \ge 0$ and $y \ge 0$:

Clearly $x \ge 0$ and $y \ge 0$ represent the first quadrant.



Linear Inequations Ex 15.6 Q1(iii)

We have,

$$x - y \le 1$$
, $x + 2y \le 8$, $2x + y \ge 2$, $x \ge 0$ and $y \ge 0$

Converting the inequations into equations, we obtain

$$x - y = 1$$
, $x + 2y = 8$ $2x + y = 2$, $x = 0$ and $y = 0$.

Region represented by $x - y \le 1$: Putting x = 0 in x - y = 1, we get y = -1

Putting
$$y = 0$$
 in $x - y = 1$,
we get $x = 1$

:. The line x-y=1 meets the coordinate axes at (0,-1) and (1,0). Draw a thick line joining these points. Now, putting x=0 and y=0 in $x-y\leq 1$

Now, putting
$$x = 0$$
 and $y = 0$ in $x - y \le 1$ in $x - y \le 1$, we get, $0 \le 1$

Clearly, we find that (0,0) satisfies inequation $x = y \le 1$

Region represented by
$$x + 2y \le 8$$
:
Putting $x = 0$ in $x + 2y = 8$,
we get, $y = \frac{8}{2} = 4$

Putting y = 0 in x + 2y = 8, we get x = 8,

:. The line
$$x + 2y = 8$$
 meets the coordinate axes at (8,0) and (0,4). Draw a thick line joining these points.
Now, putting $x = 0$, $y = 0$

in $x + 2y \le 8$, we get $0 \le 8$

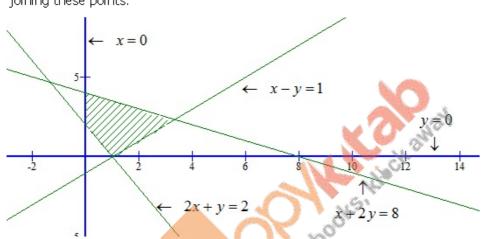
Clearly, we find that
$$(0,0)$$
 satisfies inequation $x + 2y \le 8$.

Region represented by $2x + y \ge 2$

Putting x = 0 in 2x + y = 2, we get y = 2

Putting y = 0 in 2x + y = 2, we get $x = \frac{2}{2} = 1$.

The line 2x + y = 2 meets the coordinate axes at (0,2) and (1,0). Draw a thick line joining these points.



Linear Inequations Ex 15.6 Q1(iv) We have,

 $x+y \ge 1$, $7x + 9y \le 63$, $x \le 6$,

Converting the inequations into equations, we obtain x + y = 1, 7x + 9y = 63 x = 6,

$$y = 5$$
, $x = 0$ and $y = 0$.

Region represented by $x + y \ge 1$: Putting x = 0 in x + y = 1, we get y = 1Putting y = 0 in x + y = 1, we get x = 1

The line x + y = 1 meets the coordinate axes at (0,1) and (1,0), join these point by a thick line.

Now, putting x = 0 and y = 0 in $x + y \ge 1$, we get $0 \ge 1$ This is not possible

∴ (0,0) is not satisfies the inequality $x+y\ge 1$. So, the portion not containing the origin is represented by the inequation $x+y\ge 1$.

Region represented by $7x + 9y \le 63$ Putting x = 0 in 7x + 9y = 63, we get, $y = \frac{63}{9} = 7$.

Putting y = 0 in 7x + 9y = 63, we get $x = \frac{63}{7} = 9$. \therefore The line 7x + 9y = 63 meets the coordinate axes of (0,7) and (9,0). Join the points by a thick line.

Now, putting x = 0 and y = 0in $7x + 9y \le 63$, we get, $0 \le 63$

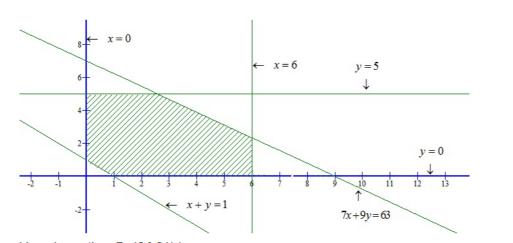
∴ we find (0,0) satisfies the inequality $7x + 9y \le 63$. So, the portion containing the origin represents the solution set of the inequation $7x + 9y \le 63$.

Region represented by $y \le 5$: Clearly, y = 5 is a line parallel to x-axis at a distance

Region represented by $x \le 6$: Clearly, x = 6 is a line parallel to y-axis at a distance of 6 units from the origin. Since (0,0) satisfies the inequation $x \le 6$, so, the portion lying on the left side of x = 6 is the region represented by $x \le 6$.

5 from it. since (0,0) satisfies by the given inequation. Region represented by $x \ge 0$ and $y \ge 0$: dearly, $x \ge 0$ and $y \ge 0$ represent the first quadrant.

The common region of the above six regions represents the solution set of the given inequation as shown below.



Linear Inequations Ex 15.6 Q1(v)

We have,

$$2x + 3y \le 35$$
, $y \ge 3$, $x \ge 2$, $x \ge 0$ and $y \ge 0$

Converting the inequations into equations, we get 2x + 3y = 35, y = 3, x = 2, x = 0 and y = 0.

$$2x + 3y = 35$$
, $y = 3$, $x = 2$, $x = 0$ and $y = 0$.
Region represented by $2x + 3y \le 35$.

Region represented by
$$2x + 3y \le 35$$
.
Putting $x = 0$ in $2x + 3y = 35$, we get $y = \frac{35}{3}$

Putting y = 0 in 2x + 3y = 35, we get $x = \frac{35}{2}$

The line
$$2x + 3y = 35$$
 meets the coordinate axes at $\left(0, \frac{35}{3}\right)$ and $\left(\frac{35}{2}, 0\right)$, joining these point by

Now, putting x = 0 and y = 0 in $2x + 3y \le 35$, we get $0 \le 35$.

Clearly, (0,0) satisfies the inequality $2x + 3y \le 35$. So, the portion containing the origin represents the solution $2x + 3y \le 35$.

Region represented by
$$y \ge 3$$

Clearly, $y = 3$ is a line parallel to x-axis at a distance 3 units from the origin. Since $\{0,0\}$ does not

satisfies the inequation
$$y \ge 3$$
.
So, the portion not containing the origin is represented by the $y \ge 3$.

the portion flot containing the origin is represented by t

Region represented by
$$x \ge 2$$

Clearly, $x = 2$ is a line parallel to y-axis at a distance of 2 units from the origin. Since $(0,0)$ does not satisfies the inequation $x \ge 2$, so, the portion not containing the origin is represented by the given inequation.

Region represented by $x \ge 0$ and $y \ge 0$: clearly, $x \ge 0$ and $y \ge 0$ represent the first quadrant.

The common region of the above five regions represents the solution set of the given inequations as shown below.

