RD SHARMA J Maths Jhapter 8 Ex 8.6

Question 1: Determine the nature of the roots of the following quadratic equations.

Solution: (i) $2x^2 - 3x + 5 = 0$

The given quadratic equation is in the form of $ax^2 + bx + c = 0$

So a= 2, b= -3, c= 5

We know, determinant (D) = $b^2 - 4ac$

$$= (-3)^2 - 4(2)(5)$$

$$= 9 - 40$$

doe doe Since D<0, the determinant of the equation is negative, so the expression does not having any real roots.

(ii) $2x^2 - 6x + 3 = 0$

The given quadratic equation is in the form of $ax^2 + bx + c = 0$

So a = 2, b = -6, c = 3

We know, determinant (D) = $b^2 - 4ac$

$$= (-6)^2 - 4(2)(3)$$

$$= 36 - 24$$

Since D>0, the determinant of the equation is positive, so the expression does having any real and distinct roots.

(iii) For what value of k $(4-k)x^2 + (2k+4)x + (8k+1) = 0$ is a perfect square.

The given equation is $(4-k)x^2 + (2k+4)x + (8k+1) = 0$

Here, a= 4-k, b= 2k+4, c= 8k+1

The discriminate (D) = $b^2 - 4ac$

$$= (2k+4)^2 - 4(4-k)(8k+1)$$

$$= (4k^2 + 16 + 16k) - 4(32k + 4 - 8k^2 - k)$$

$$= 4(k^2 + 8k^2 + 4k - 31k + 4 - 4)$$

$$=4(9k^2-27k)$$

$$D = 4(9k^2 - 27k)$$

The given equation is a perfect square

$$D=0$$

$$4(9k^2-27k) = 0$$

$$9k^2-27k=0$$

Taking out common of of 3 from both sides and cross multiplying

$$= k^2 - 3k = 0$$

$$= K (k-3) = 0$$

Either k=0

Or
$$k = 3$$

The value of k is to be 0 or 3 in order to be a perfect square.

(iv) Find the least positive value of k for which the equation $x^2+kx+4=0$ has real roots.

The given equation is $x^2+kx+4=0$ has real roots

The discriminate (D) = $b^2 - 4ac \ge 0$

$$= k^2 - 16 \ge 0$$

The least positive value of k = 4 for the given equation to have real roots.

(v) Find the value of k for which the given quadratic equation has real roots and distinct roots.

$$Kx^2 + 2x + 1 = 0$$

The given equation is $Kx^2 + 2x + 1 = 0$

Here, a= k, b= 2, c= 1

The discriminate (D) = $b^2 - 4ac \ge 0$

$$= 4 - 4k \ge 0 = 4k \le 4$$

K ≤ 1

The value of $k \le 1$ for which the quadratic equation is having real and equal roots.

(vi)
$$Kx^2 + 6x + 1 = 0$$

The given equation is $Kx^2 + 6x + 1 = 0$

The discriminate (D) = $b^2 - 4ac \ge 0$

$$= 36 - 4k \ge 0$$

K ≤ 9

The value of $k \le 9$ for which the quadratic equation is having real and equal roots.

(vii)
$$x^2 - kx + 9 = 0$$

The given equation is X^2 –kx+9 =0

Given that the equation is having real and distinct roots.

Hence, the discriminate (D) = $b^2 - 4ac \ge 0$

$$= k^2 - 4(1)(9) \ge 0$$

$$= k^2 - 36 \ge 0$$

The value of k lies between -6 and 6 respectively to have the real and distinct roots.

Question 2: Find the value of k.

(i) $Kx^2+4x+1=0$

The given equation $Kx^2+4x+1=0$ is in the form of $ax^2+bx+c=0$ where a=k, b=4, c=1 Given that, the equation has real and equal roots

$$D = b^2 - 4ac = 0$$

$$=4^{2}-4(k)(1)=0$$

$$= 16-4k=0$$

$$= k = 4$$

The value of k is 4

(ii)
$$kx^2-2\sqrt{5}x+4=0kx^2-2\sqrt{5}x+4=0$$

The given equation $kx^2-2\sqrt{5}x+4=0kx^2-2\sqrt{5}x+4=0$ is in the form of $ax^2+bx+c=0$ where a=k, $b=-2\sqrt{5}-2\sqrt{5}$, c=4

Given that, the equation has real and equal roots

$$D = b^2 - 4ac = 0$$

=
$$-2\sqrt{5}^2 - 4 \times k \times 4 = 0 - 2\sqrt{5}^2 - 4 \times k \times 4 = 0$$

=
$$k = 54 k = \frac{5}{4}$$

The value of k is $k=54 \text{ k} = \frac{5}{4}$

(iii)
$$3x^2-5x+2k=0$$

The given equation $3x^2-5x+2k=0$ is in the form of $ax^2+bx+c=0$ where a=3, b=-5, c=2k Given that, the equation has real and equal roots

$$D = b^2 - 4ac = 0$$

$$= (-5)^2 - 4(3)(2k) = 0$$

$$K = k = 2524 k = \frac{25}{24}$$

The value of the k is $k=2524 \text{ k} = \frac{25}{24}$

(iv)
$$4x^2+kx+9=0$$

The given equation $4x^2+kx+9=0$ is in the form of $ax^2+bx+c=0$ where a=4, b=k, c=9

Given that, the equation has real and equal roots

$$D = b^2 - 4ac = 0$$

$$= k^2-4(4)(9)=0$$

$$= k^2 - 144 = 0$$

$$= k = 12$$

The value of k is 12

(v)
$$2kx^2-40x+25=0$$

$$D = b^2 - 4ac = 0$$

$$= (-40)^2 - 4(2k)(25) = 0$$

$$= k = 8$$

The value of k is 8

(vi)
$$9x^2-24x+k=0$$

The given equation $9x^2-24x+k=0$ is in the form of $ax^2+bx+c=0$ where a=9, b=-24, c=k

Given that, the equation has real and equal roots

$$D = b^2 - 4ac = 0$$

$$= (-24)^2 - 4(9)(k) = 0$$

$$= 576-36k = 0 = k = 16$$

The value of k is 16

(vii) $4x^2-3kx+1=0$

The given equation $4x^2$ -3kx+1=0 is in the form of ax^2 +bx+c=0 where a= 4, b= -3k, c= 1

Given that, the equation has real and equal roots $D = b^2-4ac=0$

$$= (-3k)^2 - 4(4)(1) = 0$$

$$= 9k^2 - 16 = 0$$

$$K = 43 \frac{4}{3}$$

The value of k is $43\frac{4}{3}$

(viii)
$$x^2-2(5+2k)x+3(7+10k) = 0$$

The given equation X^2 -2(5+2k)x+3(7+10k) =0 is in the form of ax^2 +bx+c=0 where a= 1, b=+2(52k) , c= 3(7+10k)

Given that, the nature of the roots of the equation are real and equal roots

$$D = b^2 - 4ac = 0$$

$$= (+2(52k))^2-4(1)(3(7+10k))=0$$

$$= 4(5+2k)^2 -12(7+10k)=0$$

$$= 25+4k^2+20k-21-30k=0$$

$$= 4k^2 - 10k + 4 = 0$$

Simplifying the above equation. We get,

$$= 2k^2-5k+2=0$$

$$= 2k^2-4k-k+2=0$$

$$=2k(k-2)-1(k-2)=0$$

=
$$(k-2)(2k-1) = 0K=2$$
 and $k = 12\frac{1}{2}$

The value of k can either be 2 or $12\frac{1}{2}$

$$(ix) (3k+1)x^2+2(k+1)x+k=0$$

The given equation $(3k+1)x^2+2(k+1)x+k=0$ is in the form of $ax^2+bx+c=0$ where a=3k+1, b=+2(k+1), c=(k)

Given that, the nature of the roots of the equation are real and equal roots

$$D = b^2 - 4ac = 0$$

$$= [2(k+1)]^2 -4(3k+1)(k) = 0$$

$$= (k+1)^2 - k(3k+1) = 0$$

$$= -2k^2 + k + 1 = 0$$

This equation can also be written as $2k^2-k-1=0$

The value of k can be obtained by

$$K = k = 1 + \sqrt{9}4 k = \frac{1 + \sqrt{9}}{4} = 1$$

Or ,
$$k=1-\sqrt{9}4k=\frac{1-\sqrt{9}}{4}=-12\frac{-1}{2}$$

The value of k are 1 and $-12\frac{-1}{2}$ respectively.

(x)
$$Kx^2+kx+1 = -4x^2-x$$

Bringing all the x components on one side we get,

$$x^2(4+k)+x(k+1)+1=0$$

The given equation $Kx^2+kx+1 = -4x^2-x$ is in the form of $ax^2+bx+c=0$ where a=4+k,b=+k+1, c=1

Given that, the nature of the roots of the equation are real and equal roots

$$D = b^2 - 4ac = 0$$

$$= (k+1)^2 - 4(4+k)(1) = 0$$

$$= k^2 - 2k - 10 = 0$$

The equation is also in the form $ax^2+bx+c=0$

The value of k is obtained by a=1, b=-2, c=-15

$$\mathbf{k} = -\mathbf{b} \pm \sqrt{\mathbf{b}^2 - 4\mathbf{a}\mathbf{c}} 2\mathbf{a} \, \mathbf{k} = \frac{-\mathbf{b} \pm \sqrt{\mathbf{b}^2 - 4\mathbf{a}\mathbf{c}}}{2\mathbf{a}}$$

Putting the respective values in the above formula we will obtain the value of k

The value of k are 5 and -3 for different given quadratic equation.

$$(xi) (k+1)x^2+2(k+3)x+k+8=0$$

The given equation $(k+1) x^2+2(k+3)x+k+8=0$ is in the form of $ax^2+bx+c=0$ where a=k+1,b=2(k+3), c=k+8

Given the nature of the roots of the equation are real and equal

$$D = b^2 - 4ac = 0$$

$$= [2(k+30)^2-4(k+1)(k+8)=0]$$

$$= 4(k+3)^2-4(k+1)(k+8) = 0$$

Taking out 4 as common from the LHS of the equation and dividing the same on the RHS

$$= (k+3)^2 - (k+1)(k+8) = 0$$

$$= k^2 + 9 + 6k - (k^2 + 9k + 18) = 0$$

Cancelling out the like terms on the LHS side

$$= 9+6k-9k-8 = 0$$

$$= -3k+1 = 0$$

$$= 3k = 1$$

$$k = 13 k = \frac{1}{3}$$

The value of k of the given equation is $k=13k=\frac{1}{3}$

(xii) x^2 -2kx+7k-12=0

The given equation is X^2 -2kx+7k-12=0

The given equation is in the form of $ax^2+bx+c=0$ where a=1,b=-2k, c=7k-12

Given the nature of the roots of the equation are real and equal .

$$D = b^2 - 4ac = 0$$

$$= (2k)^2 - 4(1)(7k - 12) = 0$$

$$= 4k^2 - 28k + 48 = 0$$

$$= k^2 - 7k + 12 = 0$$

The value of k can be obtained by

$$k = -b \pm \sqrt{b^2 - 4ac} 2a k = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Here
$$a = 1$$
, $b = -7k$, $c = 12$

By calculating the value of k is $7 \pm \sqrt{12} \frac{7 \pm \sqrt{1}}{2} = 4$, 3

The value of k for the given equation is 4 and 3 respectively.

$$(xiii) (k+1)x^2-2(3k+1)x+8k+1=0$$

The given equation is $(k+1)x^2-2(3k+1)x+8k+1=0$

The given equation is in the form of $ax^2+bx+c=0$ where a=k+1,b=-2(k+1), c=8k+1

Given the nature of the roots of the equation are real and equal.

$$D = b^2 - 4ac = 0$$

$$= (-2(k+1))^2 - 4(k+1)(8k+1) = 0$$

$$= 4(3k+1)^2-4(k+1)(8k+1) = 0$$

Taking out 4 as common from the LHS of the equation and dividing the same on the RHS

$$= (3k+1)^2 - (k+1)(8k+1) = 0$$

$$= 9k^2 + 6k + 1 - (8k^2 + 9k + 1) = 0$$

$$= 9k^2 + 6k + 1 - 8k^2 - 9k - 1 = 0$$

$$= k^2 - 3k = 0$$

$$= k(k-3) = 0$$

Either k =0

Or,
$$k-3 = 0 = k=3$$

The value of k for the given equation is 0 and 3 respectively.

$$(xiv) 5x^2-4x+2+k(4x^2-2x+1)=0$$

The given equation $5x^2-4x+2+k(4x^2-2x+1)=0$ can be written as $x^2(5+4k)-x(4+2k)+2-k=0$ The given equation is in the form of $ax^2+bx+c=0$ where a=5+4k, b=-(4+2k), c=2-kGiven the nature of the roots of the equation are real and equal.

$$D = b^2 - 4ac = 0$$

$$= [-(4+2k)]^2-4(5+4k)(2-k)=0$$

$$= 16+4k^2+16-4(10-5k+8k-4k^2)=0$$

$$= 16+4k^2+16-40+20k-32k+16k^2=0$$

$$= 20k^2 - 4k - 24 = 0$$

Taking out 4 as common from the LHS of the equation and dividing the same on the RHS

$$= 5k^2-k-6 = 0$$

The value of k can be obtained by equation

$$k = -b \pm \sqrt{b^2 - 4ac} 2a k = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Here a = 5, b = -1, c = -6

$$k=1\pm\sqrt{-1^2-4(5)(-6)}2(5)k=\frac{1\pm\sqrt{-1^2-4(5)(-6)}}{2(5)}$$
 $k=65$ and $k=65$ and $k=65$

The value of k for the given equation are k=65 and $-1k=\frac{6}{5}$ and -1 respectively.

$(xv) (4-k)x^2+(2k+4)x+(8k+1) = 0$

The given equation is $(4-k)x^2+(2k+4)x+(8k+1) = 0$

The given equation is in the form of $ax^2+bx+c=0$ where a=4-k, b=(2k+4), c=8k+1

Given the nature of the roots of the equation are real and equal.

$$D = b^2 - 4ac = 0$$

$$= (2k+4)^2-4(4-k)(8k+1)=0$$

$$= 4k^2 + 16k + 16 - 4(-8k^2 + 32k + 4 - k) = 0$$

$$= 4k^2 + 16k + 16 + 32k^2 - 124k - 16 = 0$$

Cancelling out the like and opposite terms. We get,

$$= 36k^2 - 108k = 0$$

Taking out 4 as common from the LHS of the equation and dividing the same on the RHS

$$= 9k^2 - 27k = 0$$

$$= 9k(k-3) = 0$$

Either 9k =0

$$K = 0$$

Or,
$$k-3 = 0$$

The value of k for the given equation is 0 and 3 respectively.

$$(xvi) (2k+1)x^2+2(k+3)x+(k+5) = 0$$

The given equation is $(2k+1)x^2+2(k+3)x+(k+5) = 0$

The given equation is in the form of $ax^2+bx+c=0$ where a=2k+1, b=2(k+3), c=k+5

Given the nature of the roots of the equation are real and equal.

$$D = b^2 - 4ac = 0$$

$$= [2(k+3)]^2-4(2k+1)(k+5) = 0$$

Taking out 4 as common from the LHS of the equation and dividing the same on the RHS

$$= [(k+3)]^2 - (2k+1)(k+5) = 0$$

$$= K^2 + 9 + 6k - (2k^2 + 11k + 5) = 0$$

$$= -k^2 - 5k + 4 = 0$$

$$= k^2 + 5k - 4 = 0$$

The value of k can be obtained by k=65 and $-1k=\frac{6}{5}$ and -1 respectively.

Here a = 1, b = 5, c = -4

Now k=
$$-5\pm\sqrt{5^2-4(1)(-4)}2\times1$$
 k = $\frac{-5\pm\sqrt{5^2-4(1)(-4)}}{2\times1}$

$$K = k = -5 \pm \sqrt{412} k = \frac{-5 \pm \sqrt{41}}{2}$$

The value of k for the given equation is $k = -5 \pm \sqrt{412} \, k = \frac{-5 \pm \sqrt{41}}{2}$

$$(xvii) 4x^2-2(k+1)x+(k+4) = 0$$

The given equation is $4x^2-2(k+1)x+(k+4)=0$

The given equation is in the form of $ax^2+bx+c=0$ where a=4, b=-2(k+1), c=k+4

Given the nature of the roots of the equation are real and equal.

$$D = b^2 - 4ac = 0$$

$$= [-2(k+1)]^2 - 4(4)(k+4) = 0$$

Taking out 4 as common from the LHS of the equation and dividing the same on the RHS

$$= (k+1)^2-4(k+4)=0$$

$$= k^2 + 1 + 2k - 4k - 16 = 0$$

$$= k^2 - 2k - 15 = 0$$

The value of k can be obtained by k=65 and $-1k=\frac{6}{5}$ and -1 respectively.

Here
$$a= 1$$
, $b = -2$, $c= -15$

$$K = k = 2 \pm \sqrt{69} 2 k = \frac{2 \pm \sqrt{69}}{2}$$

Question 3: In the following, determine the set of values of k for which the given quadratic equation has real roots:

Solution:

(i)
$$2x^2+3x+k=0$$

The given equation is $2x^2+3x+k=0$

The given quadratic equation has equal and real roots

$$D = b^2 - 4ac \ge 0$$

The given equation is in the form of $ax^2+bx+c=0$ so , a=2 , b=3 , c=k

$$= 9 - 4(2)(k) \ge 0$$

$$= 9-8k \ge 0$$

=
$$k \le 98 k \le \frac{9}{8}$$

The value of k does not exceed $k \le 98 k \le \frac{9}{8}$ to have a real root.

(ii)
$$2x^2+kx+3=0$$

The given equation is $2x^2+kx+3=0$

The given quadratic equation has equal and real roots

$$D = b^2 - 4ac \ge 0$$

The given equation is in the form of $ax^2+bx+c=0$ so, a=2, b=k, c=3

$$= k^2 - 4(2)(3) \ge 0$$

$$= k^2 - 24 \ge 0$$

$$= k^2 \ge 24$$

$$k \ge \sqrt{24}k \ge \sqrt{24} \ k \ge \sqrt{24}k \ge \sqrt{24}$$

The value of k should not exceed k $\geq\!\sqrt{24}k \geq \sqrt{24}\,$ in order to obtain real roots .

 $(iii)2x^2-5x-k=0$

The given equation is $2x^2-5x-k=0$

The given quadratic equation has equal and real roots

 $D = b^2 - 4ac \ge 0$

The given equation is in the form of $ax^2+bx+c=0$ so, a=2, b=-5, c=-k

 $= 25 - 4(2)(-k) \ge 0$

 $= 25-8k \ge 0$

= k≤258 k ≤ $\frac{25}{8}$

The value of k should not exceed k \leq 258 k \leq $\frac{25}{8}$

(iv) $Kx^2+6x+1=0$

The given equation is $Kx^2+6x+1=0$

The given quadratic equation has equal and real roots

 $D = b^2 - 4ac \ge 0$

The given equation is in the form of $ax^2+bx+c=0$ so, a=k, b=6, c=1

 $= 36 - 4(k)(1) \ge 0$

 $= 36-4k \ge 0$

= k ≤ 9

The value of k for the given equation is $k \le 9$

 $(v) x^2-kx+9=0$

The given equation is X^2 -kx+9 = 0

The given quadratic equation has equal and real roots

$$D = b^2 - 4ac \ge 0$$

The given equation is in the form of $ax^2+bx+c=0$ so, a=1, b=-k, c=9

$$= k^2 - 4(1)(-9) \ge 0$$

$$= k^2 - 36 \ge 0$$

$$= k^2 \ge 36$$

$$k \ge \sqrt{36}k \ge \sqrt{36}$$

 $K \ge 6$ and $k \le -6$

The value of k should in between $K \ge 6$ and $k \le -6$ in order to maintain real roots.

Question 4: Determine the nature of the roots of the following quadratic equations.

Solution:

(i)
$$2x^2 - 3x + 5 = 0$$

The given quadratic equation is in the form of $ax^2 + bx + c = 0$ So a = 2, b = -3, c = 5We know, determinant (D) = $b^2 - 4ac$ = $(-3)^2 - 4(2)(5)$ = 9 - 40

$$= (-3)^2 - 4(2)(5)$$

Since D<0, the determinant of the equation is negative, so the expression does not having any real roots.

(ii)
$$2x^2 - 6x + 3 = 0$$

The given quadratic equation is in the form of $ax^2 + bx + c = 0$

We know, determinant (D) = $b^2 - 4ac$

$$= (-6)^2 - 4(2)(3)$$

Since D>0, the determinant of the equation is positive, so the expression does having any real and distinct roots.

(iii) For what value of k $(4-k)x^2 + (2k+4)x + (8k+1) = 0$ is a perfect square

The given equation is $(4-k)x^2 + (2k+4)x + (8k+1) = 0$

Here, a= 4-k, b= 2k+4, c= 8k+1

The discriminate (D) = $b^2 - 4ac$

$$= (2k+4)^2 - 4(4-k)(8k+1)$$

$$= (4k^2 + 16 + 16k) - 4(32k + 4 - 8k^2 - k)$$

$$= 4(k^2 + 8k^2 + 4k - 31k + 4 - 4)$$

$$=4(9k^2-27k)$$

$$D = 4(9k^2 - 27k)$$

The given equation is a perfect square

$$D=0$$

$$4(9k^2-27k) = 0$$

$$9k^2-27k=0$$

Taking out common of of 3 from both sides and cross multiplying

$$K^2 - 3k = 0$$

$$K(k-3) = 0$$

Or
$$k = 3$$

The value of k is to be 0 or 3 in order to be a perfect square.

(iv) Find the least positive value of k for which the equation $x^2+kx+4=0$ has real roots.

The given equation is $x^2+kx+4=0$ has real roots

The discriminate (D) = $b^2 - 4ac \ge 0$

$$= k^2 - 16 \ge 0$$

The least positive value of k = 4 for the given equation to have real roots.

(v) Find the value of k for which the given quadratic equation has real roots and distinct roots.

$$Kx^2 + 2x + 1 = 0$$

The given equation is $Kx^2 + 2x + 1 = 0$

Here, a= k, b= 2, c= 1

The discriminate (D) = $b^2 - 4ac \ge 0$

$$= 4 - 4k \ge 0$$

The value of $k \le 1$ for which the quadratic equation is having real and equal roots.

(vi)
$$Kx^2 + 6x + 1 = 0$$

The given equation is $Kx^2 + 6x + 1 = 0$

Here, a= k, b= 6, c= 1

The discriminate (D) = $b^2 - 4ac \ge 0$

$$= 36 - 4k \ge 0$$

$$= K \leq 9$$

The value of $k \le 9$ for which the quadratic equation is having real and equal roots.

(vii)
$$x^2 - kx + 9 = 0$$

The given equation is X^2 –kx+9 =0

Given that the equation is having real and distinct roots.

Hence, the discriminate (D) = $b^2 - 4ac \ge 0$

 $= k^2 - 4(1)(9) \ge 0$

$$= k^2 - 36 \ge 0$$

The value of k lies between -6 and 6 respectively to have the real and distinct roots.

Question 5: Find the values of k for which the given quadratic equation has real and distinct roots.

Solution:

(i)
$$Kx^2+2x+1=0$$

The given equation is $Kx^2+2x+1=0$

The given equation is in the form of $ax^2+bx+c=0$ so, a=k, b=2, c=1

$$D = b^2 - 4ac \ge 0$$

$$= 4-4(1)(k) \ge 0$$

$$= k \le 1$$

The value of k for the given equation is $k \le 1$

(ii)
$$Kx^2+6x+1=0$$

The given equation is $Kx^2+6x+1=0$

The given equation is in the form of $ax^2+bx+c=0$ so, a=k, b=6, c=1

$$D = b^2 - 4ac \ge 0$$

$$= 36-4(1)(k) \ge 0$$

$$= 4k ≤ 36$$

The value of k for the given equation is $k \le 9$

Question 6: For what value of k, $(4-k)x^2+(2k+4)x+(8k+1)=0$, is a perfect square.

Solution:

The given equation is $(4-k)x^2+(2k+4)x+(8k+1)=0$

The given equation is in the form of $ax^2+bx+c=0$ so, a=4-k, b=2k+4, c=8k+1

 $D = b^2 - 4ac$

$$= (2k+4)^2-4(4-k)(8k+1)$$

$$= 4k^2 + 16 + 4k - 4(32 + 4 - 8k^2 - k)$$

$$= 4(k^2 + 4 + k - 32 - 4 + 8k^2 + k)$$

$$=4(9k^2-27k)$$

Since the given equation is a perfect square

Therefore D =0

$$=4(9k^2-27k)=0$$

$$= (9k^2 - 27k) = 0$$

$$= 3k (k-3) = 0$$

Therefore 3k =0

$$K = 0$$

Or,
$$k-3 = 0$$

$$K = 3$$

The value of k should be 0 or 3 to be perfect square.

Solution:

The given equation is $(b-c)x^2 + (c-a)x + (a-b) = 0$.

The given equation is the form of $ax^2 + bx + c = 0$. So,

According to question the equation is having real and equal roots.

Hence discriminant(D) = b^2 -2ac =0

$$= (c-a)^2 - 4(b-c)(a-b) = 0$$

$$= c^2 + a^2 - 2ac - 4(ab-b^2 - ac + cb) = 0$$

$$= c^2 + a^2 - 2ac - 4ab + 4b^2 + 4ac - 4cb = 0$$

$$= c^2+a^2+2ac-4ab+4b^2-4cb=0$$

$$= (a+c)^2 - 4ab + 4b^2 - 4cb = 0$$

$$= (c+a-2b)^2 = 0$$

$$= (c+a-2b) = 0$$

$$= c + a = 2b$$

Hence it is proved that c+a = 2b.

Question 8: If the roots of the equation $(a^2 + b^2) x^2 - 2(ac+bd)x + (c^2 + d^2) = 0$ are equal. Prove that $a \div b = c \div d$.

Solution:

The given equation is $(a^2 + b^2)x^2 - 2(ac+bd)x + (c^2 + d^2) = 0$.

The equation is in the form of $ax^2 + bx = c = 0$

Hence,
$$a = (a^2 + b^2)$$
, $b = -2(ac+bd)$, $c = (c^2 + d^2)$.

The given equation is having real and equal roots.

Discriminant(D) = b^2 -4ac = 0

=
$$[-2(ac+bd)]^2 - 4(a^2+b^2)(c^2+d^2) = 0$$

$$= (ac+bd)^2 - (a^2+b^2)(c^2+d^2) = 0$$

$$= a^2c^2 + b^2d^2 + 2abcd - (a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2) = 0$$

Cancelling out the equal and opposite terms. We get,

$$= 2abcd - a^2d^2 - b^2c^2 = 0$$

$$=$$
 abcd +abcd $-$ a²d² $-$ b²c² =0

$$= ad(bc-ad) + bc(ad-bc) = 0$$

$$= ad(bc-ad) -bc(bc-ad) = 0$$

$$= (ad-bc)(bc-ad) = 0$$

$$= ad -bc = 0$$

$$= (a \div b) = (c \div d)$$

Hence, it is proved.

Question 9: If the roots of the equation $ax^2+2bx+c=0$ and $bx^2-2\sqrt{ca}x+b=0$ $bx^2-2\sqrt{ca}x+b=0$ are simultaneously real , then prove that b^2 -ac =0.

Solution:

The given equations are $ax^2+2bx+c=0$ and $bx^2-2\sqrt{ca}x+b=0$

These two equations are of the form $ax^2+bx+c=0$.

Given that the roots of the two equations are real. Hence, $D \ge 0$ that is b^2 -4ac ≥ 0

Let us assume that $ax^2+2bx+c=0$ be equation (i)

And
$$bx^2-2\sqrt{ca}x+b=0bx^2-2\sqrt{ca}x+b=0$$
 be (ii)

From equation (i) b^2 -4ac ≥ 0

$$= 4 b^2 - 4ac \ge 0$$
 (iii

From equation (ii) b^2 -4ac ≥ 0

$$= (2\sqrt{ca})^2 - 4b^2 \ge 0(2\sqrt{ca})^2 - 4b^2 \ge 0$$
 (iv)

Given, that the roots of equation (i) and (ii) are simultaneously real and hence equation (iii) = equation (iv).

$$= 4b^2-4ac = 4ac -4 b^2$$

$$= 8ac = 8b^2$$

$$= b^2 - ac = 0.$$

Hence it is proved that b^2 -ac =0.

Question 10: If p, q are the real roots and p \neq q. Then show that the roots of the equation (p-q)x² +5(p+q)x -2(p-q) = 0 are real and equal.

Solution:

The given equation is $(p-q)x^2 + 5(p+q)x - 2(p-q) = 0$

Given, p, q are real and $p \neq q$.

Then, Discriminant (D) = b^2 –ac

=
$$[5(p+q)]^2 -4(p-q)(-2(p-q))$$

$$= 25(p+q)^2 + (p-q)^2$$

We know that the square of any integer is always positive that is, greater than zero.

Hence, (D) =
$$b^2$$
 –ac ≥ 0

As given, p, q are real and $p \neq q$.

Therefore,

$$= 25(p+q)^2 + (p-q)^2 > 0 = D > 0$$

Therefore, the roots of this equation are real and unequal.

Solution:

The given equation is $(c^2-ab)x^2-2(a^2-bc)x+b^2-ac=0$

This equation is in the form of $ax^2 + bx + c = 0$

So,
$$a = (c^2-ab)$$
, $b = -2(a^2-bc)$, $c = b^2-ac$.

According to the question, the roots of the given question are equal.

Hence,
$$D = 0$$
, $b^2 - 4ac = 0$

=
$$[-2(a^2-bc)]^2 - 4(c^2-ab)(b^2-ac) = 0$$

$$= 4(a^2-bc)^2 - 4(c^2-ab)(b^2-ac) = 0$$

$$= 4a (a^3+b^3+c^3-3abc) = 0$$

Either 4a =0 therefore, a =0

Or,
$$(a^3+b^3+c^3-3abc)=0$$

$$= (a^3+b^3+c^3) = 3abc$$

Question 12: Show that the equation $2(a^2+b^2)x^2+2(a+b)x+1=0$ has no real roots, when $a \ne b$.

Solution:

The given equation is $2(a^2+b^2)x^2+2(a+b)x-1=0$

This equation is in the form of $ax^2+bx+c=0$

Here,
$$a = 2(a^2+b^2)$$
, $b = 2(a+b)$, $c = +1$.

Given, a ≠ b

The discriminant(D) = b^2 -4ac

$$=[2(a+b)]^2 -4 (2(a^2+b^2))(1)$$

$$= 4(a+b)^2 - 8(a^2+b^2)$$

$$= 4(a^2+b^2+2ab) -8a^2-8b^2$$

$$= = +2ab - 4a^2 - 4b^2$$

According to the question $a \neq b$, as the discriminant D has negative squares so the value of D will be less than zero.

Hence, D < 0, when a \neq b.

Question 13: Prove that both of the roots of the equation (x-a)(x-b) + (x-c)(x-b) + (x-c)(x-a) = 0 are real but they are equal only when a=b=c.

Solution:

The given equation is (x-a)(x-b) + (x-c)(x-b) + (x-c)(x-a) = 0

By solving the equation, we get it as,

$$3x^2-2x(a+b+c)+(ab+bc+ca) = 0$$

This equation is in the form of $ax^2+bx+c=0$

Here,
$$a = 3$$
, $b = 2(a+b+c)$, $c = (ab+bc+ca)$

The discriminat (D) = b^2 -4ac

$$= [-2(a+b+c)]^2 -4(3)(ab+bc+ca)$$

$$=4(a+b+c)^2-12(ab+bc+ca)$$

$$=4[(a+b+c)^2-3(ab+bc+ca)]$$

$$= 4[a^2+b^2+c^2-ab-bc-ca]$$

$$= 2[2a^2+2b^2+2c^2-2ab-2bc-2ca]$$

$$= 2[(a-b)^2+(b-c)^2+(c-a)^2]$$

Here clearly $D \ge 0$, if D = 0 then,

$$[(a-b)^2+(b-c)^2+(c-a)^2]=0$$

$$a - b = 0$$

$$b-c=0$$

$$c - a = 0$$

Hence, a=b=c=0

Hence, it is proved.

Question 14: If a, b, c are real numbers such that $ac \ne 0$, then, show that at least one of the equations $ax^2 + bx + c = 0$ and $-ax^2 + bx + c = 0$ has real roots.

Solution:

The given equation are $ax^2 + bx + c = 0$ (i

And-
$$ax^2+bx+c=0$$
(ii)

Given, equations are in the form of $ax^2 + bx + c = 0$ also given that a ,b, c are real numbers and $ac \neq 0$.

The Discriminant(D) = b^2 -4ac

For equation (i) = b^2 -4ac(iii)

For equation (ii) = b^2 -4(-a)(c)

$$= b^2 + 4ac$$
(iv)

As a, b, c are real and given that ac $\neq 0$, hence b^2 -4ac > 0 and b^2 +4ac > 0

Therefore, D > 0

Hence proved.

Question 15: If the equation $(1+m^2)x+2mcx+(c^2-a^2)=0$ has real and equal roots, prove that $c^2=a^2(1+m^2)$.

Solution:

The given equation is $(1+m^2)x^2+2mcx+(c^2-a^2)=0$

The above equation is in the form of $ax^2+bx+c=0$.

Here
$$a = (1+m^2)$$
, $b = 2mc$, $c = +(c^2-a^2)$

Given, that the nature of the roots of this equation is equal and hence D=0, $b^2-4ac=0$

$$= (2mc)^2 - 4(1+m^2) (c^2-a^2) = 0$$

$$= 4m^2c^2 - 4(c^2+m^2c^2-a^2-a^2m^2) = 0$$

$$= 4(m^2c^2 - c^2 + m^2c^2 + a^2 + a^2m^2) = 0$$

$$= m^2c^2 - c^2 + m^2c^2 + a^2 + a^2m^2 = 0$$

Now cancelling out the equal and opposite terms

$$= a^2 + a^2 m^2 - c^2 = 0$$

$$= a^2 (1+ m^2) - c^2 = 0$$

Therefore,
$$c^2 = a^2 (1 + m^2)$$

Hence it is proved that as D=0, then the roots are equal of $c^2 = a^2(1+m^2)$.