RD SHARMA

Solutions
Class 10 Maths

Chapter 8

Ex 8.11

Question 1:

The perimeter of the rectangular field is 82m and its area is 400m².find the breadth of the rectangle?

Area = 400 m²

Perimeter of a rectangle = 2(length + breadth)

82=2(length + x)

1 = (length + x)

9 ngth = (41-x) m

9 know,

$$82=2(length + x)$$

$$41 = (length + x)$$

Length =
$$(41-x)$$
 m

Area of the rectangle = length * breadth

$$400 = (41-x)(x)$$

$$400 = 41x-x^2$$

$$= x^2-41x+400 = 0$$

$$= x^2-25x-16x+400 = 0$$

$$= x(x-25)-16(x-25) = 0$$

$$= (x-16)(x-25) = 0$$

Either x-16 = 0 therefore x=16

Or, x-25=0 therefore x=25

Hence the breadth of the above mentioned rectangle is either 16 m or 25 m respectively.

Question 2:

The length of the hall is 5 m more than its breadth. If the area of the floor of the hall is 84 m^2 , what is the length and breadth of the hall?

Soln:

Le the breadth of the rectangle be x m

Let the length of the hall is 5 m more than its breadth =(x+5) m

Also given that,

Area of the hall is = 84 m^2

The shape of the hall is rectangular

Area of the rectangular hall = length * breadth

$$84 = x(x+5)$$

$$= x^2 + 5x - 84 = 0$$

$$= x^2 + 12x - 7x - 84 = 0$$

$$= x(x+12)-7(x+12) = 0$$

$$=(x+12)(x-7)=0$$

Either x+12 = 0 therefore x = -12

Or,
$$x-7 = 0$$
 therefore $x = 7$

Since the value of x cannot be negative

So
$$x = 7$$

$$= x+5 = 12$$

The length and breadth of the rectangle is 7 and 12 respectively.

Question 3: Two squares have sides x and (x+4) cm. The sum of their area is 656 cm². Find the sides of the square.

Soln:

Let S₁ and S₂ be the two square

Let x cm be the side square S_1 and (x+4) cm be the side of the square S_2 .

Area of the square $S_1 = x^2 \text{ cm}^2$

Area of the square $S_2 = (x+4)^2 \text{ cm}^2$

According to the question,

Area of the square $S_1 + Area$ of the square $S_2 = 656 \text{ cm}^2$

$$= x^2 \text{ cm}^2 + (x+4)^2 \text{ cm}^2 = 656 \text{ cm}^2$$

$$= x^2 + x^2 + 16 + 8x - 656 = 0$$

$$=2 x^2+16+8x-656=0$$

$$= 2 (x^2+4x-320) = 0$$

$$= x^2 + 4x - 320 = 0$$

$$= x^2 + 20x - 16x - 320 = 0$$

$$= x(x+20)-16(x+20) = 0$$

$$= (x+20)(x-16) = 0$$

Either
$$x+20 = 0$$
 therefore $x = -20$

Or,
$$x-16 = 0$$
 therefore $x = 16$

Since the value of x cannot be negative so the value of x = 16

The side of the square S_1 = 16 cm

The side of the square $S_2 = 20$ cm

Question 4: The area of the right-angled triangle is 165 cm². Determine the base and altitude if the latter exceeds the former by 7m.

Soln:

Let the altitude of the right angles triangle be denoted by x m

Given that the altitude exceeds the base by 7 m = x-7 m

We know

Area of the triangle = $12 \times base \times altitude \frac{1}{2} \times base \times altitude$

= 165 =
$$12 \times (x-7) \times x^{\frac{1}{2}} \times (x-7) \times x$$

$$= x(x-7) = 330$$

$$= x^2 - 7x - 330 = 0$$

$$= x^2-22x+15x-330 = 0$$

$$= x(x-22)+15(x-22) = 0$$

$$= (x-22)(x+15) = 0$$

Either x-22 = 0 therefore x = 22

Or,
$$x+15=0$$
 therefore $x=-15$

Since the value of x cannot be negative so the value of x = 22

$$=x-7=15$$

The base and altitude of the right angled triangle are 15 cm and 22 cm respectively.

Question 5: Is it possible to design a rectangular mango grove whose length is twice its breadth and area is 800 m^2 .find its length and breadth.

Soln:

Let the breadth of the rectangular mango grove be x m

Given that length of rectangle is twice of its breadth

Area of the grove = 800 m^2

We know,

Area of the rectangle = length * breadth

$$= 800 = x(2x)$$

$$= 2x^2-800 = 0$$

$$= x^2-400 = 0 = x^2=400 = x = \sqrt{400} = 20x = \sqrt{400} = 20$$

Breadth of the rectangular groove is 20 m

Length of the rectangular groove is 40 m

Yes, it is possible to design a rectangular groove whose length is twice of its breadth.

Question 6: Is it possible to design a rectangular park of perimeter 80 m and area 400 m²? If so find its length and breadth.

Soln:

In order to prove the given condition let us assume that the length of the rectangular park is denoted by x m

Given that,

Perimeter = 8 cm

Area = 400 cm^2

Perimeter of the rectangle = 2(length +breadth)

80 = 2(x + breadth)

Breadth = (40-x) m

We know,

Area of the rectangle = (length) (breadth)

$$= 400 = x(40-x)$$

$$= 40x-x^2=400$$

$$= x^2-40x+400=0$$

$$= x^2-20x-20x+400=0$$

$$= x(x-20)-20(x-20) = 0$$

$$= (x-20)(x-20) = 0$$

$$=(x-20)^2=0$$

$$= x-20 = 0$$
 therefore $x=20$

Length of the rectangular park is = 20 m

Breadth of the rectangular park =(40-x) = 20 m

Yes, it is possible to design a rectangular Park of perimeter 80 m and area 400m²

Question 7: Sum of the area of the square is 640 m².if the difference of their perimeter is 64 m, find the sides of the two squares.

Soln:

Let the two squares be S_1 and S_2 respectively. let he sides of the square S_1 be x m and the sides of the square S_2 be y m

Square $S_1 = 4x \text{ m}$ Simeter of the square $S_2 = 4y \text{ m}$ Now, difference of their perimeter is 64 m =4x-4y=64 -y=16 =y+16Given that the difference of their perimeter is 64 m

$$=4x-4y=64$$

$$x-y = 16$$

$$x = y + 16$$

Also, given that the sum of their two areas

= area of the square 1 +area of the square 2

$$= 640 = x^2 + y^2$$

$$= 640 = (y+16)^2 + y^2$$

$$= 2y^2 + 32y + 256 - 640 = 0$$

$$= 2y^2 + 32y - 384 = 0$$

$$= 2(y^2+16y-192) = 0$$

$$= y^2 + 16y - 192 = 0$$

$$= y^2 + 24y - 8y - 192 = 0$$

$$= y(y+24)-8(y+24) = 0$$

$$= (y+24)(y-8) = 0$$

Either y+24 = 0 therefore y = -24

Or, y-8 =0 therefore y=8

Since the value of y cannot be negative so y = 8

Side of the square 1 = 8 m

Side of the square 2 = 8+16 = 24 m

The sides of the squares 1 and 2 are 8 and 24 respectively.