Question 1.

Mark the correct alternative in each of the following:
If a digit is chosen at randon from the digits $1,2,3,4,5,6,7,8,9$, then the probability that it is odd, is
(a) $\frac{4}{9}$
(b) $\frac{5}{9}$
(c) $\frac{1}{9}$
(d) $\frac{2}{3}$

Solution:
Total number of digits from 1 to $9(n)=9$
Numbers which are odd $(m)=1,3,5,7,9=5$
\therefore Probability $\frac{m}{n}=\frac{5}{9}$

Question 2.

In Q. No. 1, the probability that the digit is even, is
(a) $\frac{4}{9}$
(b) $\frac{5}{9}$
(c) $\frac{1}{9}$
(d) $\frac{2}{3}$

Solution:

Total numbers of digits from 1 to $9(n)=9$
Numbers which are even $(m)=2,4,6,8=4$

$$
\begin{equation*}
\therefore \text { Probability }=\frac{m}{n}=\frac{4}{9} \tag{a}
\end{equation*}
$$

Question 3.

In Q. No. 1, the probability that the digit is a multiple of 3 is
(a) $\frac{1}{3}$
(b) $\frac{2}{3}$
(c) $\frac{1}{9}$
(d) $\frac{2}{9}$

Solution:
Total numbers of digits for 1 to $9(n)=9$
Number divisible by $3(\mathrm{~m})=3,6,9=3$

$$
\begin{equation*}
\therefore \text { Probability }=\frac{m}{n}=\frac{3}{9}=\frac{1}{3} \tag{a}
\end{equation*}
$$

Question 4.

If three coins are tossed simultaneously, then the probability of getting at least two heads, is
(a) $\frac{1}{4}$
(b) $\frac{3}{8}$
(c) $\frac{1}{2}$
(d) $\frac{1}{4}$

Solution:

Three coins are tossed simultaneously, then possible events will be (n) $=2 \times 2 \times 2=8$ The results will be
(HHT), (HTH), (THH), (THT), (TTH), (HTT), (HHH), (TTT)
\therefore Probability of getting at least two heads are

$$
\begin{equation*}
=\frac{m}{n}=\frac{4}{8}=\frac{1}{2} \tag{c}
\end{equation*}
$$

Question 5.

In a single throw of a die, the probability of getting a multiple of 3 is
(a) $\frac{1}{2}$
(b) $\frac{1}{3}$
(c) $\frac{1}{6}$
(d) $\frac{2}{3}$

Solution:
A die is thrown, the possible number of events $(n)=6$
Now multiple of 3 are 3,6 which are 2
$\therefore \mathrm{m}=2$
\therefore Probability $=\frac{m}{n}=\frac{2}{6}=\frac{1}{3}$

Question 6.

The probability of guessing the correct answer to a certain test questions is x 12 If the probability of not guessing the correct answer to this question is 23 , then $\mathbf{x}=$
(a) 2
(b) 3
(c) 4
(d) 6

Solution:
Probability of guessing the correct answer

$$
=\frac{x}{12}
$$

and probability of not guessing the correct

$$
\text { answer }=\frac{2}{3}
$$

$\therefore \frac{x}{12}+\frac{2}{3}=1 \quad(A+\overline{\mathrm{A}}=1)$
$\Rightarrow \frac{x}{12}=1-\frac{2}{3}=\frac{1}{3} \Rightarrow x=\frac{12}{3}=4$
$\therefore x=4$
(c)

Question 7.
A bag contains three green marbles, four blue marbles and two orange marbles. If a
marble is picked at random, then the probability that it is not an orange marble is
(a) $\frac{1}{4}$
(b) $\frac{1}{3}$
(c) $\frac{4}{9}$
(d) $\frac{7}{9}$

Solution:
In a bag, there are 3 green, 4 blue and 2 orange marbles
\therefore Total marbles (n) $=3+4+2=9$
No. of marbles which is not orange $=3+4=7$
$\therefore \mathrm{m}=7$
\therefore Probability $=\frac{m}{n}=\frac{7}{9}$

Question 8.

A number is selected at random from the . numbers $3,5,5,7,7,7,9,9,9,9$. The probability that the selected number is their average is
(a) $\frac{1}{10}$
(b) $\frac{3}{10}$
(c) $\frac{7}{10}$
(d) $\frac{9}{10}$

Solution:
Total numbers are $\Sigma x_{i}=10$
$x \quad f$
$3=1$
$5=2$
$7=3$
$9=4$
Average $=\frac{3 \times 1+5 \times 2+7 \times 3+9 \times 4}{10}$
$=\frac{3+10+21+36}{10}=\frac{70}{10}=7$
$\therefore m=3$
\therefore Probability of average number $=\frac{3}{10}$
(b)

Question 9.

The probability of throwing a number greater than 2 with a fair dice is
(a) $\frac{3}{5}$
(b) $\frac{2}{5}$
(c) $\frac{2}{3}$
(d) $\frac{1}{3}$

Solution:
\because A dice has 6 numbers
$\therefore \mathrm{n}=6$
Numbers greater than 2 are 3, 4, 5, 6
$\therefore \mathrm{m}=4$
Probability $=\frac{m}{n}=\frac{4}{6}=\frac{2}{3}$
(c)

Question 10.
A card is accidently dropped from a pack of 52 playing cards. The probability that it is an ace is
(a) $\frac{1}{4}$
(b) $\frac{1}{13}$
(c) $\frac{1}{52}$
(d) $\frac{12}{13}$

Solution:

No. of card in a pack (n) $=52$
A card is drawn at random
\therefore No. of ace (m) $=4$
\therefore Probability of an ace $=\frac{m}{n}=\frac{4}{52}=\frac{1}{13}$ (b)

Question 11.
A number is selected from numbers 1 to 25 . The probability that it is prime is
(a) $\frac{2}{3}$
(b) $\frac{1}{6}$
(c) $\frac{1}{3}$
(d) $\frac{5}{6}$

Solution:
A number is selected from the numbers 1 to 25
Probability of prime number which are $2,3,5,7,11,13,17,19,23=9$
$\therefore \mathrm{P}(\mathrm{E})=\frac{m}{n}=\frac{9}{25}$

Question 12.
Which of the following cannot be the probability of an event?
(a) 23
(b) -1.5
(c) 15%
(d) 0.7

Solution:
-1.5 cannot be the probability as it is always from 0 to 1 which is always positive (b) Question 13.
If $P(E)=0.05$, then $P($ not $E)=$
(a) -0.5
(b) 0.5
(c) 0.9
(d) 0.95

Solution:
$P(E)=0.05$
$\because P(E)+P(n o t E)=1$
$\therefore P($ not $E)=1-P(E)=1-0.05=0.95(d)$

Question 14.
Which of the following cannot be the probability of occurrence of an event?
(a) 0.2
(b) 0.4
(c) 0.8
(d) 1.6

Solution:
Probability of occurrence of an event = 1.6 (d)

Question 15.
The probability of a certain event is
(a) 0
(b) 1
(c) 12
(d) No existent

Solution:
Probability of a certain event = 1 (b)
Question 16.
The probability of an impossible event is
(a) 0
(b) 1
(c) 12
(d) Non - existent

Solution:
Probability of an impossible event $=0$ (a)
Question 17.
Aarushi sold 100 lottery tickets in which 5 tickets carry prizes. If Priya purchased a ticket, what is the probability of Priya winning a prize ?
(a) $\frac{19}{20}$
(b) $\frac{1}{25}$
(c) $\frac{1}{20}$
(d) $\frac{17}{20}$

Solution:
No. of lottery tickets $=100$
No. of tickets carrying prizes = 5
\therefore Probability of ticket buying a prized one

$$
\begin{equation*}
\frac{m}{n}=\frac{5}{100}=\frac{1}{20} \tag{c}
\end{equation*}
$$

Question 18.

A number is selected from first 50 natural numbers. What is the probability that it is a multiple of 3 or 5 ?
(a) $\frac{13}{25}$
(b) $\frac{21}{50}$
(c) $\frac{12}{25}$
(d) $\frac{23}{50}$

Solution:

Total numbers $=1$ to $50=50$
Numbers which are multiples of 3 or 5 , are $3,5,6,9,10,12,15,18,20,21,24,25,27$, $30,33,35,36,39,40,42,45,48,50=23$

$$
\begin{equation*}
\therefore \mathrm{P}(\mathrm{E})=\frac{m}{n}=\frac{23}{50} \tag{d}
\end{equation*}
$$

Question 19.

A month is selected at random in a year. The probability that it is March or October, is
(a) $\frac{1}{12}$
(b) $\frac{1}{6}$
(c) $\frac{3}{4}$
(d) None of these

Solution:
No. of months in a year $=12$
Probability of being March or October $=212$

$$
\begin{equation*}
=\frac{1}{6} \tag{b}
\end{equation*}
$$

Question 20.
From the letters of the word "MOBILE", a letter is selected. The probability that the letter is a vowel, is
(a) $\frac{1}{3}$
(b) $\frac{3}{7}$
(c) $\frac{1}{6}$
(d) $\frac{1}{2}$

Solution:

No. of total letters in the word MOBILE $=6$
No, of vowels $=0, i, e=3$
\therefore Probability of being a vowel $=\frac{3}{6}=\frac{1}{2}$ (d)

Question 21.

A die is thrown once. The probability of getting a prime number is
(a) $\frac{2}{3}$
(b) $\frac{1}{3}$
(c) $\frac{1}{2}$
(d) $\frac{1}{6}$
[CBSE 2013]

Solution:
Prime number on a die are $2,3,5$
\therefore Probability of getting a prime number on the face of the die

$$
\begin{equation*}
=\frac{3}{6}=\frac{1}{2} \tag{c}
\end{equation*}
$$

Question 22.

The probability of getting an even, number, when a die is thrown once is
(a) $\frac{1}{2}$
(b) $\frac{1}{3}$
(c) $\frac{1}{6}$
(d) $\frac{5}{6}$
[CBSE 2013]

Solution:
Even number on a die are $2,4,63$
\therefore Probability $(P)=36=12$ (a)
Question 23.
A box contains 90 discs, numbered from 1 to 90 . If one disc is drawn at random from the box, the probability that it bears a prime number less than 23 , is
(a) $\frac{7}{90}$
(b) $\frac{10}{90}$
(c) $\frac{4}{45}$
(d) $\frac{9}{89}$ [CBSE 2013]

Solution:

Number of discs in a box $=90$
Numbered on it are 1 to 90
Prime numbers less than 23 are $=2,3,5,7,11,13,17,19=8$

Probability of a number being a prime less

$$
\begin{equation*}
\text { than } 23=\frac{8}{90}=\frac{4}{45} \tag{c}
\end{equation*}
$$

Question 24.

The probablity that a number selected at random from the numbers $1,2,3, \ldots . ., 15$ is a multiple of 4 , is
(a) $\frac{4}{15}$
(b) $\frac{2}{15}$
(c) $\frac{1}{5}$
(d) $\frac{1}{3}$

Solution:

Total outcomes $=15$
($\because 15$ numbers are given)
Favourable outcomes for a multiple of $4=3$ (i.e. 4, 8, 12)
\therefore Probability of selecting a number which is

$$
\begin{equation*}
\text { a multiple of } 4=\frac{3}{15}=\frac{1}{5} \tag{c}
\end{equation*}
$$

Question 25.

Two different coins are tossed simultaneously. The probability of getting at least one head is
(a) $\frac{1}{4}$
(b) $\frac{1}{8}$
(c) $\frac{3}{4}$
(d) $\frac{7}{8}$

Solution:
When two different coins are tossed simultaneously, then total possibilities = 4, i.e. (H, H), (H, T), (T, H), (T, T)

Number of favourable outcomes for at least one head $=3$, i.e. $(H, T),(T, H),(T, H)$.
\therefore Probability of getting at least one head $=\frac{3}{4}$
(c)

Question 26.
If two different dice are rolled together, the probability of getting an even number
(a) $\frac{1}{36}$
(b) $\frac{1}{2}$
(c) $\frac{1}{6}$
(d) $\frac{1}{4}$
[CBSE 2014]

Solution:
Rolling two different dice,
Number of total events $=6 \times 6=36$
Number of even number on both dice are $22,24,26,42,44,46,62,64,66=9$
\therefore Probability $=\frac{9}{36}=\frac{1}{4}$

Question 27.
A number is selected at random from the numbers 1 to 30 . The probability that it is a prime number is
(a) $\frac{2}{3}$
(b) $\frac{1}{6}$
(c) $\frac{1}{3}$
(d) $\frac{11}{30}$

Solution:
Total outcomes of selecting a number from 30 numbers $=30$
Favourable numbers (prime numbers) $=10$,
i.e., $(2,3,5,7,11,13,17,19,23,29)$
\therefore Probability of selecting a prime number

$$
=\frac{10}{30}=\frac{1}{3}
$$

Question 28.

A card is drawn at random from a pack of 52 cards. The probability that the drawn card is not an ace is
(a) $\frac{1}{13}$
(b) $\frac{9}{13}$
(c) $\frac{4}{13}$
(d) $\frac{12}{13}$ [CBSE 2014]

Solution:

Total events = 52 cards
Probability of card which is not in ace Number of card $=52-4=48$
\therefore Probability $=\frac{48}{52}=\frac{12}{13}$

Question 29.
A number x is chosen at random from the numbers $-3,-2,-1,0,1,2,3$ the probability that $|x|<2$ is
(a) $\frac{5}{7}$
(b) $\frac{2}{7}$
(c) $\frac{3}{7}$
(d) $\frac{1}{7}$

S̃olution:
Total possible number of events $(\mathrm{n})=7$
Now $|x|<2$
$x<2$ or $-x<2 \Rightarrow x>-2$
$\therefore \mathrm{x}$
$\Rightarrow x=1,0,-1,-2,-3$ or $x=-1,0,1,2,3$
$\therefore \mathrm{x}=-1,0,1$
$\therefore \mathrm{m}=3$
\therefore Probability $=\frac{m}{n}=\frac{3}{7}$
(c)

Question 30.
If a number x is chosen from the numbers $1,2,3$ and a number is selected from the numbers $1,4,9$, then $P(x y<9)$
(a) $\frac{7}{9}$
(b) $\frac{5}{9}$
(c) $\frac{2}{3}$
(d) $\frac{1}{9}$

Solution:
Numbers $x=1,2,3$ and $y=1,4,9$
Now $x y=1,4,9,2,8,18,3,12,27=9$
$\therefore \mathrm{n}=9$
and $x y<9$ are $1,2,3,4,8$
$\therefore \mathrm{m}=5$
$\therefore \mathrm{P}(x y<9)=\frac{5}{9}$

Question 31.

The probability that a non-leap year has 53 Sundays, is
(a) $\frac{2}{7}$
(b) $\frac{5}{7}$
(c) $\frac{6}{7}$
(d) $\frac{1}{7}$

Solution:

In a non leap years, number of days = 365 i.e. 52 weeks +1 day
\therefore Probability of being 53 Sundays

$$
\begin{equation*}
=\frac{m}{n}=\frac{1}{\text { No. of day in a week }}=\frac{1}{7} \tag{d}
\end{equation*}
$$

Question 32.

In a single throw of a pair of dice, the probability of getting the sum a perfect square is
(a) $\frac{1}{18}$
(b) $\frac{7}{36}$
(c) $\frac{1}{6}$
(d) $\frac{2}{9}$

Solution:
A pair of dice is thrown simultaneously
\therefore No. of total events (n) $=6 \times 6=36$
Which are
$(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)$
$(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)$
$(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)$
$(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)$
$(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)$
$(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)$
\therefore Event whose sum is a perfect square are $(1,3),(2,2),(3,1),(3,6),(4,5),(5,4),(6,3)$ $\therefore \mathrm{m}=7$
\therefore Probability $=\frac{m}{n}=\frac{7}{36}$
(b)

Question 33.
What is the probability that a non-leap year has 53 Sundays?
(a) $\frac{6}{7}$
(b) $\frac{1}{7}$
(c) $\frac{5}{7}$
(d) None of these

Solution:
No. of days in a non leap year $=365$
\therefore No. of days more than complete weeks $=1$ day
\therefore Probability of 53 Sundays in a non-leap year

$$
\begin{equation*}
=\frac{m}{n}=\frac{1}{7} \tag{b}
\end{equation*}
$$

Question 34.

Two numbers ' a ' and ' 6 ' are selected successively without replacement in that order from the integers 1 to 10 . The probability that ab is an integer, is
(a) $\frac{17}{45}$
(b) $\frac{1}{5}$
(c) $\frac{17}{90}$
(d) $\frac{8}{45}$

Solution:
a and b are two number to be selected from the integers $=1$ to 10 without replacement of a and b
i.e., 1 to $10=10$
and 2 to $10=9$
No. of ways $=10 \times 9=90$
Probability of ab where it is an integer
\therefore Possible event will be
$=(2,2),(3,3),(4,2),(4,4),(5,5),(6,2),(6,3),(6,6),(7,7),(8,2),(8,4),(8,8),(9,3),(9$, 9), (10, 2), (10, 5), (10, 10), = 17
$P(E)=\frac{m}{n}=\frac{17}{90}$
Question 35.
Two dice are rolled simultaneously. The probability that they show different faces is
(a) $\frac{2}{3}$
(b) $\frac{1}{6}$
(c) $\frac{1}{3}$
(d) $\frac{5}{6}$

Solution:
Two dice are rolled simultaneously
\therefore No. of total events $=62=36$
\therefore No. of different face can be
= 36 - (same faces)
Same face are $(1,1),(2,2),(3,3),(4,4),(5,5)$ and $(6,6)=6$
$\therefore 36-6=30$
\therefore Probability $\mathrm{P}(\mathrm{E})=\frac{m}{n}=\frac{30}{36}=\frac{5}{6}$

Question 36.
What is the probability that a leap year has 52 Mondays?
(a) $\frac{2}{7}$
(b) $\frac{4}{7}$
(c) $\frac{5}{7}$
(d) $\frac{6}{7}$

Solution:
No. of days in a leap year $=366$
No. of Mondays $=52$
Extra days = 366-52x7
= 366 - 364= 2
\therefore Remaining days in the week $=7-2=5$
\therefore Probability of being 52 Mondays in the leap

$$
\begin{equation*}
\text { year }=\frac{5}{7} \tag{c}
\end{equation*}
$$

Question 37.
If a two digit number is chosen at random, then the probability that the number chosen is a multiple of 3 , is
(a) $\frac{3}{10}$
(b) $\frac{29}{100}$
(c) $\frac{1}{3}$
(d) $\frac{7}{25}$

Solution:
Total number of two digit numbers are 10 to 99
= $99-9=90$
Multiples of 3 will be 12, 15, 18, 21,.... 99
$=33-3=30$
\therefore Probability $=\frac{30}{90}=\frac{1}{3}$
(c)

Question 38.

Two dice are thrown together. The probability of getting the same number on both dice is
(a) $\frac{1}{2}$
(b) $\frac{1}{3}$

Solution:

2 dice are thrown together
\therefore Number of total outcomes $=6 \times 6=36$
Number which should come together are (1, 1), $(2,2),(3,3),(4,4),(5,5),(6,6)$
$=6$ pairs
(c) $\frac{1}{6}$
(d) $\frac{1}{12}$ [CBSE 2012]

Question 39.
In a family of 3 children, the probability of having at least one boy is
(a) $\frac{7}{8}$
(b) $\frac{1}{8}$
(c) $\frac{5}{8}$
(d) $\frac{3}{4}$ [CBSE 2014]

Solution:
Number of children in a family $=3$
There can be, bbb.bbg, bgg and ggg
\therefore Probability of a family having atleast one boy $=34$ (d)

$$
\begin{equation*}
=\frac{3}{4} \tag{d}
\end{equation*}
$$

Question 40.
A bag contains cards numbered from 1 to 25 . A card is drawn at random from the bag. The probability that the number on this card is divisible by both 2 and 3 is
(a) $\frac{1}{5}$
(b) $\frac{3}{25}$
(c) $\frac{4}{25}$
(d) $\frac{2}{25}$

Solution:
Total number of outcomes $=25$
The number which is divisible by both 2 and 3 are $6,12,18,24$.
Number of favourable outcomes $=4$ Probability of number which is divisible by both 2 and 3 = 425 (c)

