RD Sharma Class 10 Solutions Chapter 10 Circles VSAQS

Answer each of the following questions either in one word or one sentence or as per requirement of the questions:
Question 1.
In the figure, PA and PB are tangents to the circle drawn from an external point P . CD is a third tangent touching the circle at Q . If $\mathrm{PB}=10 \mathrm{~cm}$ and $\mathrm{CQ}=2 \mathrm{~cm}$, what is the length PC?

Solution:
In the figure, PA and PB are the tangents to the circle drawn from P
CD is the third tangent to the circle drawn at Q $P B=10 \mathrm{~cm}, C Q=2 \mathrm{~cm}$

PA and PB are tangents to the circle
$P A=P B=10 \mathrm{~cm}$
Similarly CQ and CA are tangents to the circle
$C Q=C A=2 \mathrm{~cm}$
$P C=P A-C A=10-2=8 \mathrm{~cm}$

Question 2.

What is the distance between two parallel tangents of a circle of radius 4 cm ?
Solution:
TT' and SS' are two tangents of a circle with centre 0 and radius 4 cm and $\mathrm{TT}^{\prime} \| \mathrm{SS}^{\prime}$ OP and OQ are joined

Now OP is the radius and TPT' is the tangent
$\mathrm{OP} \perp \mathrm{TPT}{ }^{\prime}$
Similar OQ $\perp \mathrm{SS}^{\prime}$
But TT' || SS'
POQ is the diameter
Which is $4 \times 2=8 \mathrm{~cm}$
Distance between the two parallel tangents is 8 cm

Question 3.

The length of tangent from a point A at a distance of 5 cm from the centre of the circle is 4 cm . What is the radius of the circle?

Solution:

PA is a tangent to the circle from P at a distance of 5 cm from the centre 0
$\mathrm{PA}=4 \mathrm{~cm}$
OA is joined and let $\mathrm{OA}=\mathrm{r}$

Now in right $\triangle O A P$,
$O P^{2}=O A^{2}+P A^{2}$
$=>(5)^{2}=r^{2}+(4)^{2}$
=> $25=r+16$
$=>r^{2}=25-16=9=(3)^{2}$
$r=3$
Radius of the circle $=3 \mathrm{~cm}$

Question 4.

Two tangents TP and TQ are drawn from an external point T to a circle with centre 0 as shown in the following figure. If they are inclined to each other at an angle of 100°, then what is the value of $\angle \mathrm{POQ}$?

Solution:

$T P$ and TQ are the tangents from T to the circle with centre O and $\angle P T Q=100^{\circ}$
OT, OP and OQ are joined
OP and OQ are radius
$\mathrm{OP} \perp \mathrm{PT}$ and $\mathrm{OQ} \perp \mathrm{QT}$
Now in quadrilateral OPTQ,
$\angle \mathrm{POQ}+\angle \mathrm{OPT}+\angle \mathrm{PTQ}+\angle \mathrm{OQT}=360^{\circ}$ (Sum of angles of a quadrilateral)
$=>\angle \mathrm{POQ}+90^{\circ}+100^{\circ}+90^{\circ}=360^{\circ}$
$=>\angle \mathrm{POQ}+280^{\circ}=360^{\circ}$
$=>\angle \mathrm{POQ}=360^{\circ}-280^{\circ}=80^{\circ}$
Hence $\angle \mathrm{POQ}=80^{\circ}$

Question 5.

What is the distance between two parallel tangents to a circle of radius 5 cm ?

Solution:

In a circle, the radius is 5 cm and centre is 0

TT' and SS' are two tangents at P and Q to the circle
Such that TT' || SS'
Join OP and OQ
OP is radius and TPT' is the tangent
$\mathrm{OP} \perp \mathrm{TT}{ }^{\prime}$
Similarly $\mathrm{OQ} \perp \mathrm{SS}^{\prime}$
POQ is the diameter of the circle

Now length of $P Q=O P+O Q=5+5=10 \mathrm{~cm}$
Hence distance between the two parallel tangents $=10 \mathrm{~cm}$

Question 6.

In Q. No. 1, if PB = 10 cm , what is the perimeter of $\triangle \mathrm{PCD}$?
Solution:
In the figure, $\mathrm{PB}=10 \mathrm{~cm}, \mathrm{CQ}=2 \mathrm{~cm}$

$P A$ and $P B$ are tangents to the give from P
$P A=P B=10 \mathrm{~cm}$
Similarly, CA and CQ are the tangents
$C A=C Q=2 \mathrm{~cm}$
and $D B$ and $D Q$ are the tangents
$D B=D Q$
Now, perimeter of $\triangle \mathrm{PCD}$
$P C+P D+C Q+D Q$
$=P C+C Q+P D+D Q$
$=P C+C A+P D+D B\{C Q=C A$ and $D Q=D B\}$
$=P A+P B=10+10=20 \mathrm{~cm}$

Question 7.

In the figure, CP and CQ are tangents to a circle with centre O . ARB is another tangent touching the circle at R. $\ddagger C P=11 \mathrm{~cm}$ and $B C=7 \mathrm{~cm}$, then find the length of BR. (C.B.S.E. 2009)

Solution:

Given : In the figure, CP and CQ are tangents to a circle with centre 0 $A R B$ is a third tangent to the circle at R
$C P=11 \mathrm{~cm}, B C=7 \mathrm{~cm}$

To find: The length of $B R$
$B Q$ and $B R$ are tangents to the circle drawn from B
$B Q=B R$
Similarly $\mathrm{CQ}=\mathrm{CP}$
$=>B C+B Q=C P=11(C P=11 \mathrm{~cm}$ and $B C=7 \mathrm{~cm})$
=> $7+B Q=11$
$=>B Q=11-7$
$B Q=4 \mathrm{~cm}$
But $B Q=B R$
$B R=4 \mathrm{~cm}$

Question 8.
In the figure, $\triangle A B C$ is circumscribing a circle. Find the length of BC. (C.B.S.E. 2009)

Solution:

$\triangle A B C$ is circumscribing a circle which touches it at P, Q and R $A C=11 \mathrm{~cm}, A R=4 \mathrm{~cm}, B R=3 \mathrm{~cm}$
Now we have to find BC
$A R$ and $A Q$ are tangents to the circle from A
$A Q=A R=4 \mathrm{~cm}$
Then $C Q=A C-A Q=11-4=7 \mathrm{~cm}$
Similarly,
$C P$ and $C Q$ are tangents from C
$C P=C Q=7 \mathrm{~cm}$
and $B P$ and $B R$ are tangents from B
$B P=B R=3 \mathrm{~cm}$
Now $B C=B P+C P=3+7=10 \mathrm{~cm}$

Question 9.

In the figure, CP and CQ are tangents from an external point C to a circle with centre O. $A B$ is another tangent which touches the circle at R. If $C P=11 \mathrm{~cm}$ and $B R=4 \mathrm{~cm}$, find the length of $B C$. [CBSE 2010]

Solution:

$C P$ and $C Q$ are the tangents to the circle from C.
$A B$ is another tangent to the same circle which touches at R and meets the first two tangents at A and $B . O$ is the centre of the circle.
OC is joined
$C P=11 \mathrm{~cm}, \mathrm{BR}=4 \mathrm{~cm}$
$C P$ and $C Q$ are tangents to the circle
$C P=C Q=11 \mathrm{~cm}$
Similarly from $B, C R$ and $B Q$ are the tangents
$B Q=B R=4 \mathrm{~cm}$
Now $B C=C Q-B Q=11-4=7 \mathrm{~cm}$

Question 10.

Two concentric circles are of radii 5 cm and 3 cm . Find the length of the chord of the larger circle which touches the smaller circle.

Solution:

Two concentric circles with centre 0 , have radii 5 cm and 3 cm
$A B$ is a chord which touches the smaller circle at P
OP is joined which is radius of smaller circle

P is mid-point of $A B$
$O P=3 \mathrm{~cm}$ and $O A=5 \mathrm{~cm}$
Now in right $\triangle O A P$
$O A^{2}=O P^{2}+A P^{2}$
$(5)^{2}=(3)^{2}+A P^{2}$
=> $25=9+A P^{2}$
$=>A P^{2}=25-9=16=(4)^{2}$
$A P=4 \mathrm{~cm}$
$A B=2 A P=2 \times 4 \mathrm{~cm}=8 \mathrm{~cm}$

Question 11.

In the given figure, PA and PB are tangents to the circle with centre 0 such that $\angle A P B=50^{\circ}$. Write the measure of $\angle O A B$. [CBSE 2015]

Solution:

In the given figure,
$P A$ and $P B$ are tangents to the circle from P
$\mathrm{PA}=\mathrm{PB}$
$\angle A P B=50^{\circ}, 0 A$ is joined
To find $\angle O A B$
In $\triangle P A B$

$$
\mathrm{PA}=\mathrm{PB}
$$

$$
\begin{aligned}
& \therefore \angle \mathrm{PAB}=\angle \mathrm{PBA} \\
& \therefore \angle \mathrm{PAB}=\frac{180^{\circ}-\angle \mathrm{APB}}{2}=\frac{180^{\circ}-50^{\circ}}{2} \\
& \quad=\frac{130^{\circ}}{2}=65^{\circ}
\end{aligned}
$$

$$
\text { But } \angle \mathrm{OAP}=90^{\circ}
$$

$$
(\because \mathrm{OA} \perp \mathrm{~PB})
$$

$\therefore \angle \mathrm{OAB}=90^{\circ}-\angle \mathrm{PAB}$

$$
=90^{\circ}-65^{\circ}=25^{\circ}
$$

Question 12.
In the figure, PQ is a chord of a circle and PT is the tangent at P such that $\angle \mathrm{QPT}=$ 60°. Then, find $\angle P R Q$. [NCERT Exemplar]

Solution:

$\angle \mathrm{OPQ}=\angle \mathrm{OQP}=30^{\circ}$, i.e., $\angle \mathrm{POQ}=120^{\circ}$
Also, $\angle \mathrm{PRQ}=12$ reflex $\angle \mathrm{POQ}$
Question 13.
In the figure, $P Q L$ and $P R M$ are tangents to the circle with centre O at the points Q and R respectively and S is a point on the circle such that $\angle S Q L=50^{\circ}$ and $\angle S R M=$ 60°. Then, find $\angle Q S R$. [NCERT Exemplar]

Solution:
Here $\angle O S Q=\angle O Q S=90^{\circ}-50^{\circ}=40^{\circ}$
and $\angle \mathrm{RSO}=\angle \mathrm{SRO}=90^{\circ}-60^{\circ}=30^{\circ}$.
Therefore, $\angle \mathrm{QSR}=40^{\circ}+30^{\circ}=70^{\circ}$

Question 14.

In the figure, BOA is a diameter of a circle and the tangent at a point P meets BA produced at T . If $\angle \mathrm{PBO}=30^{\circ}$, then find $\angle \mathrm{PTA}$. [NCERT Exemplar]

Solution:

As $\angle \mathrm{BPA}=90^{\circ}$,
$\angle \mathrm{PAB}=\angle \mathrm{OPA}=60^{\circ}$
Also $O P \perp P T$.
Therefore, $\angle \mathrm{APT}=30^{\circ}$
and $\angle \mathrm{PTA}=60^{\circ}-30^{\circ}=30^{\circ}$

