RD Sharma Class 10 Solutions Chapter 10 Circles MCQS

Mark the correct alternative in each of the following :

Question 1.
A tangent $P Q$ at a point P of a circle of radius 5 cm meets a line through the centre 0 at a point Q such that $O Q=12 \mathrm{~cm}$. Length $P Q$ is
(a) 12 cm
(b) 13 cm
(c) 8.5 cm
(d) $\sqrt{ } 119 \mathrm{~cm}$

Solution:
(d) Radius of a circle $\mathrm{OP}=5 \mathrm{~cm} \mathrm{OQ}=12 \mathrm{~cm}, \mathrm{PQ}$ is tangent

$\mathrm{OP} \perp \mathrm{PQ}$
In right $\triangle O P Q$,
$\mathrm{OQ}^{2}=\mathrm{OP}^{2}+\mathrm{PQ}^{2}$ (Pythagoras Theorem)
$=>(12)^{2}=(5) 2+P Q^{2}$
=> $144=25+\mathrm{PQ}^{2}$
$P Q^{2}=144-25=119$
$P Q=\sqrt{ } 119$

Question 2.

From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm . The radius of the circle is
(a) 7 cm
(b) 12 cm
(c) 15 cm
(d) 24.5 cm

Solution:
(a) Let $P Q$ be the tangent from Q to the circle with O as centre $P Q=24 \mathrm{~cm}$
$O Q=25 \mathrm{~cm}$

Let Radius $\mathrm{OQ}=\mathrm{r}$
$\mathrm{OQ} \perp \mathrm{PQ}$
Now in right $\triangle O P Q$,
$\mathrm{OQ}^{2}=\mathrm{OP}^{2}+\mathrm{PQ}^{2}$ (Pythagoras Theorem)
$\Rightarrow>(25)^{2}=r^{2}+(24)^{2}$
$\Rightarrow 625=r^{2}+576$
$=>r^{2}=625-576=49=(7)^{2}$
$r=7$
Radius of the circle $=7 \mathrm{~cm}$

Question 3.

The length of the tangent from a point A at a circle, of radius 3 cm , is 4 cm . The distance of A from the centre of the circle is
(a) $\sqrt{ } 7 \mathrm{~cm}$
(b) 7 cm
(c) 5 cm
(d) 25 cm

Solution:
(c) Let $A B$ be the tangent from A to the circle of centre 0 , then
$\mathrm{OB}=3 \mathrm{~cm}$
$B A=4 \mathrm{~cm}$

$O B \perp B A$
In right $\triangle O B A$,
$O A^{2}=O B^{2}+B A^{2}($ Pythagoras Theorem $)=(3)^{2}+(4)^{2}=9+16=25=(5)^{2}$
$O A=5$
Distance of A from the centre $0=5 \mathrm{~cm}$

Question 4.

If tangents $P A$ and $P B$ from a point P to a circle with centre O are inclined to each other at an angle of 80° then $\angle \mathrm{POA}$ is equal to
(a) 50°
(b) 60°
(c) 70°
(d) 80°

Solution:

(a) PA and PB are the tangents to the circle from P and $\angle \mathrm{APB}=80^{\circ}$

$\angle A O B=180^{\circ}-\angle A P B=180^{\circ}-80^{\circ}=100^{\circ}$
But $O P$ is the bisector of $\angle A O B$
$\angle \mathrm{POA}=\angle \mathrm{POB}=12 \angle \mathrm{AOB}$
$\Rightarrow \angle \mathrm{POA}=12 \times 100^{\circ}=50^{\circ}$

Question 5.

If TP and TQ are two tangents to a circle with centre O so that $\angle P O Q=110^{\circ}$, then, $\angle P T Q$ is equal to
(a) 60°
(b) 70°
(c) 80°
(d) 90°

Solution:

(b) TP and TQ are the tangents from To the circle with centre O and $O P, O Q$ are joined and $\angle \mathrm{POQ}=110^{\circ}$

But $\angle \mathrm{POQ}+\angle \mathrm{PTQ}=180^{\circ}$
$=>110^{\circ}+\angle \mathrm{PTQ}=180^{\circ}$
$=>\angle \mathrm{PTQ}=180^{\circ}-110^{\circ}=70^{\circ}$

Question 6.

$P Q$ is a tangent to a circle with centre O at the point P. If $\triangle O P Q$ is an isosceles triangle, then $\angle \mathrm{OQP}$ is equal to
(a) 30°
(b) 45°
(c) 60°
(d) 90°

Solution:

(b) In a circle with centre $O, P Q$ is a tangent to the circle at P and $\triangle O P Q$ is an isosceles triangle such that $\mathrm{OP}=\mathrm{PQ}$

OP is radius of the circle
$O P \perp P Q$
$O P=P Q$
$\angle P O Q=\angle O Q P$
But $\angle \mathrm{POQ}=\angle \mathrm{PQO}=90^{\circ}(\mathrm{OP} \perp \mathrm{PQ})$
$\angle O Q P=\angle P O Q=45^{\circ}$

Question 7.

Two equal circles touch each other externally at C and $A B$ is a common tangent to the circles. Then, $\angle A C B=$
(a) 60°
(b) 45°
(c) 30°
(d) 90°

Solution:

(d) Two circles with centres 0 and O^{\prime} touch each other at C externally
A common tangent is drawn which touches the circles at A and B respectively. Join OA, O'B and O'O which passes through C

$A O=B O^{\prime}$ (radii of the equal circle)
$A B \| 00^{\prime}$
=> AOO'B is a rectangle
Draw another common tangent through C which intersects $A B$ at D , then $\mathrm{DA}=\mathrm{DC}=$
DB
ADCO and BDCO' are squares
$A C$ and $B C$ are the diagonals of equal square
$A C=B C$
$\angle D A C=\angle D B C=45^{\circ}$
$\angle A C B=90^{\circ}$

Question 8.

$A B C$ is a right angled triangle, right angled at B such that $B C=6 \mathrm{~cm}$ and $A B=8 \mathrm{~cm} . A$ circle with centre O is inscribed in $\triangle A B C$. The radius of the circle is
(a) 1 cm
(b) 2 cm
(c) 3 cm
(d) 4 cm

Solution:

(b) In a right $\triangle A B C, \angle B=90^{\circ}$
$B C=6 \mathrm{~cm}, A B=8 \mathrm{~cm}$

$A C^{2}=A B^{2}+B C^{2}($ Pythagoras Theorem $)=(8)^{2}+(6)^{2}=64+36=100=(10)^{2}$ $A C=10 \mathrm{~cm}$
An incircle is drawn with centre 0 which touches the sides of the triangle $A B C$ at P, Q and R
$O P, O Q$ and $O R$ are radii and $A B, B C$ and $C A$ are the tangents to the circle
$O P \perp A B, O Q \perp B C$ and $O R \perp C A$
$O P B Q$ is a square
Let r be the radius of the incircle
$P B=B Q=r$
$A R=A P=8-r$,
$C Q=C R=6-r$
$A C=A R+C R$
=> $10=8-r+6-r$
$10=14-2 r$
=> $2 r=14-10=4$
=> $r=2$
Radius of the incircle $=2 \mathrm{~cm}$

Question 9.

$P Q$ is a tangent drawn from a point P to a circle with centre O and $Q O R$ is a diameter of the circle such that $\angle P O R=120^{\circ}$, then $\angle O P Q$ is
(a) 60°
(b) 45°
(c) 30°
(d) 90°

Solution:

(c) $P Q$ is a tangent to the circle with centre 0 , from $P, Q O R$ is the diameter and $\angle P O R$ $=120^{\circ}$

OQ is radius and PQ is tangent to the circle
$O Q \perp Q P$ or $\angle O Q P=90^{\circ}$
But $\angle \mathrm{QOP}+\angle \mathrm{POR}=180^{\circ}$ (Linear pair)
$=>\angle Q O P+120^{\circ}=180^{\circ}$
$\angle Q O P=180^{\circ}-120^{\circ}=60^{\circ}$
Now in $\triangle P O Q$
$\angle \mathrm{QOP}+\angle \mathrm{OQP}+\angle \mathrm{OPQ}=180^{\circ}$ (Angles of a triangle)
$=>60^{\circ}+90^{\circ}+\angle \mathrm{OPQ}=180^{\circ}$
$=>150^{\circ}+\angle \mathrm{OPQ}=180^{\circ}$
$\Rightarrow \angle O P Q=180^{\circ}-150^{\circ}=30^{\circ}$

Question 10.

If four sides of a quadrilateral $A B C D$ are tangential to a circle, then
(a) $A C+A D=B D+C D$
(b) $A B+C D=B C+A D$
(c) $A B+C D=A C+B C$
(d) $A C+A D=B C+D B$

Solution:

(b) A circle is inscribed in a quadrilateral $A B C D$ which touches the sides $A B, B C, C D$ and $D A$ at P, Q, R and S respectively then the sum of two opposite sides is equal to the sum of other two opposite sides
$A B+C D=B C+A D$

Question 11.

The length of the tangent drawn from a point 8 cm away from the centre of a circle of radius 6 cm is
(a) $\sqrt{ } 7 \mathrm{~cm}$
(b) $2 \sqrt{ } 7 \mathrm{~cm}$
(c) 10 cm
(d) 5 cm

Solution:

(b) Radius of the circle $=6 \mathrm{~cm}$
and distance of the external point from the centre $=8 \mathrm{~cm}$
Length of tangent $=\sqrt{ }\left\{(8)^{2}-(6)^{2}\right\}$
$=\sqrt{ }(64-36)=\sqrt{ } 28$
$=\sqrt{ }(4 \times 7)=2 \sqrt{ } 7 \mathrm{~cm}$

Question 12.
$A B$ and $C D$ are two common tangents to circles which touch each other at C. If D lies on $A B$ such that $C D=4 \mathrm{~cm}$, then $A B$ is equal to
(a) 4 cm
(b) 6 cm
(c) 8 cm
(d) 12 cm

Solution:

(c) AB and CD are two common tangents to the two circles which touch each other externally at C and intersect $A B$ in D

$C D=4 \mathrm{~cm}$
DA and DC are tangents to the first circle from D
$C D=A D=4 \mathrm{~cm}$
Similarly DC and DB are tangents to the second circle from D
$C D=D B=4 \mathrm{~cm}$
$A B=A D+D B=4+4=8 \mathrm{~cm}$

Question 13.

In the adjoining figure, if $A D, A E$ and $B C$ are tangents to the circle at D, E and F respectively. Then,

(a) $A D=A B+B C+C A$
(b) $2 A D=A B+B C+C A$
(c) $3 A D=A B+B C+C A$
(d) $4 A D=A B+B C+C A$

Solution:
(b) $A D, A E$ and $B C$ are the tangents to the circle at D, E and F respectively D and $A E$ are tangents to the circle from A
$A D=A E$
Similarly, $C D=C F$ and $B E=B F \ldots$...(ii)
Now $A B+A C+B C=A E-B E+A D-C D+C F+B F$
$=A D-B E+A D-C D+B E+B E$
$=2 A D[$ From (i) and (ii)]
or $2 \mathrm{AD}=\mathrm{AB}+\mathrm{BC}+\mathrm{CA}$

Question 14.

In the figure, $R Q$ is a tangent to the circle with centre 0 . If $S Q=6 \mathrm{~cm}$ and $Q R=4 \mathrm{~cm}$, then $\mathrm{OR}=$

(a) 8 cm
(b) 3 cm
(c) 2.5 cm
(d) 5 cm

Solution:

(d) In the figure, 0 is the centre of the circle
$Q R$ is tangent to the circle and $Q O S$ is a diameter $S Q=6 \mathrm{~cm}, Q R=4 \mathrm{~cm}$

$\mathrm{OQ}=12 \mathrm{QS}=12 \times 6=3 \mathrm{~cm}$
$O Q$ is radius
$\mathrm{OQ} \perp \mathrm{QR}$
Now in right $\triangle O Q R$
$\mathrm{OR}^{2}=\mathrm{QR}^{2}+\mathrm{QO}^{2}=(3)^{2}+(4)^{2}=9+16=25=(5)^{2}$
$O R=5 \mathrm{~cm}$
Question 15.
In the figure, the perimeter of $\triangle A B C$ is
(a) 30 cm
(b) 60 cm
(c) 45 cm
(d) 15 cm

Solution:

(a) $\triangle A B C$ is circumscribed of circle with centre 0
$A Q=4 \mathrm{~cm}, C P=5 \mathrm{~cm}$ and $B R=6 \mathrm{~cm}$
$A Q$ and $A R$ the tangents to the circle $A Q=A R=4 \mathrm{~cm}$
Similarly $B P$ and $B R$ are tangents,
$B P=B R=6 \mathrm{~cm}$
and $C P$ and $C Q$ are the tangents
$C Q=C P=5 \mathrm{~cm}$

$A B=A R+B R=4+6=10 \mathrm{~cm}$
$B C=B P+C P=6+5=11 \mathrm{~cm}$
$A C=A Q+C Q=4+5=9 \mathrm{~cm}$
Perimeter of $\triangle A B C=A B+B C+A C=10+11+9=30 \mathrm{~cm}$

Question 16.

In the figure, $A P$ is a tangent to the circle with centre O such that $O P=4 \mathrm{~cm}$ and $\angle O P A=30^{\circ}$. Then, $A P=$
(a) $2 \sqrt{ } 2 \mathrm{~cm}$
(b) 2 cm
(c) $2 \sqrt{ } 3 \mathrm{~cm}$
(d) $3 \sqrt{ } 2 \mathrm{~cm}$

Solution:

(c) In the figure, AP is the tangent to the circle with centre O such that $O P=4 \mathrm{~cm}, \angle O P A=30^{\circ}$

Join OA , let $\mathrm{AP}=\mathrm{x}$

$$
\begin{aligned}
& \cos 30^{\circ}=\frac{\mathrm{AP}}{\mathrm{OP}} \\
\Rightarrow & \frac{\sqrt{3}}{2}=\frac{x}{4} \Rightarrow x=\frac{4 \times \sqrt{3}}{2}=2 \sqrt{3} \mathrm{~cm}
\end{aligned}
$$

Question 17.
AP and AQ are tangents drawn from a point A to a circle with centre 0 and radius 9 cm . If $\mathrm{OA}=15 \mathrm{~cm}$, then $\mathrm{AP}+\mathrm{AQ}=$
(a) 12 cm
(b) 18 cm
(c) 24 cm
(d) 36 cm

Solution:
(c) OP is radius, PA is the tangent $O P \perp A P$

Now in right $\triangle O A P$,
$O A^{2}=O P^{2}+A P^{2}$
$(15)^{2}=(9)^{2}+A P^{2}$
$225=81+$ AP 2
$\Rightarrow A P^{2}=225-81=144=(12)^{2}$
$A P=12 \mathrm{~cm}$
But AP = AQ = 12 cm (tangents from A to the circle)
$A P+A Q=12+12=24 \mathrm{~cm}$

Question 18.

At one end of a diameter PQ of a circle of radius 5 cm , tangent XPY is drawn to the circle. The length of chord $A B$ parallel to $X Y$ and at a distance of 8 cm from P is
(a) 5 cm
(b) 6 cm
(c) 7 cm
(d) 8 cm

Solution:
(d) In the figure, PQ is diameter XPY is tangent to the circle with centre O and radius 5 cm
From P, at a distance of $8 \mathrm{~cm} A B$ is a chord drawn parallel to $X Y$
To find the length of $A B$
Join OA

XY is tangent and OP is the radius
$O P \perp X Y$ or $P Q \perp X Y$
$A B \| X Y$
$O Q$ is $\perp A B$ which meets $A B$ at R
Now in right $\triangle O A R$,
$O A^{2}=O R^{2}+A R^{2}$
$(5)^{2}=(3)^{2}+A R^{2}$
$25=9+A R^{2}$
$=>$ AR $^{2}=25-9=16=(4)^{2}$
$A R=4 \mathrm{~cm}$
But R is mid-point of $A B$
$A B=2 A R=2 \times 4=8 \mathrm{~cm}$

Question 19.
If PT is tahgent drawn froth a point P to a circle touching it at T and O is the centre of the circle, then $\angle \mathrm{OPT}+\angle \mathrm{POT}=$
(a) 30°
(b) 60°
(c) 90°
(d) 180°

Solution:

(c) In the figure, PT is the tangent to the circle with centre 0 .

OP and OT are joined

PT is tangent and OT is the radius
OT \perp PT
Now in right \triangle OPT
$\angle O T P=90^{\circ}$
$\angle \mathrm{OPT}+\angle \mathrm{POT}=180^{\circ}-90^{\circ}=90^{\circ}$

Question 20.
In the adjacent figure, if $\mathrm{AB}=12 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$ and $\mathrm{AC}=10 \mathrm{~cm}$, then $\mathrm{AD}=$
(a) 5 cm
(b) 4 cm
(c) 6 cm
(d) 7 cm

Solution:

(d) In the figure, $\triangle A B C$ is the circumscribed a circle
$A B=12 \mathrm{~cm}, B C=8 \mathrm{~cm}$ and $A C=10 \mathrm{~cm}$
Let $A D=a, D B=b$ and $E C=c$, then
$A F=a, B E=b$ and $F C=c$

But $A B+B C+A C=12+8+10=30$
$a+b+b+c+c+a=30$
$=>2(a+b+c)=30$
$a+b+c=15$
Subtracting $B C$ or $b+c$ from this $a=15-8=7$
AD $=7 \mathrm{~cm}$

Question 21.
In the figure, if $A P=P B$, then
(a) $A C=A B$
(b) $A C=B C$
(c) $A Q=Q C$
(d) $A B=B C$

Solution:

(b) In the figure, $\mathrm{AP}=\mathrm{PB}$

But $A P$ and $A Q$ are the tangent from A to the circle

$A P=A Q$
Similarly PB $=B R$
But AP = PB (given)
$A Q=B R$....(i)
But CQ and CR the tangents drawn from C to the circle
$C Q=C R$
Adding in (i)
$A Q+C Q=B R+C R$
$A C=B C$

Question 22.
In the figure, if $\mathrm{AP}=10 \mathrm{~cm}$, then $\mathrm{BP}=$
(a) $\sqrt{ } 91 \mathrm{~cm}$
(b) $\sqrt{ } 127 \mathrm{~cm}$
(c) $\sqrt{ } 119 \mathrm{~cm}$
(d) $\sqrt{ } 109 \mathrm{~cm}$

Solution:

(b) In the figure,
$O A=6 \mathrm{~cm}, O B=3 \mathrm{~cm}$ and $A P=10 \mathrm{~cm}$

OA is radius and AP is the tangent
$O A \perp A P$
Now in right $\triangle O A P$
$O P^{2}=A P^{2}+O A^{2}=(10)^{2}+(6)^{2}=100+36=136$
Similarly $B P$ is tangent and $O B$ is radius
$\mathrm{OP}^{2}=\mathrm{OB}^{2}+\mathrm{BP}^{2}$
$136=(3)^{2}+B P 2$
$\Rightarrow 136=9+\mathrm{BP}^{2}$
$\Rightarrow B P^{2}=136-9=127$
$B P=\sqrt{ } 127 \mathrm{~cm}$

Question 23.

In the figure, if $P R$ is tangent to the circle at P and Q is the centre of the circle, then $\angle \mathrm{POQ}=$
(a) 110°
(b) 100°
(c) 120°
(d) 90°

Solution:

(c) In the figure, PR is the tangent to the circle at P O is the centre of the circle $\angle Q P R=60^{\circ}$

OP is the radius and PR is the tangent $\mathrm{OPR}=90^{\circ}$
$=>\angle \mathrm{OPQ}+\angle \mathrm{QPR}=90^{\circ}$
$\Rightarrow \angle \mathrm{OPQ}+60^{\circ}=90^{\circ}$
$\Rightarrow \angle O P Q=90^{\circ}-60^{\circ}=30^{\circ}$
$\mathrm{OP}=\mathrm{OQ}$ (radii of the circle)
$\angle O Q P=30^{\circ}$
In $\triangle O P Q$,
$\angle \mathrm{OPQ}+\angle \mathrm{OQP}+\angle \mathrm{POQ}=180^{\circ}$
$=>30^{\circ}+30^{\circ}+\angle \mathrm{PQR}=180^{\circ}$
$=>60^{\circ}+\angle \mathrm{POQ}=180^{\circ}$
$\angle \mathrm{POQ}=180^{\circ}-60^{\circ}=120^{\circ}$

Question 24.

In the figure, if quadrilateral PQRS circumscribes a circle, then $P D+Q B=$
(a) PQ
(b) QR
(c) $P R$
(d) PS

Solution:

(a) In the figure, quadrilateral PQRS is circumscribed a circle

$\mathrm{PD}=\mathrm{PA}$ (tangents from P to the circle)
Similarly QA = QB
$P D+Q B=P A+Q A=P Q$

Question 25.
In the figure, two equal circles touch each other at T , if $\mathrm{QP}=4.5 \mathrm{~cm}$, then $\mathrm{QR}=$
(a) 9 cm
(b) 18 cm
(c) 15 cm
(d) 13.5 cm

Solution:
(a) In the figure, two equal circles touch, each other externally at T $Q R$ is the common tangent
$\mathrm{QP}=4.5 \mathrm{~cm}$

PQ = PT (tangents from P to the circle)
Similarly PT = PR
$P Q=P T=P R$
Now $Q R=P Q+P R=4.5+4.5=9 \mathrm{~cm}$

Question 26.

In the figure, APB is a tangent to a circle with centre O at point P. If $\angle Q P B=50^{\circ}$, then the measure of $\angle \mathrm{POQ}$ is
(a) 100°
(b) 120°
(c) 140°
(d) 150°

Solution:

(a) In the figure, APB is a tangent to the circle with centre 0

$\angle Q P B=50^{\circ}$
OP is radius and APB is a tangent
$\mathrm{OP} \perp \mathrm{AB}$
$=>\angle O P B=90^{\circ}$
$=>\angle \mathrm{OPQ}+\angle \mathrm{QPB}=90^{\circ}$
$\angle O P Q+50^{\circ}=90^{\circ}$
$\Rightarrow \angle O P Q=90^{\circ}-50^{\circ}=40^{\circ}$
But $O P=O Q$
$\angle O P Q=O Q P=40^{\circ}$
$\angle \mathrm{POQ}=180^{\circ}-\left(40^{\circ}+40^{\circ}\right)=180^{\circ}-80^{\circ}=100^{\circ}$

Question 27.

In the figure, if tangents PA and PB are drawn to a circle such that $\angle \mathrm{APB}=30^{\circ}$ and chord $A C$ is drawn parallel to the tangent $P B$, then $\angle A B C=$
(a) 60°
(b) 90°
(c) 30°
(d) None of these

Solution:
(c) In the figure, PA and PB are the tangents to the circle with centre 0

Chord AC || BP,
$A B$ is joined
$P A=P B$
$\angle \mathrm{PAB}=\angle \mathrm{PBA}$
But $\angle \mathrm{PAB}+\angle \mathrm{PBA}=180^{\circ}-30^{\circ}=150^{\circ}$
$=>\angle \mathrm{BPA}+\angle \mathrm{PBA}=150^{\circ}$
$=2 \angle \mathrm{PBA}=150^{\circ}$
$=>\angle \mathrm{PBA}=75^{\circ}$
$A C \| B C$
$\angle B A C=\angle P B A=75^{\circ}$
But $\angle \mathrm{PBA}=\angle \mathrm{ACB}=75^{\circ}$ (Angles in the alternate segment)
$\angle A B C=180^{\circ}-\left(75^{\circ}+75^{\circ}\right)=180^{\circ}-150^{\circ}=30^{\circ}$

Question 28.

In the figure, $\mathrm{PR}=$
(a) 20 cm
(b) 26 cm
(c) 24 cm
(d) 28 cm

Solution:

(b) In the figure, two circles with centre 0 and O^{\prime} touch each other externally $P Q$ and RS are the tangents drawn to the circles

OQ and O'S are the radii of these circles and
$O Q=3 \mathrm{~cm}, P Q=4 \mathrm{~cm} O{ }^{\prime} S=5 \mathrm{~cm}$ and $\mathrm{SR}=12 \mathrm{~cm}$
Now in right $\triangle O Q P$
$O P^{2}=(O Q)^{2}+P Q^{2}=(3)^{2}+(4)^{2}=9+16=25=(5)^{2}$
$O P=5 \mathrm{~cm}$
Similarly in right $\triangle \mathrm{RSO} 0^{\prime}$
$\left(O^{\prime} R\right)^{2}=(R S)^{2}+\left(O^{\prime} S\right)^{2}=(12)^{2}+(5)^{2}=144+25=169=(13)^{2}$
$O^{\prime} R=13 \mathrm{~cm}$
Now PR $=0 P+00^{\prime}+O^{\prime} R=5+(3+5)+13=26 \mathrm{~cm}$

Question 29.

Two circles of same radii r and centres O and O ' touch each other at P as shown in figure. If $O O^{\prime}$ is produced to meet the circle $C\left(O^{\prime}, r\right)$ at A and AT is a tangent to the circle $C(O, r)$ such that $O^{\prime} Q \perp A T$. Then $A O: A O^{\prime}=$
(a) 32
(b) 2
(c) 3
(d) 14

Solution:

(c) Two circles of equal radii touch each other externally at P. OO' produced meets at A

From $A, A T$ is the tangent to the circle $(0, r)$
O'Q \perp AT
Now AO : AO' = $3 \mathrm{r}: \mathrm{r}$
= $3: 1$ = 31
Question 30.
Two concentric circles of radii 3 cm and 5 cm are given. Then length of chord BC which touches the inner circle at P is equal to
(a) 4 cm
(b) 6 cm
(c) 8 cm
(d) 10 cm

Solution:

(c) In the figure, two concentric circles of radii 3 cm and 5 cm with centre 0 Chord $B C$ touches the inner circle at P
Draw a tangent $A B$ to the inner circle
Join OQ and OA

$O Q$ is radius and $A Q B$ is the tangent
$O Q \perp A B$ and $O Q$ bisects $A B$
$A Q=Q B$
Similarly, $\mathrm{BP}=\mathrm{PC}$ or P is mid-point of BC
But $B Q$ and $B P$ are tangents from B
$\mathrm{QB}=\mathrm{BP}=\mathrm{AQ}$
In right $\triangle O A Q$,
$O A^{2}=A Q^{2}+O Q^{2}$
$(5)^{2}=A Q^{2}+(3)^{2}$
$=>A Q^{2}=(5)^{2}-(3)^{2}$
$\Rightarrow A Q^{2}=25-9=16=(4)^{2}$
$A Q=4 \mathrm{~cm}$
$\mathrm{BC}=2 \mathrm{BP}=2 \mathrm{BQ}=2 \mathrm{AQ}=2 \times 4=8 \mathrm{~cm}$

Question 31.

In the figure, there are two concentric, circles with centre 0 . PR and PQS are tangents to the inner circle from point plying on the outer circle. If $P R=7.5 \mathrm{~cm}$, then PS is equal to
(a) 10 cm
(b) 12 cm
(c) 15 cm
(d) 18 cm

Solution:

(c) In the figure, two concentric circles with centre 0

From a point P on the outer circle,
PRT and PQS are the tangents are drawn to the inner circle at R and Q respectively $P R=7.5 \mathrm{~cm}$
Join OR and OQ

PT is chord and OR is radius
R is mid-point of PT
Similarly Q is mid-point of $P S$
But $P R=P Q$ (tangents from P)
$P T=2 P R$ and $P S=2 P Q$
$\mathrm{PS}=2 \mathrm{PQ}=2 \mathrm{PR}=2 \times 7.5=15 \mathrm{~cm}$

Question 32.
In the figure, if $\mathrm{AB}=8 \mathrm{~cm}$ and $\mathrm{PE}=3 \mathrm{~cm}$, then $\mathrm{AE}=$
(a) 11 cm
(b) 7 cm
(c) 5 cm
(d) 3 cm

Solution:

(c) In the figure, $A B$ and $A C$ are the tangents to the circle from A $D E$ is another tangent drawn from P

$$
\mathrm{AB}=8 \mathrm{~cm}, \mathrm{PE}=3 \mathrm{~cm}
$$

$A B=A C$ (tangents drawn from A to the circle)

Similarly PE = EC and DP = DB
Now $A E=A C-C E=A B-P E=8-3=5 \mathrm{~cm}$

Question 33.
In the figure, PQ and PR are tangents drawn from P to a circle with centre 0 . If $\angle \mathrm{OPQ}$ $=35^{\circ}$, then
(a) $a=30^{\circ}, b=60^{\circ}$
(b) $a=35^{\circ}, b=55^{\circ}$
(c) $a=40^{\circ}, b=50^{\circ}$
(d) $a=45^{\circ}, b=45^{\circ}$

Solution:

(b) In the figure, $P Q$ and $P R$ are the tangents drawn from P to the circle with centre 0 $\angle O P Q=35^{\circ}$
PO is joined

$P Q=P R$ (tangents from P to the circle)
$\angle O P Q=\angle O P R$
=> $35^{\circ}=\mathrm{a}$
=> $\mathrm{a}=35^{\circ}$
$O Q$ is radius and $P Q$ is tangent
OQ \perp PQ
=> $\angle \mathrm{OQP}=90^{\circ}$
In $\triangle O Q P$,
$\angle \mathrm{POQ}+\angle \mathrm{QPO}=90^{\circ}$
$=>\mathrm{b}+35^{\circ}=90^{\circ}$
$\Rightarrow>b=90^{\circ}-35^{\circ}=55^{\circ}$
$\mathrm{a}=35^{\circ}, \mathrm{b}=55^{\circ}$

Question 34.

In the figure, if TP and TQ are tangents drawn from an external point T to a circle with centre 0 such that $\angle T Q P=60^{\circ}$, then
(a) 25°
(b) 30°
(c) 40°
(d) 60°

Solution:
(b) In the figure, TP and TQ are the tangents drawn from T to the circle with centre 0 $O P, O Q$ and $P Q$ are joined
$\angle T Q P=60^{\circ}$
TP = TQ (Tangents from T to the circle)
$\angle T Q P=\angle T P Q=60^{\circ}$
$\angle \mathrm{PTQ}=180^{\circ}-\left(60^{\circ}+60^{\circ}\right)=180^{\circ}-120^{\circ}=60^{\circ}$
and $\angle \mathrm{POQ}=180^{\circ}-\angle \mathrm{PTQ}=180^{\circ}-60^{\circ}=120^{\circ}$
But OP = OQ (radii of the same circle)
$\angle O P Q=\angle O Q P$
But $\angle \mathrm{OPQ}+\angle \mathrm{OQP}=180^{\circ}-120^{\circ}=60^{\circ}$
But $\angle \mathrm{OPQ}=30^{\circ}$

Question 35.

In the figure, the sides $A B, B C$ and $C A$ of triangle $A B C$, touch a circle at P, Q and R respectively. If $P A=4 \mathrm{~cm}, B P=3 \mathrm{~cm}$ and $A C=11 \mathrm{~cm}$, then length of $B C$ is [CBSE 2012]

(a) 11 cm
(b) 10 cm
(c) 14 cm
(d) 15 cm

Solution:

(b) In the figure,
$P A=4 \mathrm{~cm}, \mathrm{BP}=3 \mathrm{~cm}, \mathrm{AC}=11 \mathrm{~cm}$
$A P$ and $A R$ are the tangents from A to the circle
$A P=A R$
=> $A R=4 \mathrm{~cm}$
Similarly $B P$ and $B Q$ are tangents
$B Q=B P=3 \mathrm{~cm}$
$A C=11 \mathrm{~cm}$
$A R+C R=11 \mathrm{~cm}$
$4+C R=11 \mathrm{~cm}$
$C R=11-4=7 \mathrm{~cm}$
$C Q$ and CR are tangents to the circle
$C Q=C R=7 \mathrm{~cm}$
Now, $B C=B Q+C Q=3+7=10 \mathrm{~cm}$

Question 36.

In the figure, a circle touches the side DF of AEDF at H and touches ED and EF produced at K and M respectively. If $\mathrm{EK}=9 \mathrm{~cm}$, then the perimeter of $\triangle E D F$ is [CBSE 2012]
(a) 18 cm
(b) 13.5 cm
(c) 12 cm
(d) 9 cm

Solution:

(a) In $\triangle D E F$

DF touches the circle at H
and circle touches ED and EF Produced at K and M respectively
EK $=9 \mathrm{~cm}$
EK and EM are the tangents to the circle
$\mathrm{EM}=\mathrm{EK}=9 \mathrm{~cm}$
Similarly DH and DK are the tangent
DH = DK and FH and FM are tangents
FH = FM
Now, perimeter of $\triangle D E F$
$=E D+D F+E F$
$=E D+D H+F H+E F$
$=E D+D K+E M+E F$
= EK + EM
$=9+9$
$=18 \mathrm{~cm}$

Question 37.

In the figure DE and DF are tangents from an external point D to a circle with centre A. If $D E=5 \mathrm{~cm}$ and $D E \perp D F$, then the radius of the circle is [CBSE 2013]

(a) 3 cm
(b) 5 cm
(c) 4 cm
(d) 6 cm

Solution:
(b) If figure, DE and DF are tangents to the circle drawn from D.
A is the centre of the circle.
$D E=5 \mathrm{~cm}$ and $D E \perp D F$
Join AE, AF

DE is the tangent and AE is radius
$A E \perp D E$
Similarly, AF \perp DF
But $\angle \mathrm{D}=90^{\circ}$ (given)
AFDE is a square
$A E=D E$ (side of square)
But DE $=5 \mathrm{~cm}$
$A E=5 \mathrm{~cm}$
Radius of circle is 5 cm

Question 38.
In the figure, a circle with centre O is inscribed in a quadrilateral $A B C D$ such that, it
touches sides $B C, A B, A D$ and $C D$ at points P, Q, R and S respectively. If $A B=29 \mathrm{~cm}$, $A D=23 \mathrm{~cm}, \angle B=90^{\circ}$ and $D S=5 \mathrm{~cm}$, then the radius of the circle (in cm) is [CBSE 2013]

(a) 11
(b) 18
(c) 6
(d) 15

Solution:
(a) In the figure, a circle touches the sides of a quadrilateral $A B C D$
$\angle B=90^{\circ}, O P=O Q=r$
$A B=29 \mathrm{~cm}, A D=23 \mathrm{~cm}, \mathrm{DS}=5 \mathrm{~cm}$
$\angle B=90^{\circ}$
$B A$ is tangent and $O Q$ is radius
$\angle O Q B=90^{\circ}$
Similarly OP is radius and BC is tangents
$\angle O P B=90^{\circ}$
But $\angle B=90^{\circ}$ (given)
PBQO is a square
DS = 5 cm
But DS and DR are tangents to the circles
DR = 5 cm
But AD = 23 cm
$A R=23-5=18 \mathrm{~cm}$
$A R=A Q$ (tangents to the circle from A)
$A Q=18 \mathrm{~cm}$
But AB = 29 cm
$B Q=29-18=11 \mathrm{~cm}$
$O P B Q$ is a square
$O Q=B Q=11 \mathrm{~cm}$
Radius of the circle $=11 \mathrm{~cm}$

Question 39.
In a right triangle $A B C$, right angled at $B, B C=12 \mathrm{~cm}$ and $A B=5 \mathrm{~cm}$. The radius of the circle inscribed in the triangle (in cm) is
(a) 4
(b) 3
(c) 2
(d) 1

Solution:

(c)

$$
\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC} \quad[\text { Pythagoras theorem }]
$$

$\mathrm{AC}^{2}=25+144=169$
$\mathrm{AC}=13 \mathrm{~cm}$
ar. of $\triangle A B C=$ ar. of $\triangle A O B+$ ar. of $\triangle B O C$

+ ar. of $\triangle A O C$
$\frac{5 \times 12}{2}=\frac{\mathrm{AB} \times r}{2}+\frac{\mathrm{BC} \times r}{2}+\frac{\mathrm{AC} \times r}{2}$
$60=r(\mathrm{AB}+\mathrm{BC}+\mathrm{AC})$
$\left[\because\right.$ Area of $\Delta=\frac{\text { Base } \times \text { Corr.alt. }}{2}$]
$60=r(5+12+13)$
$60=30 r \Rightarrow r=2 \mathrm{~cm}$

Question 40.

Two circles touch each other externally at $P . A B$ is a common tangent to the circle touching them at A and B. The value of $\angle A P B$ is
(a) 30°
(b) 45°
(c) 60°
(d) 90°

Solution:

(d) We have, AT = TP and TB = TP (Lengths of the tangents from ext. point T to the circles)
$\angle T A P=\angle T P A=x$ (say)
and $\angle \mathrm{TBP}=\angle \mathrm{TPB}=\mathrm{y}$ (say)
Also, in triangle APB,
$x+x+x+y+y=180^{\circ}$
$=>2 x+2 y=180^{\circ}$
$\Rightarrow x+y=90^{\circ}$
$=>\angle \mathrm{APB}=90^{\circ}$

Question 41.
In the figure, $P Q$ and $P R$ are two tangents to a circle with centre 0 . If $\angle Q P R=46$, then $\angle Q O R$ equals
(a) 67°
(b) 134°
(c) 44°
(d) 46°

Solution:

(b) $\angle O Q P=90^{\circ}$
[Tangent is \perp to the radius through the point of contact]
$\angle O R P=90^{\circ}$
$\angle \mathrm{OQP}+\angle \mathrm{QPR}+\angle \mathrm{ORP}+\angle \mathrm{QOR}=360^{\circ}$ [Angle sum property of a quad.]
$90^{\circ}+46^{\circ}+90^{\circ}+\angle \mathrm{QOR}=360^{\circ}$
$\angle Q O R=360^{\circ}-90^{\circ}-46^{\circ}-90^{\circ}=134^{\circ}$

Question 42.

In the figure, QR is a common tangent to the given circles touching externally at the point T. The tangent at T meets $Q R$ at P. If $P T=3.8 \mathrm{~cm}$, then the length of $Q R$ (in cm) is [CBSE2014]
(a) 3.8
(b) 7.6
(c) 5.7
(d) 1.9

Solution:
(b) In the figure, QR is common tangent to the two circles touching each other externally at T
Tangent at T meets $Q R$ at P
$\mathrm{PT}=3.8 \mathrm{~cm}$
PT and PQ are tangents from P
$\mathrm{PT}=\mathrm{PQ}=3.8 \mathrm{~cm}$
Similarly PT and PR are tangents
$\mathrm{PT}=\mathrm{PR}=3.8 \mathrm{~cm}$
$\mathrm{QR}=3.8+3.8=7.6 \mathrm{~cm}$

Question 43.

In the figure, a quadrilateral $A B C D$ is drawn to circumscribe a circle such that its sides $A B, B C, C D$ and $A D$ touch the circle at P, Q, R and S respectively. If $A B=x c m$,
$B C=7 \mathrm{~cm}, C R=3 \mathrm{~cm}$ and $A S=5 \mathrm{~cm}$, then $x=$
(a) 10
(b) 9
(c) 8
(d) 7 (CBSE 2014)

Solution:

(b) In the given figure,
$A B C D$ is a quadrilateral circumscribe a circle and its sides $A B, B C, C D$ and $D A$ touch the circle at P, Q, R and S respectively
$A B=x \mathrm{~cm}, B C=7 \mathrm{~cm}, C R=3 \mathrm{~cm}, A S=5 \mathrm{~cm}$
$C R$ and $C Q$ are tangents to the circle from C
$C R=C Q=3 \mathrm{~cm}$
$B Q=B C-C Q=7-3=4 \mathrm{~cm}$
$B Q=$ and $B P$ are tangents from B
$B P=B Q=4 \mathrm{~cm}$
$A S$ and AP are tangents from A
$A P=A S=5 \mathrm{~cm}$
$A B=A P+B P=5+4=9 \mathrm{~cm}$
$X=9 \mathrm{~cm}$

Question 44.
If angle between two radii of a circle is 130°, the angle between the tangent at the ends of radii is (NCERT Exemplar)
(a) 90°
(b) 50°
(c) 70°
(d) 40°

Solution:

(b) O is the centre of the circle.

Given, $\angle P O Q=130^{\circ}$
PT and QT are tangents drawn from external point T to the circle.

$\angle O P T=\angle O Q T=90^{\circ}$ [Radius is perpendicular to the tangent at point of contact]
In quadrilateral OPTQ,
$\angle \mathrm{PTQ}+\angle \mathrm{OPT}+\angle \mathrm{OQT}+\angle \mathrm{POQ}=360^{\circ}$
$=>\angle \mathrm{PTQ}+90^{\circ}+90^{\circ}+130^{\circ}=360^{\circ}$
$\Rightarrow \angle \mathrm{PTQ}=360^{\circ}-310^{\circ}=50^{\circ}$
Thus, the angle between the tangents is 50°.

Question 45.

If two tangents inclined at a angle of 60° are drawn to a circle of radius 3 cm , then length of each tangent is equal to [NCERT Exemplar]
(a) $3 \sqrt{32} \mathrm{~cm}$
(b) 6 cm
(c) 3 cm
(d) $3 \sqrt{ } 3 \mathrm{~cm}$

Solution:

(d) Let P be an external point and a pair of tangents is drawn from point P and angle between these two tangents is 60°.
Join OA and OP.

Also, $O P$ is a bisector of line $\angle A P C$ $\angle A P O=\angle C P O=30^{\circ}$
Also, $O A \perp A P$
Tangent at any point of a circle is perpendicular to the radius through the point of contact.

In right angled $\triangle \mathrm{OAP}, \tan 30^{\circ}=\frac{\mathrm{OA}}{\mathrm{AP}}=\frac{3}{\mathrm{AP}}$

$$
\begin{aligned}
& \Rightarrow \frac{1}{\sqrt{3}}=\frac{3}{\mathrm{AP}} \\
& \Rightarrow \mathrm{AP}=3 \sqrt{3} \mathrm{~cm}
\end{aligned}
$$

Hence, the length of each tangent is $3 \sqrt{ } 3 \mathrm{~cm}$

Question 46.

If radii of two concentric circles are 4 cm and 5 cm , then the length of each chord of one circle which is tangent to the other circle is [NCERT Exemplar]
(a) 3 cm
(b) 6 cm
(c) 9 cm
(d) 1 cm

Solution:
(b) Let O be the centre of two concentric circles C_{1} and C_{2}, whose radii are $\mathrm{r}_{1}=4 \mathrm{~cm}$ and $\mathrm{r}_{2}=5 \mathrm{~cm}$.
Now, we draw a chord AC of circle C_{2}, which touches the circle C_{1} at B .
Also, join OB, which is perpendicular to AC. [Tangent at any point of circle is perpendicular to radius throughly the point of contact]

Now, in right angled $\triangle O B C$, by using Pythagoras theorem,
$\mathrm{OC}^{2}=\mathrm{BC}^{2}+\mathrm{BO}^{2}\left[(\text { hypotenuse })^{2}=(\text { base })^{2}+(\text { perpendicular })^{2}\right]$
$\Rightarrow 5^{2}=\mathrm{BC}^{2}+4^{2}$
$=>\mathrm{BC}^{2}=25-16=9$
=> $B C=3 \mathrm{~cm}$
Length of chord $A C=2 B C=2 \times 3=6 \mathrm{~cm}$

Question 47.

At one end A of a diameter $A B$ of a circle of radius 5 cm , tangent $X A Y$ is drawn to the circle. The length of the chord CD parallel to $X Y$ and at a distance 8 cm from A is [NCERT Exemplar]
(a) 4 cm
(b) 5 cm
(b) 6 cm
(d) 8 cm

Solution:
(d) First, draw a circle of radius 5 cm having centre 0 .

A tangent XY is drawn at point A .

A chord CD is drawn which is parallel to XY and at a distance of 8 cm from A .
Now, $\angle O A Y=90^{\circ}$
[Tangent and any point of a circle is perpendicular to the radius through the point of contact]
$\angle O A Y+\angle O E D=180^{\circ}$
[sum of cointerior is 180°]
=> $\triangle O E D=180^{\circ}$
Also, AE = 8 cm , Join OC
Now, in right angled $\triangle O B C$
$O C^{2}=O E^{2}+E C^{2}$
=> $E C^{2}=O C^{2}-O E^{2}$ [by Pythagoras theorem]
$\mathrm{EC}^{2}=5^{2}-3^{2}[\mathrm{OC}=$ radius $=5 \mathrm{~cm}, \mathrm{OE}=\mathrm{AE}-\mathrm{AO}=8-5=3 \mathrm{~cm}]$
$E C^{2}=25-9=16$
=> EC = 4 cm
Hence, length of chord CD $=2 C E=2 \times 4=8 \mathrm{~cm}$
[Since, perpendicular from centre to the chord bisects the chord]

Question 48.

From a point P which is at a distance 13 cm from the centre 0 of a circle of radius 5 cm , the pair of tangent $P Q$ and $P R$ to the circle are drawn. Then the area of the quadrilateral PQOR is [NCERT Exemplar]
(a) $60 \mathrm{~cm}^{2}$
(b) $65 \mathrm{~cm}^{2}$
(c) $30 \mathrm{~cm}^{2}$
(d) $32.5 \mathrm{~cm}^{2}$

Solution:
(a) Firstly, draw a circle of radius 5 cm having centre 0 .
P is a point at a distance of 13 cm from 0 .
A pair of tangents PQ and PR are drawn.
Thus, quadrilateral PQOR is formed.
$\mathrm{OQ} \perp \mathrm{QP}$ [since, AP is a tangent line]
In right angled $\triangle P Q O$,
$\mathrm{OP}^{2}=\mathrm{OQ}^{2}+\mathrm{QP}^{2}$
$\Rightarrow 13^{2}=5^{2}+Q^{2}$
$=>Q P^{2}=169-25=144=12^{2}$
=> $Q P=12 \mathrm{~cm}$

Now, area of $\triangle \mathrm{OQP}=12 \times \mathrm{QP} \times \mathrm{QO}=12 \times 12 \times 5=30 \mathrm{~cm}^{2}$
Area of quadrilateral QORP $=2 \triangle O Q P=2 \times 30=60 \mathrm{~cm}^{2}$
Question 49.
If PA and PB are tangents to the circle with centre 0 such that $\angle A P B=50^{\circ}$, then
$\angle O A B$ is equal to
(a) 25°
(b) 30°
(c) 40°
(d) 50°

Solution:

(a) Given, PA and PB are tangent lines.
$P A=P B[$ Since, the length of tangents drawn from an $\angle P B A=\angle P A B=\theta$ [say]

In $\triangle P A B$,
$\angle P+\angle A+\angle B=180^{\circ}$
[since, sum of angles of a triangle $=180^{\circ}$
$50^{\circ}+\theta+\theta=180^{\circ}$
$2 \theta=180^{\circ}-50^{\circ}=130^{\circ}$
$\theta=65^{\circ}$
Also, $\mathrm{OA} \perp \mathrm{PA}$
[Since, tangent at any point of a circle is perpendicular to the radius through the point of contact]
$\angle \mathrm{PAO}=90^{\circ}$
$=\angle \mathrm{PAB}+\angle \mathrm{BAO}=90^{\circ}$
$=5^{\circ}+\angle B A O=90^{\circ}$
$=>\angle B A O=90^{\circ}-65^{\circ}=25^{\circ}$

Question 50.

The pair of tangents AP and AQ drawn from an external point to a circle with centre 0 are perpendicular to each other and length of each tangent is 5 cm . The radius of the circle is [NCERT Exemplar]
(a) 10 cm
(b) 7.5 cm
(c) 5 cm
(d) 2.5 cm

Solution:
(c)
$A P=A Q=5 \mathrm{~cm}$
(tangent from external point are equal)
Radii makes right angle with tangent.
$\triangle \mathrm{APO} \cong \triangle \mathrm{AQO}$
(by R.H.S.)
As $\angle \mathrm{PAQ}=90^{\circ}$, So $\angle \mathrm{PAO}=45^{\circ}$
In $\triangle \mathrm{APO}$,
$\tan 45^{\circ}=\frac{\mathrm{OP}}{\mathrm{AP}}=\frac{\mathrm{OP}}{5}$
$\Rightarrow \mathrm{OP}=5 \mathrm{~cm}$
Hence, the radii of circle $=5 \mathrm{~cm}$

Question 51.
In the figure, if $\angle A O B=125^{\circ}$, then $\angle C O D$ is equal to [NCERT Exemplar]

(a) 45°
(b) 35°
(c) 55°
(d) 6212°

Solution:

(c) We know that, the opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.
$\angle A O B+\angle C O D=180^{\circ}$
$\Rightarrow \angle C O D=180^{\circ}-\angle A O B=180^{\circ}-125^{\circ}=55^{\circ}$
Question 52.
In the figure, if $P Q R$ is the tangent to a circle at Q whose centre is $0, A B$ is a chord parallel to PR and $\angle \mathrm{BQR}=70^{\circ}$, then $\angle \mathrm{AQB}$ is equal to [NCERT Exemplar]

(a) 20°
(b) 40°
(c) 35°
(d) 45°

Solution:

(b) Given, $A B|\mid P R$
$\angle \mathrm{ABQ}=\angle \mathrm{BQR}=70^{\circ}$ [alternate angles]
Also $Q D$ is perpendicular to $A B$ and $Q D$ bisects $A B$.
In $\triangle Q D A$ and $\triangle Q D B$
$\angle Q D A=\angle Q D B$ [each 90°]
$A D=B D$
$\mathrm{QD}=\mathrm{QD}$ [common side]
$\triangle \mathrm{ADQ}=\triangle \mathrm{BDQ}$ [by SAS similarity criterion]
Then, $\angle Q A D=\angle Q B D$...(i) [c.p,c.t.]
Also, $\angle \mathrm{ABQ}=\angle \mathrm{BQR}$ [alternate interior angle]
$\angle A B Q=70^{\circ}\left[\angle B Q R=70^{\circ}\right]$
Hence, $\angle \mathrm{QAB}=70^{\circ}$ [from Eq. (i)]
Now, in $\triangle A B Q$,
$\angle A+\angle B+\angle Q=180^{\circ}$
$=>Q=180^{\circ}-\left(70^{\circ}+70^{\circ}\right)=40^{\circ}$

