RD SHARMA
Solutions
Class 9 Maths

Chapter 25

Ex 25.1

Q1. A coin is tossed 1000 times with the following sequence: Head: 455, Tail=:545. Compute the probability of each event

Answer:

It is given that the coin is tossed 1000 times. The number of trials is 1000

Let us denote the event of getting head and of getting tails be E and F respectively. Then

Number of trials in which the E happens = 455

i.e.
$$P(E) = \frac{455}{1000} = 0.455$$

Similarity, the probability of the event getting a tail = $\frac{\text{Numberoftails}}{\text{Totalnooftrials}}$

i.e.
$$P(F) = \frac{545}{1000} = 0.545$$

Q2. Two coins are tossed simultaneously 500 times with the following frequencies of different outcomes:

TWO HEADS: 95 times

ONE HEADS: 290 times

NO HEADS: 115 times

Find the probability of occurrence of each of these events

Answer:

P(Getting two heads) =
$$\frac{95}{500}$$
 = 0.19

$$P(Getting one tail) = \frac{290}{500} = 0.58$$

$$P(Getting no head) = \frac{115}{500} = 0.23$$

Q3. Three coins are tossed simultaneously 100 times with the following frequencies of different outcomes:

OUTCOME	NO HEAD	ONE HEAD	TWO HEAD	THREE HEAD	
FREQUENCY	14	38	36	12	

If the three coins are tossed simultaneously again, compute the probability of:

- 1. heads coming up
- 2. heads coming up
- 3. At least one Head coming up

4. Getting more Tails than Heads

5. Getting more heads than tails

ANS:

1: Probability of 2 Heads coming up= Favorableoutcome

Totaloutcome

$$=\frac{36}{100}$$
 =0.36

2. Probability of 3 Heads coming up= Favorableoutcome Totaloutcome

$$=\frac{12}{100}$$
 =0.12

3. Probability of at least one head coming up= $\frac{Favorable outcome}{Total outcome}$

$$=\frac{38+36+12}{100}$$

$$=\frac{86}{100}$$
 =0.86

4. Probability of getting more Heads than Tails= Favorableoutcome

Totaloutcome

$$=\frac{36+12}{100}$$

$$=\frac{48}{100}$$

5. Probability of getting more tails than heads=

Totaloutcome

Totaloutcome

$$=\frac{14+38}{100}$$

$$=\frac{52}{100}$$
 =0.52

Q4. 1500 families with 2 children were selected randomly, and the following data were recorded:

No of girls in a family	0	1	2	
No of girls	211	814	475	

If a family is chosen at random, compute the probability that it has:

- 1. No girl
- 2. 1 girl
- 3. 2 girls
- 4. At most one girl
- 5. More girls than boys

Answer

1. Probability of having no girl in a family= nooffamilieshavingnogirl

Totalnooffamilies

$$=\frac{211}{1500}$$
 =0.1406

2. Probability of having 1 girl in a family= nooffamilieshaving1girl

Totalnooffamilies

$$=\frac{814}{1500}$$

$$=\frac{407}{750}$$
 =0.5426

3. Probability of having 2 girls in a family= nooffamilieshaving2girls Totalnooffamilies

$$=\frac{475}{1500}$$
 =0.3166

4. Probability of having at the most one girl=

nooffamilieshavingatthemostonegirl

Totalnooffamilies

$$=\frac{211+814}{1500}$$

$$=\frac{1025}{1500}$$
 = 0.6833

5. Probability of having more girls than boys = nooffamilieshavingmoregirlsthanboys

Totalnooffamilies

$$=\frac{475}{1500}$$
 =0.31

Q5. In a cricket match, a batsman hits a boundary 6 times out of 30 balls he plays. Find the probability that:

- 1. He hit a boundary
- 2. He did not hit a boundary.

Answer

Number of times the batsman hits a boundary= 6

Total number of balls played= 30

Number of times the batsman did not hit a boundary= 30-6= 24

1. Probability that the batsman hits a boundary= Numberoftimeshehitaboundary

Totalnoofballs

$$=\frac{6}{30}$$

$$=\frac{1}{5}$$

2. Probability that the batsman does not hit a boundary

Numberoftimehedidnothitaboundary

$$=\frac{24}{30}$$

$$=\frac{4}{5}$$

Q6. The percentage of marks obtained by a student in the monthly unit tests are given below:

UNIT TEST	I	II	III	IV	V
PERCENTAGE OF MARK OBTAINED	69	71	73	68	76

Find the probability that the student gets

- 1. More than 70% marks
- 2. Less than 70% marks
- 3. A distinction

Answer:

1: Let E be the event of getting more than 70% marks

No of times E happens=3

Probability(Getting more than 70%)=

Numberoftimesstudentgotmorethan70

Totalnoofexamstaken

$$=\frac{3}{5}=0.6$$

2. Let F be the event of getting less than 70% marks

No of times F happen= 2

Probability(Getting less than 70%)= Number of times student got less than 70 Total noof exams taken

$$=\frac{2}{5}=0.4$$

3. Let G be the event of getting distinction

No of times G happen= 1

Probability(Getting distinction) = Numberoftimesstudentgotdistinction

Totalnoofexamstaken

$$=\frac{1}{5}=0.2$$

Q7. To know the opinion of the students about Mathematics, a survey of 200 students were conducted. The data was recorded in the following table

Opinion Like Dislike

Number of students 135 65

Find the probability that student chosen at random:

- 1. Likes Mathematics
- 2. Does not like it.

Answer

1. Probability that a student likes mathematics= Favorableoutcome Totaloutcome

$$=\frac{135}{200}=0.675$$

2. Probability that a student does not like mathematics= Favorableoutcome Totaloutcome

$$=\frac{65}{200}=0.325$$

Q8. The Blood group table of 30 students of class IX is recorded as follows:

A, B, O, O, AB, O, A, O, B, A, O, B, A, O, O

A, AB, O, A, A, O, O, AB, B, A, O, B, A, B, O

A student is selected at random from the class from blood donation. Find the probability that the blood group of the student chosen is:

- 1: A
- 2: B
- 3: AB
- 4: 0

ANSWER

3: AB					0.	
4: 0				K	A. SHISH	
ANSWER				S. KIL		
BLOOD GROUP	Α	В	0	AB	TOTAL	
NUMBER OF STUDENTS	9	6	12	3	30	

1. Probability of a student having blood group A=

$$=\frac{9}{30}=0.3$$

2. Probability of a student having blood group $B = \frac{Favorableoutcome}{Totaloutcome}$

$$=\frac{6}{30}=0.2$$

3. Probability of a student having blood group $AB = \frac{Favorable outcome}{Total outcome}$

$$=\frac{3}{30}$$

$$=\frac{1}{10}=0.10$$

4. Probability of a student having blood group $0 = \frac{Favorableoutcome}{Totaloutcome}$

$$= \frac{12}{30} = 0.4$$

4.97	5.05	5.08	5.03	5.00	5.06	5.08	4.98	5.04	5.07	5.00

Find the probability that any of these bags chosen at random contains more than 5 kg of flour.

ANSWER:

Number of bags weighing more than 5kgs= 7

Total no of bags= 11

Probability of having more than 10kgs of rice= noofbagsweighingmorethan5kg
Totalnoofbags

$$=\frac{7}{11}=0.63$$

Q10. The following table show the birth month of 40 students in class IX:

JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEP	OCT NOV	DEC
3	4	2	2	5	1	2	5	3	4 4	4

Find the probability that a student is born in October

ANSWER:

1. Probability that a student is born in the month of October = noofstudentsborninOctober Totalnoofstudents

$$=\frac{6}{40}$$

$$= \frac{3}{20} = 0.15$$

Q11. Given below is the frequency distribution table regarding the concentration of SO_2 in the air in parts per million of a certain city for 30 days.

$ \begin{array}{c} \textbf{Concentration} \\ \textbf{of } SO_2 \end{array} $	0.00-0.04	0.04-0.08	0.08-0.12	0.12-0.16	0.16-0.20	0.20-0.24
No of days	4	8	9	2	4	3

Find the probability of the concentration of SO_2 in the interval 0.12-0.16 on any of these days.

Answer:

Total no of days: 30

Probability of concentration of SO_2 in interval 0.12-0.16= $\frac{Favorable outcome}{Total outcome}$

$$=\frac{2}{30}$$

$$=\frac{1}{15}=0.06$$

Q12. A company selected 2400 families at random and surveys them to determine a relationship between income level and the number of vehicles in a home. The information gathered is listed below

VEHICLES PER FAMILY:

Monthly Income	0	1	2	Above 2
Less than 7000	10	160	25	0
7000-10000	0	305	27	2
10000-13000	1	535	29	TOT
13000-16000	2	469	29	25
16000 above	1	579	82	88

If a family is chosen at random find the probability that the family is:

- 1. Earning Rs 10000 13000 per month and owning exactly 2 vehicles.
- 2. Earning Rs 16000 or more per month and owning exactly 1 vehicle.
- 3. Earning less than Rs 7000 per month and does not own any vehicle.
- 4. Earning Rs 13000 16000 per month and owning more than 2 vehicles.
- 5. Owning not more than 1 vehicle.
- 6.Owning at least one vehicle

Answer:

- 1. The probability that the family is earning 10000-13000 and is having exactly 2 vehicles
- Nooffamilieshaving10000-13000incomeand2vehicles

$$=\frac{29}{2400}$$

2. The probability that the family is earning 16000 or more and is having exactly 1 vehicle

Totalnooffamilies

$$=\frac{579}{2400}$$

3. The probability that the family is earning less than 7000 and is having no vehicle

Nooffamilieshavinglessthan7000incomeandnovehicle

Totalnooffamilies

$$= \frac{10}{2400} = \frac{1}{240}$$

4. The probability that the family is earning 13000-16000 and is having more than 2 vehicles

Nooffamilieshaving13000-16000incomeandmorethan2vehicles

Totalnooffamilies

$$=\frac{25}{2400}=\frac{1}{96}$$

5. The probability that the family is having not more than one vehicle

Nooffamilieshavingnotmorethan1vehicle

Totalnooffamilies

$$= \frac{10+0+1+2+1+160+305+535+469+579}{1200}$$

$$= \frac{2062}{2400} = \frac{1031}{1200}$$

6. The probability that the family is having atleast one vehicle

Nooffamilieshavingatleast1vehicle

Totalnooffamilies

$$= \frac{2356}{2400} = \frac{589}{600}$$

Q13. The following table gives the life time of 400 neon lamps:

Life time	300-400	400-500	500-600 600-700	700-800	800-900	900-1000	
bulbs	14	56	60 86	74	62	48	

A bulb is selected at random. Find the probability that the lifetime of a selected bulb:

- 1. Less than 400 hrs
- 2. between 300-800 hours
- 3. Atleast 700 hours

Answers:

Total number of bulbs = 400

1. Probability that the life of the selected bulb is less than 400hrs

T otalnoofbulbs

$$= \frac{14}{400} = \frac{7}{200}$$

2. Probability that the life of the selected bulb is between 300-800hrs

Noofbulbshavinglifelessthan400hrs

T otalnoofbulbs

$$= \frac{14+56+60+86+74}{200}$$

$$= \frac{290}{400} = \frac{29}{40}$$

3. Probability that the life of the selected bulb is atleast 700hrs

Noofbulbshavinglifeatleast700hrs

Totalnoofbulbs

$$= \frac{74+62+48}{400}$$

$$= \frac{184}{400} = \frac{23}{50}$$

Q14. Given below is the frequency distribution of wages (in Rs) of 30 workers in certain factory:

Wages	110-130	130-150	150-170	170-190	190-210	210-230 230-250	
No of workers	3	4	5	6	5	4 3	

A worker is selected at random. Find the probability that his wages are:

- 1. Less than Rs.150
- 2. Atleast Rs.210
- 3. More than or equal to 150 but less than 210

Answer

Total number of workers=30

1. Probability that the worker wages are less than Rs.150=

NoofworkershavingwagesbelowRs.150
Totalnoofworkers

$$= \frac{3+4}{30} = \frac{7}{30}$$

2. Probability that the worker wages are atleast Rs.210=

NoofworkershavingwagesbelowRs.210
Totalnoofworkers

$$= \frac{4+3}{30} = \frac{7}{30}$$

Totalnoofworkers

$$= \frac{5+6+5}{30} = \frac{16}{30} = \frac{8}{15}$$

