# Sol:

1.

We have to write first five terms of given sequences

(i)  $a_n = 3n + 2$ Given sequence  $a_n = 3n + 2$ To write first five terms of given sequence put n = 1, 2, 3, 4, 5, we get  $a_1 = (3 \times 1) + 2 = 3 + 2 = 5$   $a_2 = (3 \times 2) + 2 = 6 + 2 = 8$   $a_3 = (3 \times 3) + 2 = 9 + 2 = 11$   $a_4 = (3 \times 4) + 2 = 12 + 2 = 14$   $a_5 = (3 \times 5) + 2 = 15 + 2 = 17$  $\therefore$  The required first five terms of given sequence  $a_n = 3n + 2$  are 5, 8, 11, 14, 17.

(ii)  $a_n = \frac{n-2}{3}$ 

Given sequence  $a_n = \frac{n-2}{3}$ 

To write first five terms of given sequence  $a_n =$ 

put n = 1, 2, 3, 4, 5 then we get  $a_1 = \frac{1-2}{3} = \frac{-1}{3}; a_2 = \frac{2-2}{3} = 0$   $a_3 = \frac{3-2}{3} = \frac{1}{3}; a_4 = \frac{4-2}{3} = \frac{2}{3}$  $a_5 = \frac{5-2}{3} = 1$ 

∴ The required first five terms of given sequence  $a_n = \frac{n-2}{3} \operatorname{are} \frac{-1}{3}, 0, \frac{1}{3}, \frac{2}{3}, 1.$ 

(iii)  $a_n = 3^n$ 

Given sequence  $a_n = 3^n$ 

To write first five terms of given sequence, put n = 1, 2, 3, 4, 5 in given sequence. Then,

$$a_1 = 3^1 = 3; a_2 = 3^2 = 9; a_3 = 27; a_4 = 3^4 = 81; a_5 = 3^5 = 243.$$

(iv)  $a_n = \frac{3n-2}{5}$ Given sequence,  $a_n = \frac{3n-2}{5}$ 

To write first five terms, put n = 1, 2, 3, 4, 5 in given sequence  $a_n = \frac{3n-2}{5}$ 

Then, we ger  

$$a_{1} = \frac{3 \times 1 - 2}{5} = \frac{3 - 2}{5} = \frac{1}{5}$$

$$a_{2} = \frac{3 \times 2 - 2}{5} = \frac{6 - 2}{5} = \frac{4}{5}$$

$$a_{3} = \frac{3 \times 3 - 2}{5} = \frac{9 - 2}{5} = \frac{7}{5}$$

$$a_{4} = \frac{3 \times 4 - 2}{5} = \frac{12 - 2}{5} = \frac{10}{5}$$

$$a_{5} = \frac{3 \times 5 - 2}{5} = \frac{15 - 2}{5} = \frac{13}{5}$$

 $\therefore$  The required first five terms are  $\frac{1}{5}, \frac{4}{5}, \frac{7}{5}, \frac{10}{5}, \frac{13}{5}$ 

(v) 
$$a_n = (-1)^n 2^n$$
  
Given sequence is  $a_n = (-1)^n 2^n$   
To get first five terms of given sequence an, put  $n = 1, 2, 3, 4, 5$   
 $a_1 = (-1)^1 \cdot 2^1 = (-1) \cdot 2 = -2$   
 $a_2 = (-1)^2 \cdot 2^2 = (-1) \cdot 4 = 4$   
 $a_3 = (-1)^3 \cdot 2^3 = (-1) \cdot 8 = -8$   
 $a_4 = (-1)^4 \cdot 2^4 = (-1) \cdot 16 = 16$   
 $a_5 = (-1)^5 \cdot 2^5 = (-1) \cdot 32 = -32$   
 $\therefore$  The first five terms are -2, 4, -8, 16, -32.

(vi)

 $a_n = \frac{n(n-2)}{2}$ The given sequence is,  $a_n = \frac{n(n-2)}{2}$ 

To write first five terms of given sequence  $a_n = \frac{n(n-2)}{2}$ Put n = 1, 2, 3, 4, 5. Then, we get  $a_1 = \frac{1(1-2)}{2} = \frac{1-1}{2} = \frac{-1}{2}$   $a_2 = \frac{2(2-2)}{2} = \frac{2.0}{2} = 0$   $a_3 = \frac{3(3-2)}{2} = \frac{3.1}{2} = \frac{3}{2}$  $a_4 = \frac{4(4-2)}{2} = \frac{4.2}{2} = 4$  $a_5 = \frac{5(5-2)}{2} = \frac{5\cdot3}{2} = \frac{15}{2}$ 

 $\therefore$  The required first five terms are  $\frac{-1}{2}$ , 0,  $\frac{3}{2}$ , 4,  $\frac{15}{2}$ 

 $a_n = n^2 - n + 1$ (vii) The given sequence is,  $a_n = n^2 - n + 1$ To write first five terms of given sequence  $a_{n1}$  we get put n = 1, 2, 3, 4, 5. Then we get  $a_1 = 1^2 - 1 + 1 = 1$ 

 $a_2 = 2^2 - 2 + 1 = 3$  $a_3 = 3^2 - 3 + 1 = 7$  $a_4 = 4^2 - 4 + 1 = 13$  $a_5 = 5^2 - 5 + 1 = 21$ : The required first five terms of given sequence  $a_n = n^2 - n + 1$  are 1, 3, 7, 13, 21

(viii)  $a_n = 2n^2 - 3n + 1$ The given sequence is  $a_n = 2n^2 - 3n + 1$ To write first five terms of given sequence  $a_n$ , we put n = 1, 2, 3, 4, 5. Then we get  $a_1 = 2 \cdot 1^2 - 3 \cdot 1 + 1 = 2 - 3 + 1 = 0$  $a_2 = 2.2^2 - 3.2 + 1 = 8 - 6 + 1 = 3$  $a_3 = 2.3^2 - 3.3 + 1 = 18 - 9 + 1 = 10$  $a_4 = 2.4^2 - 3.4 + 1 = 32 - 12 + 1 = 21$  $a_5 = 2.5^2 - 3.5 + 1 = 50 - 15 + 1 = 36$ : The required first five terms of given sequence  $a_n - 2n^2 - 3n + 1$  are 0, 3, 10, 21, 36

 $a_n = \frac{2n-3}{6}$ (ix)

Given sequence is,  $a_n = \frac{2n-3}{6}$ 

To write first five terms of given sequence we put n = 1, 2, 3, 4, 5. Then, we get,

 $a_1 = \frac{2 \cdot 1 - 3}{6} = \frac{2 - 3}{6} = \frac{-1}{6}$  $a_{2} = \frac{2 \cdot 2 - 3}{6} = \frac{4 - 3}{6} = \frac{1}{6}$   $a_{3} = \frac{2 \cdot 4 - 3}{6} = \frac{8 - 3}{6} = \frac{5}{6}$   $a_{4} = \frac{2 \cdot 4 - 3}{6} = \frac{8 - 3}{6} = \frac{5}{6}$   $a_{5} = \frac{2 \cdot 5 - 3}{6} = \frac{10 - 3}{6} = \frac{7}{6}$ 

: The required first five terms of given sequence  $a_n = \frac{2n-3}{6}$  are  $\frac{-1}{6}, \frac{1}{6}, \frac{1}{2}, \frac{5}{6}, \frac{7}{6}$ 

# 2.

# Sol:

We have to find the required term of a sequence when n<sup>th</sup> term of that sequence is given.

 $a_n = 5n - 4$ ;  $a_{12}$  and  $a_{15}$ (i) Given n<sup>th</sup> term of a sequence  $a_n = 5n - 4$ To find  $12^{\text{th}}$  term,  $15^{\text{th}}$  terms of that sequence, we put n = 12, 15 in its  $n^{\text{th}}$  term. Then, we get  $a_{12} = 5.12 - 4 = 60 - 4 = 56$  $a_{15} = 5.15 - 4 = 15 - 4 = 71$ 

∴ The required terms 
$$a_{12} = 56$$
,  $a_{15} = 71$   
(ii)  $a_n = \frac{3n-2}{4n+5}$ ;  $a_7$  and  $a_8$   
Given n<sup>th</sup> term is  $(a_n) = \frac{3n-2}{4n+5}$   
To find 7<sup>th</sup>, 8<sup>th</sup> terms of given sequence, we put n = 7, 8.  
 $a_7 = \frac{(3.7)-2}{(4.7)+5} = \frac{19}{33}$   
 $a_8 = \frac{(3.8)-2}{(4.8)+5} = \frac{22}{37}$   
∴ The required terms  $a_7 = \frac{19}{33}$  and  $a_8 = \frac{22}{37}$ .  
(iii)  $a_n = n(n-1)(n-2)$ ;  $a_5$  and  $a_8$   
Given n<sup>th</sup> term is  $a_n = n(n-1)(n-2)$   
To find 5<sup>th</sup>, 8<sup>th</sup> terms of given sequence, put n= 5, 8 in an then, we get  
 $a_5 = 5(5-1)$ .  $(5-2) = 5.4.3 = 60$   
 $a_8 = 8$ .  $(8-1)$ .  $(8-2) = 8.7.6 = 336$   
∴ The required terms are  $a_5 = 60$  and  $a_8 = 336$   
(iv)  $a_n = (n-1)(2-n)(3+n)$ ;  $a_{11}a_{21}a_3$   
The given n<sup>th</sup> term is  $a_n = (n+1)(2-n)(3+n)$   
To find  $a_1, a_2, a_3$  of given sequence put n = 1, 2, 3 is an  
 $a_1 = (1-1)(2-1)(3+1) = 0$ .  $1.4 = 0$   
 $a_2 = (2-1)(2-2)(3+2) = 1$ .  $0.5 = 0$   
 $a_3 = (3-1)(2-3)(3+3) = 2.-1.6 = -12$   
∴ The required terms  $a_1 = 0, a_2 = 0, a_3 = -12$   
(v)  $a_n = (-1)^n n; a_3, a_5, a_8$   
The given n<sup>th</sup> term is  $a_n = (-1)^n . n$   
To find  $a_3, a_5, a_8$  of given sequence put n = 3, 5, 8, in a\_n.  
 $a_3 = (-1)^3 . 3 = -1.3 = -3$   
 $a_5 = (-1)^5 . 5 = -1.5 = -5$   
 $a_8 = (-1)^8 = 1.8 = 8$   
∴ The required terms  $a_3 = -3, a_5 = -5, a_8 = 8$ 

# Sol:

We have to find next five terms of following sequences.

(i)  $a_1 = 1, a_n = a_{n-1} + 2, n \ge 2$ Given, first term  $(a_1) = 1$ ,  $n^{th}$  term  $a_n = a_{n-1} + 2, n \ge 2$ To find  $2^{nd}$ ,  $3^{rd}$ ,  $4^{th}$ ,  $5^{th}$ ,  $6^{th}$  terms, we use given condition  $n \ge 2$  for  $n^{th}$  term  $a_n = a_{n-1} + 2$  $a_2 = a_{2-1} + 2 = a_1 + 2 = 1 + 2 = 3$  ( $\therefore a_1 = 1$ )

$$a_{3} = a_{3-1} + 2 = a_{2} + 2 = 3 + 2 = 5$$

$$a_{4} = a_{4-1} + 2 = a_{4} + 2 = 7 + 2 = 7$$

$$a_{5} = a_{5-1} + 2 = a_{4} + 2 = 7 + 2 = 9$$

$$a_{6} = a_{6-1} + 2 = a_{5} + 2 = a + 2 = 11$$

$$\therefore \text{ The next five terms are,}$$

$$a_{2} = 3, a_{3} = 5, a_{4} = 7, a_{5} = a, a_{6} = 11$$
(ii)
$$a_{1} = a_{2} = 2, a_{n} = a_{n-1} - 3, n > 2$$
Given,
First term  $(a_{1}) = 2$ 
Second term  $(a_{2}) = 2$ 

$$n^{th} \text{ term } (a_{n}) = a_{n-1} - 3$$
To find next five terms i.e.,  $a_{3}, a_{4}, a_{5}, a_{6}, a_{7}$  we put  $n = 3, 4, 5, 6, 7$  is  $a_{n}$ 

$$a_{3} = a_{3-1} - 3 = 2 - 3 = -1$$

$$a_{4} = a_{4-1} - 3 = a_{3} - 3 = -1 - 3 = -4$$

$$a_{5} = a_{5-1} - 3 = a_{4} - 3 = -7 - 3 = -10$$

$$a_{7} = a_{7-1} - 3 = a_{6} - 3 = -7 - 3 = -10$$

$$a_{7} = a_{7-1} - 3 = a_{6} - 3 = -7 - 3 = -10$$

$$a_{7} = a_{7-1} - 3 = a_{6} - 3 = -7 - 3 = -10$$

$$a_{7} = a_{7-1} - 3 = a_{6} - 3 = -7 - 3 = -10$$

$$a_{7} = a_{7-1} - 3 = a_{6} - 3 = -7 - 3 = -10$$

$$a_{7} = a_{7-1} - 3 = a_{6} - 3 = -7 - 3 = -10$$

$$a_{7} = a_{7-1} - 3 = a_{6} - 3 = -10 - 3 = -13$$

$$\therefore \text{ The next five terms are, } a_{3} = -1, a_{4} = -4, a_{5} = -7, a_{6} = -10, a_{7} = -13$$
(iii)
$$a_{1} = -1, a_{n} = \frac{a_{n-1}}{n}, n \ge 2$$
Given, first term  $(a_{1}) = -1$ 

$$n^{th} \text{ term } (a_{n}) = \frac{a_{n-1}}{n}, n \ge 2$$
To find next five terms i.e.,  $a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$  we put  $n = 2, 3, 4, 5, 6$  is an
$$a_{2} = \frac{a_{2-1}}{a_{3}} = \frac{a_{3}}{a_{3}} = \frac{-1}{2}, a_{3} = \frac{a_{1}}{a_{3}} = \frac{-1}{2}, a_{3} = \frac{a_{1}}{a_{3}} = \frac{-1}{2}, a_{4} = \frac{-1}{2}, a_{5} = \frac{-1}{2}, a_{5} = \frac{-1}{2}, a_{7} =$$

 $a_4 = 4 a_{4-1} + 3 = 4 a_3 + 3 = 4(79) + 3 = 319$   $a_5 = 4 a_{5-1} + 3 = 4 a_4 + 3 = 4(319) + 3 = 1279$   $a_6 = 4 a_{6-1} + 3 = 4 a_5 + 3 = 4(1279) + 3 = 5119$   $\therefore$  The required next five terms are,  $a_2 = 19, a_3 = 79, a_4 = 319, a_5 = 1279, a_6 = 5119$ 

## Exercise – 9.2

1.

#### Sol:

We know that if a is the first term and d is the common difference, the arithmetic progression is  $a, a+d, a+2d+a+3d, \dots$ (i) -5, -1, 3, 7, ..... Given arithmetic series is -5, -1, 3, 7..... This is in the form of a, a + d, a + 2d + a + 3d,.....by comparing these two Retentinooks, Hisch  $a = -5, a + d = 1, a + 2d = 3, a + 3d = 7, \dots$ First term (a) = -5By subtracting second and first term, we get (a+d)-(a)=d-1 - (-5) = d4 = dCommon difference (d) = 4. (ii)  $\frac{1}{5}, \frac{3}{5}, \frac{5}{5}, \frac{7}{5}, \dots$ Given arithmetic series is,  $\frac{1}{5}, \frac{3}{5}, \frac{5}{5}, \frac{7}{5}, \dots$ This is in the form of  $\frac{1}{5}, \frac{2}{5}, \frac{5}{5}, \frac{7}{5}, \dots$  $a, a+d, a+2d, a+3d, \dots$ By comparing this two, we get  $a = \frac{1}{5}, a + d = \frac{3}{5}, a + 2d = \frac{5}{5}, a + 3d = \frac{7}{5}$ First term  $\cos = \frac{1}{5}$ 

By subtracting first term from second term, we get

$$d = (a+d) - (a)$$
$$d = \frac{3}{5} - \frac{1}{5}$$
$$d = \frac{2}{5}$$

common difference 
$$(d) = \frac{2}{5}$$

(iii) 0.3, 0.55, 0.80, 1.05,..... Given arithmetic series, 0.3, 0.55, 0.80, 1.05, ..... General arithmetic series  $a, a+d, a+2d, a+3d, \dots$ By comparing, a = 0.3, a + d = 0.55, a + 2d = 0.80, a + 3d = 1.05First term (a) = 0.3. By subtracting first term from second term. We get d = (a+d) - (a)d = 0.55 - 0.3d = 0.25Common difference (d) = 0.25(iv) -1.1, -3.1, -5.1, -7.1, ..... General series is  $a, a+d, a+2d, a+3d, \dots$ By comparing this two, we get a = -1.1, a + d = -3.1, a + 2d = -5.1, a + 3d = -71First term (a) = -1.1Common difference (d) = (a+d) - (a)= -3.1 - (-1.1)Common difference (d) = -2

### 2.

## Sol:

We know that, if first term (a) = a and common difference = d, then the arithmetic series is,  $a, a + d, a + 2d, a + 3d, \dots$ 

(i) a = 4, d = -3Given first term (a) = 4Common difference (d) = -3Then arithmetic progression is,  $a, a+d, a+2d, a+3d, \dots$  $\Rightarrow 4, 4-3, a+2(-3), 4+3(-3), \dots$  $\Rightarrow$  4,1,-2,-5,-8,.... (ii)  $a = -1, d = \frac{1}{2}$ Given, First term (a) = -1Common difference  $(d) = \frac{1}{2}$ Then arithmetic progression is,  $\Rightarrow a, a+d, a+2d, a+3d, \dots$  $\Rightarrow -1, -1 + \frac{1}{2}, -1 + 2\frac{1}{2}, -1 + 3\frac{1}{2}, \dots$  $\Rightarrow -1, \frac{-1}{2}, 0, \frac{1}{2}, \dots$ (iii) a = -1.5, d = -0.5Given First term (a) = -1.5Common difference (d) = -0.5Then arithmetic progression is  $\Rightarrow$   $a, a + d, a + 2d, a + 3d, \dots$  $\Rightarrow -1.5, -1.5 - 0.5, -1.5 + 2(-0.5), -1.5 + 3(-0.5)$  $\Rightarrow$  -1.5, -2, -2.5, -3, .... Then required progression is -1.5, -2, -2.5, -3, .....

3.

Sol:

(i) Given,

Cost of digging a well for the first meter  $(c_1) = Rs.150$ .

Cost rises by Rs.20 for each succeeding meter Then, Cost of digging for the second meter  $(c_2) = Rs.150 + Rs\ 20$  $= Rs \ 170$ Cost of digging for the third meter  $(c_3) = Rs.170 + Rs\ 20$ = Rs 210Thus, costs of digging a well for different lengths are 150,170,190,210,..... Clearly, this series is in  $A \cdot p$ . With first term (a) = 150, common difference (d) = 20(ii) Given Let the initial volume of air in a cylinder be V liters each time  $\frac{3^{th}}{4}$  of air in a remaining i.e.,  $1 - \frac{1}{4}$ First time, the air in cylinder is  $\frac{3}{4}V$ .

Second time, the air in cylinder is  $\frac{3}{4}V$ .

Third time, the air in cylinder is  $\left(\frac{3}{4}\right)^2 V$ .

Therefore, series is V,  $\frac{3}{4}V$ ,

# 4.

Sol:

Given sequence is

$$a_n = 5n - 7$$

 $n^{th}$  term of given sequence  $(a_n) = 5n - 7$ 

 $(n+1)^{th}$  term of given sequence  $(a_n+1)-a_n$ 

$$= (5n-2) - (5n-7)$$
$$= 5$$

$$\therefore d = 5$$

#### Sol:

Given sequence is,  $a_n = 3n^2 - 5.$  $n^{th}$  term of given sequence  $(a_n) = 3n^2 - 5$ .  $(n+1)^{th}$  term of given sequence  $(a_n+1) = 3(n+1)^2 - 5$  $= 3(n^2 + 1^2 + 2n.1) - 5$  $=3n^{2}+6n-2$  $\therefore$  The common difference  $(d) = a_n + 1 - an$  $d = (3n^2 + 6n - 2) - (3n^2 - 5)$  $=3a^{2}+6n-2-3n^{2}+5$ = 6n + 3

## 6.

 $a^{-18},$   $a^{+15}.$   $n^{th} \text{ term is } (a_n) = -4n+15$   $(n+1)^{th} \text{ term is } (a_{n+1}) = -4(n+1)+15$  = -4n-4+15 = -4n-4+15 = -4n+11ommon difference  $(d) = a^{-1}$   $(-4n+11)-(-a^{-1})$  4n-1= -4n + 11 + 4n - 15d = -4Common difference  $(d) = a_{n+1} - an$ =(-4n+11)+(-4n+15)= -4n + 11 + 4n - 15d = -4. Common difference (d) does not depend on 'n' value

 $\therefore$  given sequence is in A.P

$$\Rightarrow 15^{th} \text{ term } a_{15} = -4(15) + 15$$
$$= -60 + 15$$
$$= -45$$
$$a_{15} = -45$$

Sol: (i) 1, -2, -5, -8, ..... Given arithmetic progression is,  $a_1 = 1, a_2 = -2, a_3 = -5, a_4 = -8....$ Common difference  $(d) = a_2 - a_1$ = -2 - 1d = -3To find next four terms  $a_{4}-3 = -17$   $a_{8} = a_{7} + d = -17 - 3 = -20$   $\therefore d = -3, a_{5} = -11, a_{6} = -16, a_{7} = -17, a_{8} = -20$ (ii)  $0, -3, -6, -9, \dots$ Given arithmetic progression is.  $0, -3, -6, a_{4} = -9, \dots$ Common difference  $(d) = a_{2} - a_{1}$  = -3) find next four terms  $= a_{1} + 1$  $a_5 = a_4 + d = -9 - 3 = -12$  $a_6 = a_5 + d = -12 - 3 = -15$  $a_7 = a_6 + d = -15 - 3 = -18$  $a_8 = a_7 + d = -18 - 3 = -21$  $\therefore d = -3, a_5 = -12, a_6 = -15, a_7 = -17, a_8 = -21$  $(iii) - 1, \frac{1}{4}, \frac{3}{2}, \dots$ 

Given arithmetic progression is,

$$-1, \frac{1}{4}, \frac{3}{2}, \dots$$

$$a_{1} = -1, a_{2} = \frac{1}{4}, a_{3} = \frac{3}{2}, \dots$$
Common difference  $(d) = a_{2} - a_{1}$ 

$$= \frac{1}{4} - (-1)$$

$$= \frac{1+4}{4}$$

 $d = \frac{5}{4}$ 

To find next four terms,

$$a_{4} = a_{3} + d = \frac{3}{2} + \frac{5}{4} = \frac{6+4}{4} = \frac{11}{4}$$

$$a_{5} = a_{4} + d = \frac{11}{4} + \frac{5}{4} = \frac{16}{4}$$

$$a_{6} = a_{5} + d = \frac{16}{4} + \frac{5}{4} = \frac{21}{4}$$

$$a_{7} = a_{6} + d = \frac{21}{4} + \frac{5}{4} = \frac{26}{4}$$

$$\therefore d = \frac{5}{4}, a_{4} = \frac{11}{4}, a_{5} = \frac{16}{4}, a_{6} = \frac{21}{4}, a_{7} = \frac{26}{4}.$$
(iv) Given arithmetic progression is,  

$$-1, \frac{-5}{6}, \frac{-2}{3}, \dots,$$

$$a_{1} = -1, a_{2} = \frac{-5}{6}, a_{3} = \frac{-2}{3}, \dots,$$
Common difference  $(d) = a_{2} - a_{1}$ 

$$= \frac{-5}{6} - (-1)$$

$$= \frac{-5+6}{6}$$

$$= \frac{1}{6}$$

To find next four terms,

$$a_{4} = a_{3} + d = \frac{-2}{3} + \frac{1}{6} = \frac{-4+1}{6} = \frac{-2}{6} + \frac{1}{6} = \frac{-1}{2} + \frac{1}{6} = \frac{-4+1}{6} = \frac{-2}{6} + \frac{1}{2} + \frac{1}{6} = \frac{-3+1}{6} = \frac{-2}{6} + \frac{1}{2} + \frac{1}{6} = \frac{-3+1}{6} = \frac{-2}{6} + \frac{1}{2} + \frac{1}{6} = \frac{-2+1}{6} = -\frac{1}{16} + \frac{1}{6} = \frac{-2+1}{6} = -\frac{1}{16} + \frac{1}{6} = 0.$$
  
$$\therefore d = \frac{1}{6}, a_{4} = -\frac{1}{2}, a_{5} = -\frac{1}{3}, a_{6} = -\frac{1}{6}, a_{7} = 0$$

Sol: Given sequence  $(a_n) = a_n + 6n$  $n^{th}$  term  $(a_n) = a + nb$  $(n+1)^{th}$  term  $(a_{n+1}) = a + (n+1)b$ . Common difference (d) =  $a_{n+1} - an$ d = (a + (n+1)b) - (a+nb)= a + b + b - a - xb=*b*  $\therefore$  common difference (d) does not depend on  $n^{th}$  value so, given sequence I sin Ap with netei

$$(d) = b$$

Sol:

9.

(i)  $a_n = 3 + 4n$ Given,  $n^{th}$  term  $a_n = 3 + 4n$  $(n+1)^{th}$  term  $a_{n+1} = 3 + 4(n+1)$ Common difference  $(d) = a_{n+1} - a_n$ =(3+4(n+1))-3+4n= 4. d = 4 does not depend on *n* value so, the given series is in *A*.*p* and the sequence is

 $a_1 = 3 + 4(1) = 3 + 4 = 7$ 

$$a_{2} = a_{1} + d = 7 + 4 = 11; a_{3} = a_{2} + d = 11 + 4 = 15$$
  

$$\Rightarrow 7,11,15,19,......$$
(ii)  $a_{n} = 5 + 2n$   
Given,  $n^{ih}$  term  $(a_{n}) = 5 + 2n$   
 $(n+1)^{ih}$  term  $(a_{n+1}) = 5 + 2(n+1)$   
 $= 7 + 2n$   
Common difference  $(d) = 7 + 2n - 5 - 20$   
 $= 2.$   
 $\because d = 2$  does not depend on n value given sequence is in  $A.p$  and the sequence is  $B_{1}$   
 $a_{1} = 5 + 2.1 = 7$   
 $a_{2} = 7 + 2 = 9, a_{3} = 9 + 2 = 11, a_{4} = 11 + 2 = 13$   
 $\Rightarrow 7,9,11,13,.....$   
(iii)  $a_{n} = 6 - n$   
Given,  $n^{ih}$  term  $a_{n} = 6 - n$   
 $(n+1)^{ih}$  term  $a_{n+1} = 6 - (n+1)$   
 $= 5 - n$   
Common difference  $(d) = a_{n+1} - a_{n}$   
 $= (5-n) - (6-n)$   
 $= -1$   
 $\therefore d = -1$  does not depend on n value given sequence is in  $A.p$  the sequence is  
 $a_{1} = 6 - 1 = 5, a_{2} = 5 - 1 = 4, a_{3} = 4 - 1 = 3, a_{1} = 3 - 1 = 2$   
 $\Rightarrow 5, 4, 3, 2, 1, \dots, \dots$   
(iv)  $a_{n} = 9 - 5n$   
Given,  $n^{ih}$  term  $a_{n+1} = 9 - 5(n+1)$   
 $= 4 - 5n$   
Common difference  $(d) = a_{n+1} - a_{n}$   
 $= (4 - 5n) - (4 - 5n)$   
 $= -5$   
 $\because d = -1$  does not depend on n value given sequence is in  $A.p$  the sequence is  $n = 4 - 5n$   
Common difference  $(d) = a_{n+1} - a_{n}$   
 $= (4 - 5n) - (4 - 5n)$   
 $= -5$ 

$$a_{1} = 9 - 1.1 = 4$$

$$a_{2} = 9 - 5.2 = -1$$

$$a_{3} = 9 - 5.3 = -6$$

$$\Rightarrow 4, -1, -6, -11, \dots$$

Sol:

3, 6, 12, 24, ..... (i)

General arithmetic progression is  $a, a + d, a + 2d, a + 3d, \dots$ 

Common difference (d) = Second term – first term

$$=(d+d)-a=d$$
 (or)

= Third term - second term

$$=(a+2d)-(a+d)=d$$

To check given sequence is in A.p or not we use this condition. First term = 6-3=3Inird term – Second term = 12-6=6This two are not equal so given sequence is not in *A.p*   $0, -4, -8, -12, \dots, \dots$ In the given sequence  $a_1 = 0, a_2 = -4, a_3 = -8, a_4 = -12$ Theck the condition becond term – first term

$$a_1 = 3, a_2 = 6, a_3 = 12, a_4 = 24$$

(ii) 
$$0, -4, -8, -12, \dots$$

$$a_2 - a_1 = a_8 - a_8$$

$$-4 - 0 = -8 - (-4)$$

-4 = +8 + 4

$$-4 = -4$$

Condition is satisfied  $\therefore$  given sequence is in *A*.*p* with common difference

$$(d) = a_2 - a_1 = -4$$

 $\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{8}, \dots$ 

(iii)

In the given sequence

$$a_1 = \frac{1}{2}, a_2 = \frac{1}{4}, a_3 = \frac{1}{6}, a_4 = \frac{1}{8}.$$

Check the condition

$$a_{2}-a_{1} = a_{3} - a_{2}$$

$$\frac{1}{4} - \frac{1}{2} = \frac{1}{6} - \frac{1}{4}$$

$$\frac{1-2}{4} = \frac{4-6}{24}$$

$$\frac{-1}{4} = -\frac{2}{24}$$

$$\frac{-1}{4} \neq -\frac{1}{12}$$
Condition is not satisfied  
 $\therefore$  given sequence not in *A*.*p*
(iv) 12, 2, -8, -18, .......  
In the given sequence  
 $a_{1} = 12, a_{2} = 2, a_{3} = -8, a_{4} = -18$   
Check the condition  
 $a_{2}-a_{1} = a_{3}-a_{2}$   
 $2-12 = -8-2$   
 $-10 = -10$   
 $\therefore$  given sequence is in *A*.*p* with common difference  $d = -10$   
(v) 3, 3, 3, 3, .......  
In the given sequence  
 $a_{1} = 3, a_{2} = 3, a_{1} = 3, a_{4} = 3$   
Check the condition  
 $a_{2}-a_{1} = a_{3}-a_{2}$   
 $3-3 = 3-3$   
 $0 = 0$   
 $\therefore$  given sequence is in *A*.*p* with common difference  $d = 0$   
(vi)  $p, p + 90, p + 80, p + 270, ....$  where  $p = (999)$   
In the given sequence  
 $a_{1} = p, a_{2} = p + 90, a_{3} = p + 180, a_{4} = p + 270$   
Check the condition  
 $a_{2}-a_{1} = a_{3}-a_{2}$   
 $p' + 90 \neq p' = p' + 180 - p' - 90$   
 $90 = 180 - 90$   
 $90 = 90$   
(vii) 1.0, 1.7, 2.4, 3.1...,

In the given sequence  $a_1 = 1.0, a_2 = 1.7, a_3 = 2.4, a_4 = 31$ Check the condition  $a_2 - a_1 = a_3 - a_2$ 1.7 - 1.0 = 2.4 - 1.70.7 = 0.7 $\therefore$  The given sequence is in A.p with d = 0.7-225, -425, -625, -825, ..... (viii) In the given sequence  $a_1 = 225, a_2 = -425, a_3 = -625, a_4 = -825$ Check the condition  $a_2 - a_1 = a_3 - a_2$ -425 + 225 = -625 + 425PORCE MISCH ANTAN -200 = -200 $\therefore$  The given sequence is in A.p with d = -200 $10,10+2^5,10+2^6,10+2^7,\ldots$ (ix) In the given sequence  $a_1 = 10, a_2 = 10 + 2^5, a_3 = 10 + 2^6, a_4 = 10 + 2^7$ Check the condition  $a_2 - a_1 = a_3 - a_2$  $10 + 2^5 - 10 = 10 + 2^6 - 10 - 2^5$  $2^5 \neq 2^6 - 2^5$ .  $\therefore$  The given sequence is not in *A*.*p* Exercise – 9.3

1.

#### Sol:

(i) Given A.p is 1,4,7,10,..... First term (a) = 1Common difference (d) = second term first term = 4-1 = 3. $n^{th}$  term in an A.p = a + (n-1)d

 $10^{th}$  term in an 1+(10-1)3=1+9.3=1+27= 28Given A.p is (ii)  $\sqrt{2}.3\sqrt{2}.5\sqrt{2}...$ First term  $(a) = \sqrt{2}$ Common difference = Second term – First term  $=3\sqrt{2}-\sqrt{2}$  $d = 2\sqrt{2}$  $n^{th}$  term in an  $A \cdot p = a + (n-1)d$  $18^{th}$  term of  $A.p = \sqrt{2} + (18-1)2\sqrt{2}$ A.S. March away  $=\sqrt{2}+17.2\sqrt{2}$  $=\sqrt{2}\left(1+34\right)$  $=35\sqrt{2}$  $\therefore 18^{th}$  term of A.p is  $35\sqrt{2}$ Given A.p is (iii) 13, 8, 3, -2, ..... First term (a) = 13Common difference (d) = Second term first term =8 - 13= -5  $n^{th}$  term of an A.p  $a_n = a + (n-1)d$ =13+(n-1)-5=13-5n+5 $a_n = 18 - 5n$ Given A.p is (iv) -40, -15, 10, 35, ..... First term (a) = -40Common difference (d) = Second term – first term = -15 - (-40)=40 - 15

= 25 $n^{th}$  term of an A.p  $a_n = a + (n-1)d$  $10^{th}$  term of A.p  $a_{10} = -40 + (10 - 1)25$ = -40 + 9.25= -40 + 225=185Given sequence is (v) 117,104,91,78,.... First learn can =117Common difference (d) = Second term – first term =104 - 117= -13Hist away  $n^{th}$  term  $a_n = a + (n-1)d$  $8^{th}$  term  $a_8 = a + (8-1)d$ =117+7(-13)=117 - 91= 26 (vi) Given A.p is 10.0,10.5,11.0,11.5,.... First term (a) = 10.0Common difference (d) = Second term – first term =10.5 - 10.0= 0.5 $n^{th}$  term  $a_n = a + (n-1)d$ 11<sup>th</sup> term  $a_{11} = 10.0 + (11-1)0.5$  $=10.0+10\times0.5$ =10.0+5=15.0Given A.p is (vii)  $\frac{3}{4}, \frac{5}{4}, \frac{7}{4}, \frac{9}{4}, \dots$ First term  $(a) = \frac{3}{4}$ Common difference (d) = Second term – first term

$$= \frac{5}{4} - \frac{3}{4}$$
  
=  $\frac{2}{4}$   
 $n^{th}$  term  $a_n = a + (n-1)d$   
 $9^{th}$  term  $a_9 = a + (9-1)d$   
=  $\frac{3}{4} + 8 \cdot \frac{2}{4}$   
=  $\frac{3}{4} + \frac{16}{4}$   
=  $\frac{19}{4}$ 

Sol:

(ii)

(i)

First term (a) = 3Common difference (d) = Second term – first term = 8-3 = 5  $n^{th}$  term  $(a_n) = a + (n-1)d$ Given  $n^{th}$  term  $a_n = 248$  248 = 3 + (n-1).5 248 = -2 + 5n n = 250  $= \frac{250}{5} = 50$   $y^{th}$  term is 248 $50^{th}$  term is 248. Given A.p is 84,80,76,..... First term (a) = 84Common difference  $(d) = a_2 - a$ = 80 - 84= -4 th (n-1)d

$$n^m$$
 term  $(a_n) = a + (n-1)a$ 

Given  $n^{th}$  term is 0

$$0 = 84 + (n-1) - 4$$

$$+84 = +4(n-1)$$

$$n-1 = \frac{84^{21}}{4} = 21$$

$$n = 21+1 = 22$$

$$22^{nd} \text{ term is 0.}$$
(iii) Given  $A.p = 4,9,14,...,$ 
First term  $(a) = 4$   
Common difference  $(d) = a^2 - a$ 

$$= 9 - 4$$

$$= 5$$

$$n^{n} \text{ term } (a_n) = a + (n-1)d$$
Given  $n^n \text{ term is } 254$ 

$$4 + (n-1)5 = 250$$

$$n-1 = \frac{250}{5} = 50$$

$$n = 51$$

$$\therefore 51^n \text{ term is } 254.$$
(iv) Given  $A.p$ 

$$21,42,63,84,...,$$

$$a = 21,d = a_2 - a$$

$$= 42 - 21$$

$$= 21$$

$$n^n \text{ term } 420$$

$$21 + (n-1)21 = 420$$

$$(n-1)21 = 399$$

$$n-1 = \frac{399}{21} = 19$$

$$n = 20$$

$$\therefore 20^n \text{ term is } 420.$$
(v) Given  $A.p$  is 121,117,113,..., First term  $(a) = 121$ 

Common difference (d) = 117 - 121 = -4  $n^{th}$  term (a) = a + (n-1)dGiven  $n^{th}$  term is negative i.e.,  $a_n < 0$  121 + (n-1) - 4 < 0 121 + 4 - 4n < 0 125 - 4n < 0 4n > 125  $n > \frac{125}{4}$  n > 31.25The integer which comes after 31.25 is 32.  $\therefore 32^{nd}$  term is first negative term

3.

# Sol:

In the given problem, we are given an *A*.*p* and the Value of one of its term

We need to find whether it is a term of the A.p or not so here we will use the formula

$$a_n = a + (n-1)a$$

(i) Here, A.p is 7,10,13,...,  

$$a_n = 68, a = 7$$
 and  $d = 10 - 7 = 3$   
Using the above mentioned formula, we get  
 $68 = 7 + (n-1)3$ 

 $\Rightarrow 68 - 7 = 3n - 3$  $\Rightarrow 31 + 3 = 3n$  $\Rightarrow 64 = 3n$  $\Rightarrow n = \frac{64}{3}$ 

Since, the value of n is a fraction. Thus, 68 is not the team of the given *A.p* 

(ii) Here, A.p is 3,8,13,....

 $a_n = 302, a = 3$ 

Common difference (d) = 8 - 3 = 5 using the above mentioned formula, we get

$$302 = 3 + (n-1)5$$
$$\Rightarrow 302 - 3 = 5n - 5$$

$$\Rightarrow 299 = 5n - 5$$
$$\Rightarrow 5n = 304$$
$$\Rightarrow n = \frac{305}{5}$$

Since, the value of 'n' is a fraction. Thus, 302 is not the term of the given A.p

(iii) Here, *A.p* is 11,8,5,2,......  

$$a_n = -150, a = 1$$
 and  $d = 8 - 11 = -3$   
Thus, using the above mentioned formula, we get  
 $-150 = 11 + (x - 1)(-3)$   
 $\Rightarrow -150 - 11 = -34 + 3$   
 $\Rightarrow -161 - 3 = -34$   
 $\Rightarrow -34 = -164$   
 $\Rightarrow n = \frac{164}{3}$   
Since, the value of n is a fraction. Thus, -150 is not the term of the given *A.p*  
How many terms are there in the AP?  
(i) 7,10,13,.......43  
(ii)  $-1, \frac{-5}{6}, \frac{-2}{3}, \frac{-1}{2}, \dots, \frac{10}{3}$ .  
(iii) 7,13,19,......05  
(iv)  $18,15\frac{1}{2},13,\dots, -47$   
**Sol:**  
(i) 7,10,13,.......43  
From given *A.p*

How many terms are there in the AP? 4.

$$a = -1, d = -\frac{5}{6} + 1, \ a_n = a + (n-1)d$$

$$= \frac{1}{6}$$
Let,  $a_n = \frac{10}{3}$  (last term)
 $-1 + (n-1)\frac{1}{6} = \frac{10}{3}$ 
 $(n-1) \times \frac{1}{6} = \frac{10}{3}$ 
 $(n+1) = \frac{13 \times \beta^2}{\beta} = 26$ 
 $n = 27$ 
 $\therefore 27$  terms are there in given  $A.p$ 
(iii) 7,13,19,......05
From the given  $A.p$ 
 $a = 7, d = 13 - 7 = 6, a_n = a + (n-1)d$ 
Let,  $a_n = 205$  (last term)
 $7 + (n-1)6 = 205$ 
 $(n-1).6 = 198$ 
 $n-1 = 33$ 
 $n = 54$ 
 $\therefore 34$  terms are there in given  $A.p$ 
(iv)  $18,15\frac{1}{2},13,...,47$ 
From the given  $A.p$ ,
 $a = 18, d = 15\frac{1}{2} - 18 = \frac{31}{2} - 18 = 15 \cdot 5 - 18 = -2 \cdot 5$ 
 $a_n = a + (n-1).d$ 
Let  $a_n = -47$  (last term)
 $18 + (n-1), 2.5 = -47$ 
 $12.5(n-1) = +65$ 
 $n-1 = \frac{65}{2\times5} = \frac{65 \times 10}{25} = 26$ 
 $n = 27$ 

 $\therefore$  27 terms are there in given *A*.*p* 

5.

6.

Sol: Given First term (a) = 5Common difference (d) = 3Last term (1) = 80To calculate no of terms in given A.p $a_n = a + (n-1)d$ Let  $a_n = 80$ ,  $80 = 5 + (n-1) \cdot 3$  $75 = (n-1) \cdot 3$  $n-1 = \frac{75}{3} = 25$ *n* = 26  $\therefore$  There are 26 terms. Sol: Given,  $a_6 = 19, a_{17} = 41$  $\Rightarrow a_6 = a + (6-1)d$ 19 = a + 5d $\Rightarrow a_{17} = a + (17 - 1) \cdot d$ 41 = a + 16dSubtract (1) from (2) a + 16d = 41a + 5d = 19 $\overline{0+11d=22}$  $d = \frac{22}{11} = 2$ Substitute d = 2 in (1) 19 = a + 5(2)9 = a $\therefore 40^{th}$  term  $a_{40} = a + (40 - 1) \cdot d$ 

 $=9 + 39 \cdot 2$ =9+78= 87  $\therefore a_{40} = 87$ 

# 7.

Sol: Given  $9^{th}$  term of an A.p  $a_9 = 0, a_n = a + (n-1)d$  $a + (a - 1) \cdot d = 0$ a + 8d = 0a = -8dWe have to prove  $24^{th}$  term is double the  $19^{th}$  term  $a_{29} = 2 \cdot a_{19}$  $a + (29-1)d = 2\left\lceil a + (1a-1).d \right\rceil$ a + 28d = 2[a + 18a]Put a = -8d-8d + 28d = 2[-8d + 18d] $20d = 2 \times 10d$ 20d = 20dHence proved

# 8.

Sol:

Given, 10 times of  $10^{th}$  term is equal to 15 times of  $15^{th}$  term.  $10a_{10} = 15.a_{15}$  $10[a+(10-1)d] = 15[a+(15-1).d](:a_n = a+(n-1)d)$  $10(a+9d) = 15(a+14 \cdot d)$  $a+9d = \frac{15}{10}(a+14d)$  $a - \frac{3}{2}a = \frac{42d}{2} - 9d$  $-\frac{1}{2}a = \frac{24^{12}}{2} \cdot d$ 

$$-a = +24 \cdot d$$
  

$$a = -24 \cdot d$$
  
We have to prove  $25^{th}$  term of  $A.p$  is  $0$   

$$a_{25} = 0$$
  

$$a + (25-1)d = 0$$
  

$$a + 24d = 0$$
  
Put  $a = -24d$   

$$-24 \times d + 24d = 0$$
  

$$0 = 0$$
  
Hence proved.

Sol: Given,  $a_{10} = 41, a_{18} = 73, a_n = a + (n-1) \cdot d$  $\Rightarrow a_{10} = a + (10 - 1) \cdot d$ 41 = a + 9d $\Rightarrow a_{18} = a + (18 - 1)d$ 73 = a + 17dSubtract (1) from (2)(2)(1)a + 17d = 73a+9d = 410 + 8d = 32 $d = \frac{32}{8} = 4$ Substitute d = 4 in (1)  $a + 9 \cdot 4 = 41$ a = 41 - 36*a* = 5  $26^{th}$  term  $a_{26} = a + (26 - 1)d$ =5+25.4= 5 + 100=105 $\therefore 26^{th}$  term  $a_{26} - 105$ .

11.

Sol: Given  $24^{th}$  term is twice the  $10^{th}$  term  $a_{24} = 2 a_{10}$ Let, first term of a square = aCommon difference = d $n^{th}$  term  $a_n = a + (n-1)d$ a + (24-1)d = (a + (10-1).d)2a + 23d = 2(a + 9d)(23-18)d = aa = 5dWe have to prove  $72^{nd}$  term is twice the  $34^{th}$  term  $a_{12} = 2a_{34}$  $a + (12 - 1)d = 2 \left[ a + (34 - 1)d \right]$ a + 71d = 2a + 66dSubstitute a = 5d5d + 71d = 2(5d) + 66d76d = 10d + 66d76d = 76dHence proved. Sol: Given  $(m+1)^{th}$  term is twice the  $(m+1)^{th}$  term. First term = aCommon difference = d $n^{th}$  term  $a_n = a + (n-1).d$  $a_{m+1} = 2 a_n + 1$ 

$$a + (m+1-1) \cdot d = 2(a + (n+1-1) \cdot d)$$
$$a + md = 2(a + nd)$$
$$a = (m-2n)d$$

We have to prove  $(3m+1)^{th}$  term is twice the  $(m+n+1)^{th}$  term  $a_{3m+1} = 2 \cdot a_{m+n+1}$   $a + (3m+1-1) \cdot d = (a + (m+n+1-1) \cdot d)$   $a + 3m \cdot d = 2a + 2(m+n)d$ Substitute  $a = (m-2n) \cdot d$   $(m-2n) \not d + 3m \not d = 2(m-2n) \not d + 2(m+n) \cdot \not d$  4m-2n = 4m-4n+2n 4m-2n = 4m-2nHence proved.

#### 12.

Sol: Given, First sequence is 9,7,5,.....  $a = 9, d = \neq -9 = -2, a_n = a + (n+1)d$   $a_n = 9 + (n-1).-2$ Second sequence is 15,12,9,....  $a = 15, d = 12 - 15 = -3, a_n = a + (n-1)d$   $a_n = 15 + (n-1)-3$ Given an.  $a_n$  are equal 9 - 2(n-1) = 15 - 3(n-1) 3(n-1)-2(n-1)-15 - 9 n-1=6 n=7 $\therefore 7^{th}$  term of two sequence are equal

13.

Sol:

(i) 
$$3,5,7,9,\ldots,2d$$
  
First term  $(a) = 3$   
Common difference  $(d) = 5-3 = 2$ 

```
12^{th} term from the end is can be considered as (1) last term = first term and common
        differnce = d^1 = -d n^{th} term from the end = last term +(n-1)-d
        12^{th} term from end = 201 + (12 - 1)(-2)
        = 201 - 22
        =179
        3,8,13,.....253
(ii)
        First term = a = 3
        Common difference d = 8 - 3 = 5
        Last term (1) = 253
        n^{th} term of a sequence on = a + (n-1) \cdot d
        To find n^{th} term from the end, we put last term (1) as 'a' and common difference as
        -d
                                          hooks, black away
        n^{th} term from the end = last term +(n-1) \cdot -d
        12^{th} term from the end = 253 + (12 - 1) - 5
        = 253 - 55
        =198
        \therefore 12^{th} term from the end = 198
(iii)
        First term a = 1
        Common differnce d = 4 - 1 = 3
       Last term (1) = 88
        n^{th} term a_n = a + (n+1) \cdot d
        n^{th} term from the end = last term +(n-1)\cdot -d
        12^{th} term from the end = 88 + (12 - 1) \cdot -3
        = 88 - 33
        = 55
        \therefore 12^{th} term from the end = 55.
```



Sol:

Given,

 $4^{th}$  term of an A.p is three times the times the first term

 $a_4 = 3. a$ 

 $n^{th}$  term of a sequence  $a_n = a + (n-1) \cdot d$ 

$$a + (4-1) \cdot d = 3a$$
  

$$a + 3d = 3a$$
  

$$3d = 2a$$
  

$$a = \frac{3}{2}d.$$
 .....(1)

Seventh term exceeds twice the third term by 1.

$$a_{7}+1=2.a_{3}$$

$$a+(7-1)\cdot d+1=2(\alpha+\beta-1\cdot d)$$

$$a+6d+1=2a+4d$$

$$a=2d+1$$
......(2)  
By equating (1), (2)  

$$\frac{3}{2}d=2d+1$$

$$\frac{3}{2}d-2d=1$$

$$\frac{3d-4d}{2}=1$$

$$-d=2$$

$$d=-2$$
Put  $d=-2$  in  $a=\frac{3}{2}d$ 

$$=\frac{3}{2}\cdot x$$

$$=-3$$
.: First term  $a=-3$ , common difference  $d=-2$ .  
Sol:  
Given  
 $a_{6}=12, a_{8}=22$ 
 $n^{th}$  term of an A.p  $a_{n}=a+(n-1)d$   
 $a_{6}=a+(n-1)\cdot d=a+(6-1)d=a+5d=12$  .....(1)  
Subtracting (1) from (2)

$$(2) (1) \Rightarrow \frac{a+7d = 22}{0+2d = 12}$$
$$(2) (1) \Rightarrow \frac{a+5d = 12}{0+2d = 10}$$
$$d = 5$$

15.

$$a+5d = 12$$
Put  $d = 5$  in  $a+55 = 12$   
 $a = 12 - 25$   
 $a = -13$ 
Second term  $a_2 = a + (2-1) \cdot d$   
 $= a + d$   
 $= -13 + 5$   
 $a_1 = -8$   
 $n^{th}$  term  $a_n = a + (n-1)d$   
 $= -13 + (n-1) - 5$   
 $a_n = -18 + 5n$   
 $n^{th}$  term  $a_n = a + (n-1)d$   
 $= -13 + (n-1) - 5$   
 $a_n = -18 + 5n$   
 $\therefore a_2 = -8, a_n = -18 + 5n$ 
Sol:

## Sol:

We observe that 12 is the first two-digit number divisible by 3 and 99 is the last two digit number divisible by 3. Thus, the sequence is

This sequence is in A.p with

First term (9) = 12

Common difference (d) = 15 - 12 = 3

$$n^{th}$$
 term  $a_n = 99$ 

$$n^{th}$$
 term of an  $A.p(a_n) = a + (n-1) \cdot d$ 

3

$$99 = 12 + (n-1)$$

$$99 - 12 = n - 1 \cdot 3$$

=1

$$\frac{\delta 7}{3} = n$$

$$n = 30$$

 $\therefore$  30 term are there in the sequence

## 17.

18.

Sol: Given No. of terms = n = 60First term (a) = 7Last term  $a_{10} = 125$  $\left( \therefore a_n = a + (n-1)d \right)$  $a_{60} = a + (60 - 1) \cdot d$  $125 = 7 + 59 \cdot d$ 118 = 59d $d = \frac{118}{59} = 2$  $52^{nd}$  term  $a_{32} = a + (32 - 1)d$ =7 + 31.2=7+62= 69 Sol: Given  $a_4 + a_8 = 24$  $a_6 + a_{10} = 34$  $\Rightarrow a + (4-1)d + a + (18-1)d = 24$ 

$$2a + 10d = 24$$
  

$$a + 5d = 12$$
  

$$\Rightarrow a_{6} + a_{10} = 34$$
  

$$a + (6-1)d + a + (10-1)d = 34$$
  

$$2a + 14d = 34$$
  

$$a + 7d = 17$$
  
Subtract (1) from (2)  

$$a + 7d = 17$$
  

$$\frac{a + 5d = 12}{2d = 5}$$
  

$$d = \frac{5}{2}$$

Put 
$$d = \frac{5}{2}$$
 in  $a + 5d = 12$   
 $a = 12 - 5 \cdot \frac{5}{2}$   
 $a = \frac{24 - 25}{2} = \frac{-1}{2}$   
 $\therefore a = -\frac{1}{2}, d = \frac{b}{2}$ 

Sol: Given,  $a_{30} - a_{20} = a + (30 - 1)d - (a + (20 - 1)d)(\therefore a_n = a + (n - 1)d)$ Neterithooks, Markanaly = a + 29d - a - 19d=10d(i) -9, -14, -19, -24, ..... Common difference (d) = second tern - first term= -14 - (-9)= -14 + 9d = 5Then  $a_{30} - a_{20} = 10d$ =10.5 $a_{30} - a_{20} = 50$ (ii) a, a+d, a+2d, a+3dFirst term (a) = aCommon difference (d) = d $a_{30} - a_{20} = a + (30 - 1)d - (a + (20 - 1)d)$ = a + 29d - 0 - 19d $a_{30} - a_{20} = 10d$ 

20.

Sol:

Given,  

$$a_{30} - a_{20} = a + (30 - 1)d - (a + (20 - 1)d)(\therefore a_n = a + (n - 1)d)$$
  
 $= a + 29d - a - 19d$ 

= 10d  
(i) -9, -14, -19, -24, ......  
Common difference (d) = second term – first term  
= -14 - (-9)  
= -14 + 9  
d = 5  
Then 
$$a_{30} - a_{20} = 10d$$
  
= 10.5  
 $a_{30} - a_{20} = 50$   
(ii)  $a, a + d, a + 2d, a + 3d, ...$   
First term  $(a) = a$   
 $a_{30} - a_{20} = a + (30 - 1)d - (a + (20 - 1)d))$   
=  $a + 29d - a - 19d$   
 $a_{30} - a_{20} = 10d$ 

# Sol:

General arithmetic progression  $a, a + d, a + 2d, \dots$  $a_b - a_k = a + (n-1)d - (a + (k-1)d)(\therefore a_n = a + (n-1)d)$ = a + (n-1)d - 2a + (k-1)d $a_n - a_k = (n - k)d$ .....(1) Given (i)  $11^{th}$  term  $a_n = 5$  $13^{th}$  term  $a_{13} = 79$ By using (1) put n = 13, k = 11 $a_n - a_k = (n - k) \cdot d$  $79-5=(13-11)\cdot d$  $74 = 2 \times d$  $d = \frac{74}{2} = 37$ Given (ii)  $a_{10} - a_5 = 200$ 

From (1) 
$$a_{10} - a_5 = (10 - 5)d$$
  
 $200 = 5 \cdot d$   
 $d = \frac{200}{5} = 40 \Rightarrow d = 40$   
(iii) Given  
 $a_{20} \neq 10 = a_{18}$   
 $a_{20} - a_{18} = 10$   
By (1)  $a_n - a_k = (n - k) \cdot d$   
 $a_{20} - a_{18} = (20 - 18) \cdot d$   
 $10 = 2 \cdot d$   
 $d = \frac{10}{2} = 5$   
 $\therefore d = 5$ 

# Sol:

Sol:  
(i) 25,50,75,100......: 
$$c = 1000$$
  
First term  $(a) = 25$   
Common difference  $(d) = 50 - 25 = 25$   
 $n^{th}$  term  $a_n = a + (n-1) \times d$   
Given,  $a_n = 1000$   
 $1000 = 25 + (n-1) \cdot 25$   
 $975 = (n-1) \times 25$   
 $n-1 = \frac{975}{25} = 39$   
 $n = 40$   
(ii) Given sequence  $-1, -3, -5, -7, \dots : x = -151$   
First term  $(a) = -1$   
Common difference  $(d) = -3 - (-1) = -3 + 1 = -2$   
 $n^{th}$  term  $a_n = a + (n-1)d$   
Given  $a_n = -151$ ,

$$-151 = -1 + (n-1) - 2$$
  

$$-150 = 1(n+1)2$$
  

$$n+1 = \frac{150}{2} = 75$$
  

$$n = 74$$
  
(iii) Given sequence is  

$$5\frac{1}{2}, 11, 16\frac{1}{2}, 22, \dots x = 550$$
  
First term (a)  $= 5\frac{1}{2} = \frac{11}{2}$   

$$= \frac{22 - 11}{2}$$
  

$$= \frac{11}{2}$$
  

$$n^{th} \text{ term } a_n = a + (n-1)d$$
  

$$550 = \frac{11}{2} + (n-1) \cdot \frac{11}{2}$$
  

$$550 = \frac{11}{2} [1 + n - 1]$$
  

$$n = 550 \times \frac{2}{11}$$
  

$$n = 550 \times \frac{2}{11}$$
  

$$n = 100$$
  
Given sequence is  

$$1, \frac{21}{11}, \frac{31}{11}, \frac{41}{11}, \dots, x = \frac{141}{11}$$
  
First term (a) = 1  
Common difference (d) = \frac{21}{11} - 1  

$$= \frac{21 - 11}{11}$$
  

$$= \frac{10}{11}$$
  

$$n^{th} \text{ term } a_n = a + (n-1) \times d$$
  

$$\frac{171}{11} = 1 + (n-1) \cdot \frac{10}{11}$$
  

$$\frac{171}{11} - 1 = (n-1)\frac{10}{11}$$

$$\frac{171-11}{11} = (n-1)\frac{10}{11}$$
$$\frac{160}{11} = (n-1).\frac{10}{11}$$
$$n-1 = \frac{160}{11} \times \frac{11}{10}$$
$$n = 17$$

Sol:

First term of a sequence is a Last term =1 Total no. of terms = n Common difference = d  $m^{th}$  term from the beginning  $a_m = a + (n-1) \cdot d$   $m^{th}$  term from the end = last term + (n-1) - d  $a_n - m + 1 = 1 - (n-1) \times d$   $\Rightarrow a_m + a_n - m + 1 = a + (n-1)d + (l - (n-1)d)$  = a + (n-1)d + l - (n-1)d  $a_m + a_n - m + 1 = a + l$ Hence proved Sol: Given,  $a_3 = 16$  $a + (3-1)^{t}$ ,

# 24.

Sol: Given,  $a_3 = 16$  a + (3-1)d = 16 a + 2d = 16. ....(1) And  $a_7 - 12 = a_5$  a + (7-1)d - 12 = a + (5-1)d ( $\therefore a_n = a + (n-1)d$ ) a + 6d - 12 = a + 4d 2d = +12  $d = +\frac{12}{2} = +6$ Put d = -6 in (1) a + 2(+6) = 16 a+12 = 6 a = 284Then the sequence is  $a, a+d, a+2d, a+3d, \dots$  $\Rightarrow 28, 4, 10, 16, 22, \dots$ 

# 25.

Sol: Given, a + = 32a + (7 - 1)d = 32a + 6d = 32.....(1) And  $a_{13} = 62$ a + (13 - 1)d = 62police linch away a + 12d = 62.....(2) Subtract (1) from (2)a + 12d = 62 $(2) - (1) \Rightarrow \frac{a+6d = 32}{0+6d = 32}$  $d = \frac{30}{6} = 5$ Put d = 5 in a + 6d = 32 $a + 6 \cdot 5 = 32$ a = 2Then the sequence is a, a+d, a+2d, a+3d,  $\Rightarrow$  2, 7, 12, 17, .....

#### 26.

Sol: Given *A.p* is 3,10,17,..... First term (a) = 3, Common difference (d) = 10-3 = 7Let,  $n^{th}$  term of *A.p* will be 84 more than  $13^{th}$  term  $a_n = 84 + a_{13}$  á + (n-1)d = á + (13-1)d + 84 (n-1)7 = 12.7 + 84 $(n-1) \cdot 7 = 168$ 

$$n-1 = \frac{168}{7} = 24$$
  
 $n = 25$ 

Hence  $25^{th}$  term of given A.p is 84 more than  $13^{th}$  term

# 27.

Sol:

Let the two A.p is be  $a_1, a_2, a_3, \dots$  and  $b_1, b_2, b_3, \dots$ 

 $a_n = a_1 + (n-1)d$  and  $b_n = b_1 + (n-1)\cdot d$ 

Since common difference of two equations is same given difference between  $100^{th}$  terms is 100

$$a_{100} - b_{100} = 100$$
  

$$a_{1} + (9\cancel{p})d - b_{1} - 99d = 100$$
  

$$a_{1} - b_{1} = 100$$
 .....(1)  
Difference between.  $1000^{th}$  terms is  

$$a_{1000} - b_{1000} = a_{1} + (1000 - 1)d - (b_{1} + (1000 - 1)d)$$
  

$$= a_{1} + 9\cancel{p}9d - b_{1} - 9\cancel{p}9d$$
  

$$= a_{1} - b_{1}$$
  
= 100 (from (1))  
∴ Hence difference between  $1000^{th}$  terms of two *A.p* is 100.

:. Hence difference between  $1000^{th}$  terms of two *A.p* is 100. Sol: Given two *A*  $n^{\frac{1}{2}}$ 

# 28.

Sol: Given two A.p is are 63,65,67...... and 3,10,.... First term of sequence 1 is  $a_1 = 63$ Common difference  $d_1 = 65 - 63$  = 2.  $n^{th}$  term  $(a_n) = a_1 + (n-1)d$  = 63 + (n-1)dFirst term of sequence 2 is  $b_1 = 3$ . Common difference  $d_2 = 10 - 3$  = 7 $n^{th}$  term  $(b_n) = b_1 + (n-1)d_2$ 

$$= 3 + (n-1) \cdot 7$$
  
Let  $n^{th}$  terms of two sequence is equal  
 $63 + (n-1)2 = 3 + (n-1) \times 7$   
 $60 = 5(n-1)$   
 $n-1 = \frac{60}{5} = 12$   
 $n = 13$   
∴ 13<sup>th</sup> term of both the sequence are equal.

#### Sol:

Multiple of 4 after 10 is 12 and multiple of 4 before 250 is  $\frac{250}{4}$  remainder is 2, so,

250-2=248 248 is the last multiple of 4 before 250. The sequence is 12,......, 248 With first term (a) = 12Last term (1) = 248Common difference (d) = 4  $n^{th}$  term  $a_n = a + (n-1) \cdot d$ Here,  $n^{th}$  term  $a_n = 248$   $248 = 12 + (n-1) \times 4$   $236 = (n-1) \times 4$   $n-1 = \frac{236}{4} = 59$ n = 60

 $\therefore$  There are 60 terms between 10 and 250 which are multiples of 4

30.

# Sol:

First term (a) = 105Last term (1) = 994Common difference (d) = -7Let there are n numbers in the sequence  $a_n = 994$ a + (n-1)d = 994a + (n-1)d = 994105 + (n-1)7 = 994 $(n-1) \cdot 7 = 889$  $n-1=\frac{889}{7}=127$ n = 128

 $\therefore$  there are 128 numbers between 105, 994 which are divisible by 7

31.

# Sol: Given sequence 8,14,20,26,....

m m heithing Let  $n^{th}$  term is 72 more than its  $41^{st}$  term  $a_n = a_{41} + 72$ For the given sequence a = 8, d = 14 - 8 = 6a + (n-1)d = 8 + (a+1)6 + 72 $8 + (n-1)6 = 8 + (90) \cdot 6 + 72$ (n-1)6 = 312 $n-1=\frac{312}{6}=52$ n = 53 $\therefore 53^{rd}$  term is 72 more than  $41^{st}$  term

#### 32.

Sol: Given *A.p* is 9,12,15,..... For this a = 9, d = 12 - 9 = 3

Let 
$$n^{th}$$
 term is 39 more than its  $36^{th}$  term  
 $a_n = 39 + a_{36}$   
 $a \neq (n-1)3 = 39 + 9 \neq (36-1) \cdot 3$  ( $\therefore a_n = a + (n-1)d$ )  
 $(n-1)3 = 39 + 35 \cdot 3$   
 $(n-1) \times 3 = 144$   
 $n-1 = \frac{144}{3} = 48$   
 $n = 49$   
 $\therefore 49^{th}$  term is 39 more than its  $36^{th}$  term

Sol: Given *A.p* is 7,10,13,......184 a = 7, d = 10 - 7 = 3, l = 184  $n^{th}$  term from the end = l + (n-1) - d  $8^{th}$  term from the end = 184 + (8-1) - 3 = 184 - 21 = 163  $\therefore 8^{th}$  term from the end -163Sol: Given *A.p* is 8,10,12,......126  $a = 8, d = 10 - 8 - 2^{-1}$  $x^{th}$ 

# 34.

Sol: Given *A.p* is 8,10,12,.....126 a = 8, d = 10 - 8 = 2, l = 126  $n^{th}$  term from the end = l + (n-1) - d  $10^{th}$  term from the end = 126 + (10-1) - 2 = 126 - 18 = 108∴  $10^{th}$  term from the end = 108

# 35.

Sol: Given,  $a_4 + a_8 = 24$   $(a + (4-1)d) + (a + (8-1)d) = 24(\therefore a_n = a + (n-1)d)$ 2a + 10d = 24

Sol: Given *A.p* is 3,15,27,39,...... Let  $n^{th}$  term is 120 more than  $21^{st}$  term Then  $a_n = 120 + a_{21}$ For the given sequence a = 3, d = 15 - 3 = 12  $a \neq + (n-1)d = 120 + a \neq + (21-1)d$  (n-1)12 = 120 + 20(2) (n-1)12 = 360  $(n-1) = \frac{360}{12} = 30$ n = 31

 $\therefore$  31<sup>st</sup> term is 120 more than 21<sup>st</sup> term

37.

Sol:

Given

 $17^{th}$  term of an A.p is 5 more than twice its  $8^{th}$  term  $a_{-} = 5 + 2a_{-}$ 

$$a_{17} = 5 + 2a_8$$
  

$$a + (17 - 1)d = 5 + 2(a + (8 - 1) \cdot d)$$
  

$$a + 16d = 5 + 2a + 14d$$

Sol:

Given,

Sum of three terms of on A.P is 21.

**•** •

Product of first and the third term exceeds the second term by 6.

Let, the three numbers be a-d, a, a+d, with common difference d: then,

$$(a - d) + a + (a + d) = 21$$
  
 $3a = 21$   
 $a = \frac{21}{3} = 7$   
and  $(a - d) (a + d) = a + 6$   
 $a^2 - d^2 = a + 6$   
Put  $a = 7 \implies 7^2 - d^2 = 7 + 6$   
 $49 - 13 = d^2$ 

 $d = \pm 6$  $\therefore$  The three terms are a – d, a, a + d, i.e., 1, 7, 13.

# 2.

# Sol:

Let, the three numbers are a - d, a, a + d. Given, (a - d) + a + (a + d) = 273a = 27 $a = \frac{27}{3} = 9$ and, (a - d)(a)(a + d) = 648 $(a^2 - d^2)(a) = 648$ Put a = 9, then  $(9^2 - d^2) 9 = 648$  $81 - d^2 = \frac{648}{9} = 72$  $d^2 = 81 - 72$  $d^2 = 9$ d = 3 $\therefore$  The three terms are a – d, a, a + d i.e. 6, 9, 12.

# 3.

# Sol:

Let, the four numbers be a - 3d, a - d, a + d, a + 3d, with common difference 2d. Given, sum is 50. (a-3d) + (a-d) + (a+d) + (a+3d) = 504a = 50a = 12.5 greater number is 4 time the least (a + 3d) = 4(a - 3d)a + 3d = 4a - 12d15d = 3aPut a = 12.5  $d = \frac{3}{15} \times 12.5$ d = 2.5: The four numbers are a - 3d, a - d, a + 3d i.e., 12.5 - 3(2.5), 12.5 - 2.5, 12.5 + 2.5, 12.5+3(2.5) $\Rightarrow$  5, 10, 15, 20

# Sol:

A quadrilateral has four angles. Given, four angles are in A.P with common difference 10. Let, the four angles be, a - 3d, a - d, a + d, a + 3d with common difference = 2d. 2d - 10

$$d = \frac{10}{2} = 5$$
  
In a quadrilateral, sum of all angles = 360°  
(a - 3d) + (a - d) + (a + d) + (a + 3d) = 360  
4a = 360  
a = 360/4 = 90°  
∴ The angles are a - 3d, a - d, a + d, a + 3d with a = 90, d = 5  
i.e. 90 - 3(5), 90 - 5, 90 + 3(5)  
⇒ 75°, 85°, 95°, 105°.

#### 5.

Sol: 2, 4, 6, or 6, 4, 2.

# 6.

HCs Hisch away Sol: Given, 8x + 4, 6x - 2, 2x + 7 are are A.P. If the numbers a, b, c are in A.P. then condition is 2b = a + c. Then, 2(6x - 2) = 8x + 4 + 2x + 7ITTETE 12x - 4 = 10 + 112x = 15  $x = \frac{15}{2}$ 

# 7.

Sol: Given numbers x + 1, 3x, 4x + 2 are in AP If a, b, c are in AP then 2b = a + cThen 2(3x) = x + 1 + 4x + 26x = 5x + 3x = 3

# Sol:

We have to show, (a - b)2, (a2 + b2) and (a + b)2 are in AP. If they are in AP. Then they have to satisfy the condition 2b = a + c $2(a^2 + b^2) = (a - b)^2 + (a + b)^2$  $2a^2 + 2b^2 = a^2 + 2ab + b^2 + a^2 + 2ab + b^2$  $2a^2 + 2b^2 = 2a^2 + 2b^2$ . They satisfy the condition means they are in AP.

# Exercise – 9.5

# 1.

## Sol:

In an A.P let first term = a, common difference = d, and there are n terms. Then, sum of n terms is,  $S_n = \frac{n}{2} \{2a + (n-1)d\}$ (i) Given progression is, 50, 46, 42. .... to 10 terms

$$S_{n} = \frac{n}{2} \{2a + (n - 1)d\}$$
(i) Given progression is,  
50, 46, 42, .....to 10 term.  
First term (a) = 50  
Common difference (d) = 46 - 50 = -4  
n<sup>th</sup> term = 10  
Then  $S_{10} = \frac{10}{2} \{2.50 + (10 - 1) - 4\}$   
= 5{100 - 9.4}  
= 5{100 - 36}  
= 5 × 64  
 $\therefore S_{10} = 320$   
(ii) Given progression is,  
1, 3, 5, 7, .....to 12 terms  
First term difference (d) = 3 - 1 = 2  
n<sup>th</sup> term = 12  
Sum of n<sup>th</sup> terms  $S_{12} = \frac{12}{2} \times \{2.1 + (12 - 1).2\}$   
= 6 × {2 + 22} = 6.24  
 $\therefore S_{12} = 144$ .  
(iii) Given expression is  
3,  $\frac{9}{2}$ , 6,  $\frac{15}{2}$ , ...... to 25 terms  
First term (a) = 3

Common difference (d) 
$$= \frac{9}{2} - 3 = \frac{3}{2}$$
  
Sum of n<sup>th</sup> terms  $S_n$ , given  $n = 25$   
 $S_{25} = \frac{\pi}{2} (2a + (n - 1).d)$   
 $S_{25} = \frac{25}{2} (6 + 24, \frac{3}{2})$   
 $= \frac{25}{2} (6 + 24, \frac{3}{2})$   
 $= \frac{25}{2} (6 + 36)$   
 $= \frac{25}{2} (42)$   
 $\therefore S_{25} = 525$   
(iv) Given expression is,  
41, 36, 31, ..... to 12 terms.  
First term (a) = 41  
Common difference (d) = 36 - 41 = -5  
Sum of a<sup>th</sup> terms  $S_n$  given  $n = 12$   
 $S_{12} = \frac{\pi}{2} (2a(n - 1).d)$   
 $= \frac{12}{6} (2.41 + (12 - 1).-5)$   
 $= 6(82 + 11.(-5))$   
 $= 6(82 + 11.(-5))$   
 $= 6(27)$   
 $= 162$   
 $\therefore S_{12} = 162.$   
(v)  $a + b, a - 3b, ..... to 22 terms$   
First term (a)  $= a + b$   
Common difference (d)  $= a - b - a - b = -2b$   
Sum of n<sup>th</sup> terms  $S_n = \frac{\pi}{2} [2a(n - 1).d]$   
Here  $n = 22$   
 $S_{22} = \frac{22}{2} [2.(a + b) + (22 - 1). -2b]$   
 $= 111 (2a - 20b)$   
 $= 22a - 440b$   
 $\therefore S_{12} = 22a - 440b$   
(vi)  $(x - y)^2, (x^2 + y^2), (x + y)^2, ...... to n terms$   
First term (a)  $= (x - y)^2$   
Common difference (d)  $= x^2 + y^2 - (x - y)^2$   
 $= x^2 + y^2 - (x^2 + y^2 - 2xy)$   
 $= x^2 + y^2 - (x^2 + y^2 - 2xy)$   
 $= x^2 + y^2 - (x^2 + y^2 - 2xy)$ 

Sum of n<sup>th</sup> terms 
$$S_n = \frac{n}{2} \{2a(n-1).d\}$$
  
 $= \frac{n}{2} \{2(x-y)^2 + (n-1).2xy\}$   
 $= n\{(x-y)^2 + (n-1).xy\}$   
 $\therefore S_n = n\{(x-y)^2 + (n-1).xy\}$   
 $\therefore S_n = n\{(x-y)^2 + (n-1).xy\}$   
(vii)  $\frac{x-y}{x+y}, \frac{3x-2y}{x+y}, \frac{5x-3y}{x+y}, \dots$  to n terms  
First term  $(a) = \frac{x-y}{x+y}$   
Common difference  $(d) = \frac{3x-2y}{x+y} - \frac{x-y}{x+y}$   
 $= \frac{3x-2y-x+y}{x+y}$   
 $= \frac{2x-y}{x+y}$   
Sum of n terms  $S_n = \frac{n}{2} \{2a + (n-1).d\}$   
 $= \frac{n}{2} \{2, \frac{x-y}{x+y} + (n-1), \frac{2x-y}{x+y}\}$   
 $= \frac{n}{2(x+y)} \{2(x-y) + (n-1)(2x-y)\}$   
 $= \frac{n}{2(x+y)} \{2(x-2y+2nx-ny-2x+y\}$   
 $= \frac{n}{2(x+y)} \{n(2x-y)-y\}$   
 $\therefore S_n = \frac{n}{2(x+y)} \{n(2x-y)-y\}$   
(viii) Given expression  $-26, -24, -22, \dots$ ... To 36 terms  
First term  $(a) = -26$   
Common difference  $(d) = -24 - (-26) = -24 + 26 = 2$   
Sum of n terms  $S_n = \frac{n}{26} \{2a + (n-1)d\}$   
Sum of n terms  $S_n = \frac{n}{26} \{2a - 26 + (36 - 1)2\}$   
 $= 18[-52 + 70]$   
 $= 18.18$   
 $= 324$   
 $\therefore S_n = 324$ 

Sol:

Given AP is 5, 2, -1, -4, -7, ....  

$$a = 5, d = 2 - 5 = -3$$
  
 $S_n = \frac{n}{2} \{2a + (n - 1)d\}$   
 $= \frac{n}{2} \{2.5 + (n - 1) - 3\}$   
 $= \frac{n}{2} \{10 - 3(n - 1)\}$ 

$$= \frac{n}{2} \{ 13 - 3n \}$$
  
:  $S_n = \frac{n}{2} (13 - 3n)$ 

Sol: Given nth term  $a_n = 5 - 6n$ Put n = 1,  $a_1 = 5 - 6.1 = -1$ We know, first term  $(a_1) = -1$ Last term  $(a_n) = 5 - 6n = 1$ Then  $S_n = \frac{n}{2}(-1 + 5 - 6n)$  $= \frac{n}{2}(4 - 6n) = \frac{n}{2}(2 - 3n)$ 

## 4.

Sol: Given AP is 25, 22, 19, ..... First term (a) = 25, d = 22 - 25 = -3. Given,  $S_n = \frac{n}{2}(2a + (n - 1)d)$   $116 = \frac{n}{2}(2 \times 25 + (n - 1) - 3)$  232 = n(50 - 3(n - 1)) 232 = n(53 - 3n)  $232 = 53n - 3n^2$   $3n^2 - 53n + 232 = 0$  (3n - 29) (n - 8) = 0  $\therefore n = 8$   $\Rightarrow a_8 = 25 + (8 - 1) - 3$   $\therefore n = 8, a_8 = 4$ = 25 - 21 = 4

#### 5.

#### Sol:

(i) Given sequence, 18, 16, 14, ... a = 18, d = 16 - 18 = -2.Let, sum of n terms in the sequence is zero  $S_n = 0$   $\frac{n}{2}(2a + (n - 1)d) = 0$   $\frac{n}{2}(2.18 + (n - 1) - 2) = 0$ n(18 - (n - 1)) = 0

n(19 - n) = 0n = 0 or n = 19: n = 0 is not possible. Therefore, sum of 19 numbers in the sequence is zero. (ii) Given, a = -14, a = 5 = 2a + (5-1)d = 2-14 + 4d = 2 $4d = 16 \implies d = 4$ Sequence is -14, -10, -6, -2, 2, ..... Given  $S_n = 40$  $40 = \frac{n}{2} \{ 2(-14) + (n-1)4 \}$ 80 = n(-28 + 4n - 4)80 = n(-32 + 4n)4(20) = 4n(-8 + n) $n^2 - 8n - 20 = 0$ (n-10)(n+2) = 0numbe. n = 10 or n = -2∴ Sum of 10 numbers is 40 (Since -2 is not a natural number) Given AP 9, 17, 25, ..... (iii)  $a = 9, d = 17 - 9 = 8, and S_n = 636$  $636 = \frac{n}{2}(2.9 + (n-1)8)$ 1272 = n(18 - 8 + 8n)1272 = n(10 + 8n) $2 \times 636 = 2n(5 + 4n)$  $636 = 5n + 4n^2$  $4n^2 + 5n - 636 = 0$ (4n + 53)(n - 12) = 0 $\therefore$  n = 12 (Since n  $\frac{-53}{4}$  is not a natural number) Therefore, value of n is 12. Given AP, 63, 60, 57, ..... (iv) a =63, d =  $60 - 63 = -3 S_n = 693$  $S_n = \frac{n}{2}(2a + (n-1)d)$  $693 = \frac{n}{2}(2.63 + (n-1) - 3)$ 1386 = n(126 - 3n + 3)

1386 = (129 - 3n)n

 $3n^{2} - 129n + 1386 = 0$  $n^{2} - 43n + 462 = 0$ n = 21, 22

: Sum of 21 or 22 term is 693

#### 6.

Sol: Given, a = 17, l = 350, d = 9  $l = a_n = a + (n - 1)d$  350 = 17 + (n - 1)9 333 = (n - 1)9  $n - 1 = \frac{333}{9} = 37$  n = 38  $\therefore 38$  terms are there  $S_n = \frac{n}{2} \{a + l\}$   $= \frac{38}{2} \{17 + 350\}$  = 19.367 $\therefore S_n = 6973$ 

#### 7.

```
1)d
....,(ii)
Sol:
Given, a_3 = 7 and 3a_3 + 2 = a_7
a_7 = 3.7 + 2
a_7 = 21 + 2 = 23
\therefore a_n = a + (n-1)d
a_3 = a(3-1)d and a_7 = a + (7-1)d
                       23 = a + 6d
7 = a + 2d \dots (i)
Subtract (i) from (ii)
(ii) - (i) \Rightarrow
                        a + 6d = 23
                        a + 2d = 7
                           4d = 16
                             d = 4
Put d = 4 in (i) \implies 7 = a + 2.4
                   a = 7 - 8 = -1
Given to find sum of first 20 terms.
S_{20} = \frac{20}{2} \{-2 + (10 - 1)4\}
    =10(-2+76)
\therefore S_{20} = 740
```

Sol: Given  $a = 2, 1 = 50, S_n = 442$   $S_n = \frac{n}{2}(a + 1)$   $442 = \frac{n}{2}(2 + 50)$   $442 = \frac{n}{2} \cdot 52$   $\therefore n = \frac{442}{26} = 17$ Given,  $a_n = 1 = 50$  50 = 2 + (17 - 1) d  $48 = 16 \times d$   $d = \frac{48}{16} = 3$  $\therefore d = 3$ 

#### 9.

POHS HINCH 2MAN Sol: Given,  $a_{12} = -13$ ,  $a + a_2 + a_3 + a_4 = 24$  $S_4 = \frac{4}{2}(2a + 3d) = 24$  $2a + 3d = \frac{24}{2} = 12 \dots (i)$  $\Rightarrow$  a + (12 - 1)d = -13  $a + 11d = -13 \dots (ii)$ Subtract (i) from (ii)  $\times 2$ 2a + 22d = -282a + 3d = 12 $2 \times (ii) - (i) \Rightarrow$ 198d = -38  $\frac{38}{19} = -2$ put d = -2 in (ii) a + 11(-2) = -13a = -13 + 22a = 9 Given to find sum of first 10 terms.  $S_{10} = \frac{10}{2} \{ 2(a) + (10 - 1) - 2 \}$ = 5(18 - 18)= 0 $\therefore S_{10} = 0$ 

```
Sol:

Given, d = 22, a_{22} = 149

a + (22 - 1) d = 149

a = -313

Given, to find S_{22} = \frac{22}{2} [2a + (22 - 1)d]

= 11[2(-313) + 21.22]

= 11[-626 + 462]

= 11 - 164

= -1804

\therefore S_{22} = -1804
```

# 11.

#### Sol:

The numbers between 1 and 100 which are divisible by 3 are 3, 6, 9, ....99. In this sequence, a = 3, d = 3,  $a_n = 99$  99 = a + (n - 1)d 99 = 3 + (n - 1)3 99 = 3[1 + n - 1]  $n = \frac{99}{3} = 33$   $\therefore$  There are 33 numbers in the given sequence  $S_{33} = \frac{33}{2}(2.3 + (33 - 1)3) (\therefore S_n = \frac{n}{2}(2a + (n - 1)d))$   $= \frac{33}{2}(6 + 96)$   $= \frac{33}{2} \times 102$  = 1683 $\therefore$  Sum of all natural numbers between 1 and 100, which are divisible by 3 is 1683.

#### 12.

#### Sol:

The sequence is, 1, 3, 5, ....n. In this first term (a) = 1, common difference (d) = 2  $S_n = \frac{n}{2}(2a + (n - 1)d)$   $= \frac{n}{2}(2.1 + (n - 1)2)$   $= \frac{n}{2} \times 2(1 + n - 1)$  $= n^2$ .

: Sum of first n odd natural numbers is  $n^2$ .

#### Sol:

Odd numbers between 0 and 50 are 1, 3, 5, ...., 49 (i) In this a = 1, d = 2,  $l = 49 = a_n$ 49 = 1 + (n-1)2 (:  $a_n = a + (n-1)d$ ) 48 = (n-1)2 $n-1=\frac{48}{2}=24$ n = 25.  $\therefore$  There are 25 terms  $S_{25} = \frac{25}{2}(1+49)$   $\left(:: S_n = \frac{n}{2}(a+1)\right)$  $=\frac{25}{2} \times 50 = 625$  $\therefore$  Sum of all odd numbers between 0 and 50 is 625. - Hisch away Odd numbers between 100 and 200 are 101, 103, .... 199 (ii) In this a = 101, d = 2,  $l = a_n = 199$ 199 = 101 + (n - 1)2 $n-1=\frac{98}{2}=49$ n = 50  $\therefore$  There are 50 terms.  $S_{50} = \frac{50}{2}(101 + 199)$  $(: S_n$  $=\frac{n}{2}(a+1)$  $=\frac{50}{2} \times 300$ = 7500 $\therefore$  Sum of all odd numbers between 100 and 200 is 7500.

14.

Sol:

Odd integers between 1 and 1000 which are divisible by 3 are 3, 6, 9, 15 ..... 999. In this a = 3, d = 5,  $1 = a_n = 999$  999 = 3 + (n - 1)5 ( $\therefore a_n = a + (n - 1)d$ ) 999 = 3[1 + (n - 1)2]  $\therefore 2n - 1 = \frac{999}{3} = 333 \implies n = \frac{334}{2} = 167$   $\therefore$  There are 333 numbers 167.  $S_{167} = \frac{333}{2}[3 + 999]$  $= \frac{333}{2} \times 100 = 83667$   $\therefore S_{167} = 83667$ 

 $\therefore$  Sum of all odd integers between 1 and 4000 which are divisible by 3 is 83667.

15.

# Sol:

The numbers between 84 and 719, which are multiples of 5 are 85, 90, 95,.....715. In this, a = 85, d = 5,  $a_n = l = 715$ 

715 = 85 + (n - 1)5  
630 = (n - 1)5  
n - 1 = 126  
n = 127  

$$\therefore S_n = \frac{127}{2}(85 + 115)$$
  
 $= \frac{127}{2} \times 800 = 50800$   
( $\therefore a_n = a + (n - 1)d$ )  
 $(\therefore a_n = a + (n - 1)d$ )  
 $(\therefore S_n = \frac{n}{2}(a + 1))$ 

 $\therefore$  Sum of all integers between 84 and 719, which are multiples of 5 is 50800.

# 16.

# Sol:

Numbers between 50 and 500, which are divisible by 7 are 56, 63, .., 497.

In this a = 56, d = 7,  $l = a_n = 497$ 

textbooks, 497 = 56 + (n - 1)7441 = (n-1)7 $n-1 = \frac{441}{7} = 63$ n = 64 $\therefore$  There are 64 terms.  $S_{64} = \frac{64}{2}(56 + 497)$  $= 32 \times 553 = 17696$ 

 $\therefore$  Sum of all integers between 50 and 500, which are divisible by 7 is 17696.

#### 17.

#### Sol:

Even integers between 101 and 999 are 102, 104, .....998  $a = 102, d = 2, a_n = l = 998$  $998 = 102 + (n-1) \times 2$  (:  $a_n = a + (n-1)d$ ) 896 = (n-1)(2)n - 1 = 448n = 449.  $\therefore$  449 terms are there  $S_{449} = \frac{449}{2} [102 + 998]$ 

 $=\frac{449}{2} \times 1100 = 246950$ : Sum of all even integers between 101 and 999 is 24690

# 18.

## Sol:

Integers between 100 and 550 which are divisible by 9 are 108, 117, ..., 549. In this a = 108, d = 9,  $a_n = l = 549$  $549 = 108 + (n-1) \times 9$  (:  $a_n = a + (n+1)d$ )  $441 = (n - 1) \times 9$  $n-1=\frac{449}{9}=49$ n = 50.  $\therefore S_{50} = \frac{50}{2} \{108 + 549\} \qquad \left( \therefore S_n = \frac{n}{2} (10 + 1) \right)$  $= 25 \times 657$ = 16425: Sum of all integers between 100 and 550, which are divisible by 9 is 16425.

#### 19.

# Sol:

Sol:  
Given, 
$$a = 22$$
,  $d = -4$ ,  $S_n = 64$   
 $S_n = \frac{n}{2}(2a + (n - 1)d)$   
 $64 = \frac{n}{2} \times (2.22 + (n - 1) - 4)$   
 $64 = n(24 - 2n)$   
 $64 = 2n (12 - n)$   
 $12n - n^2 = \frac{64}{2} = 32$   
 $n^2 - 12n + 32 = 0$   
 $(n - 4)(n - 8) = 0$   
 $\therefore n = 4 \text{ or } 8$ 

#### 20.

Sol: Given,  $a_5 = 30$ ,  $a_{12} = 65$  $\Rightarrow$  30 = a + (5 - 1)d 30 = a + 4d .....(i)  $\implies$  65 = a + (12 - 1)d 65 = a + 11d .....(ii) a + 11d = 65 $(ii) - (i) \Longrightarrow$ a + 4d = 30

$$0 + 7d = 35$$
  

$$d = \frac{35}{7} = 5$$
  
put d = 5 in ...(i)  $\implies 80 = a + 4$  (5)  
 $a = 30 - 20 = 10$   
 $S_{20} = \frac{20}{2} (2(10) + (20 - 1)5) \quad (: S_n = \frac{n}{2} (20 + (n - 1)d))$   
 $= 10[20 + 95]$   
 $= 10 \times 115$   
 $= 1150$   
 $\therefore$  Sum of first 20 terms  $S_{20} = 1150$ 

# $(\therefore S_n = \frac{n}{2}(2a + (n-1)d))$ Sol: (i) Given AP, 2; 6, 10, 14, ..... $a = 2, d = 4, S_n = S_{11} = \frac{11}{2}(2.2 + (11 - 1).4)$ $=\frac{11}{2}(4+40)$ $=\frac{11}{2} \times 49$ $:: S_{11} = 242$ (ii) Given AP -6, 0, 6, 12, ... $a = -6, d = 6, S_n = \frac{n}{2}(2a + (n-1)d)$ $S_n = S_{13} = \frac{13}{2}(2 \times -6 + (13 - 1) \times 6)$ $=\frac{13}{2}(-12+72)$ $=\frac{13}{2} \times 60$ = 390 $:: S_{13} = 890$ (iii) Given, $a_2 = 2$ and $a_4 = 8$ $a + d = 2 \dots (i)$ $a + 3d = 8 \dots (ii)$ $(ii) - (i) \Longrightarrow a + 3d = 8$ $\underline{a + d = 2}$ 2d = 6d = 3put d = 3 in ....(i) $\Longrightarrow a + d = 2$ a + 3 = 2

$$a = -1$$

$$S_{51} = \frac{51}{2} (2 \times -1 + (51 - 1) \times 3) \qquad \left( \therefore S_n = \frac{n}{2} (2a + (n - 1)d) \right)$$

$$= \frac{51}{2} (-2 + 50 \times 3)$$

$$= \frac{51}{2} \times 148$$

$$= 3774.$$

$$\therefore S_n = 3774$$

# Sol:

The first 15 multiples of 8 are 8, 16, 24, ..... a = 8, d = 8, n = 15  $S_{15} = \frac{15}{2}(28 + (15 - 1) \times 8) \qquad \left( \therefore S_n = \frac{n}{2}(2a + (n - 1)d) \right)$  $=\frac{15}{2}(16+112)$  $=\frac{15}{2} \times 128$ = 960  $\therefore$  Sum of first 15 multiples of 8 is 960. Given,  $a_2 = 2$  and  $a_4 = 8$  $a + d = 2 \dots (i) a + 3d = 8 \dots (ii)$  $(ii) - (i) \implies a + 3d = 8$ a + d = 22d = 6d = 3Put d = 3 in ....(i)  $\Rightarrow a + d = 2$ a + 3 = 2a = -1 $S_{51} = \frac{51}{2} \left( 2 \times -1 + (51 - 1 \times 3) \right) \quad \left( \therefore S_n = \frac{n}{2} (20 + (n - 1)d) \right)$  $=\frac{51}{2}(-2+50\times 3)$  $=\frac{51}{2} \times 148$ = 3774= 44550

 $\therefore$  Sum of all 3 – digit natural numbers which are multiples of 11 is 44550.

Sol:

(i) 
$$2 + 4 + 6 + \dots + 200$$
  
 $a = 2, d = 4 - 2 = 2, 1 = 200 = a_n$   
 $\therefore S_n = \frac{n}{2}(a + l) and a_n = a + (n - 1)d$   
 $200 = 2 + (n - 1)2$   
 $198 = (n - 1)2$   
 $n - 1 = \frac{198}{2} = 99$   
 $n = 100$   
 $S_n = \frac{100}{2}(2 + 200)$   
 $= 50 \times 202$   
 $= 10100$   
(ii)  $3 + 11 + 19 + \dots + 803$   
 $a = 3, d = 11 - 3 = 8, 1 = a_n = 803$   
 $803 = 3 + (n - 1)8$   
 $\frac{800}{8} = n - 1$   
 $n = 101$   
 $S_n = \frac{101}{2}(3 + 803)$   
 $= \frac{101}{2} \times 806$   
 $= 504$   
 $S_n = 504$   
(iii)  $34 + 32 + 30 + \dots + 10$   
 $a = 34, d = -2, 1 = a_n = 10$   
 $10 = 34 + (n - 1) \times 2$   
 $+24 = 2 (n - 1)$   
 $n - 1 = 12$   
 $n = 13$   
 $\therefore S_{13} = \frac{13}{2}(34 + 10)$   
 $= \frac{13}{2} \times 44$   
 $= 286$   
(iv)  $25 + 28 + 31 + \dots + 100$   
 $a = 25, d = 8, 1 = a_n = 100$   
 $100 = 25 + (n - 1) \times 3$   
 $75 = (n - 1) \times 3$   
 $n - 1 = 25$   
 $n = 26$ 

Sol:

(i) Given 
$$a_n = 3 + 4n$$
  
Put  $n = 1$ ,  $a_1 = 3 + 4(1) = 7$   
Put  $n = 15$ ,  $a_{15} = 3 + 4(15) = 63 = 8$   
Sum of 15 terms,  $S_{15} = \frac{15}{2}(7 + 63)$   $(\because S_n = \frac{n}{2}(a + l))$   
 $= \frac{15}{2} \times 70$   
 $\therefore S_{15} = 525$   
(ii) Given  $b_n = 5 + 2n$   
Put  $n = 1$ ,  $b_1 = 5 + 2(1) = 7$   
Put  $n = 15$ ,  $b_{15} = 5 + 2(15) = 35 = l$   
Sum of 15 terms,  $S_{15} = \frac{15}{2}(7 + 35)$   $(\because S_n = \frac{n}{2}(a + l))$   
 $= \frac{15}{2} \times 42$   
 $= 315$   
 $\therefore S_{15} = 315$   
(iii) Given,  $Y_n = 9 - 5n$   
Put  $n = 1$ ,  $y_1 = 9 - 5.15 = 9 - 75 = -66 = (l)$   
 $\therefore S_{15} = \frac{15}{2}(-4 - 66)$   $(\because S_n = \frac{n}{2}(a + l))$   
 $= \frac{15}{2} \times -70$   
 $= -465$   
 $\therefore S_{15} = -465$   
Sol:  
Given,  $n^{\text{th}}$  term  $a_n = A_n + B$   
Put  $n = 1$ ,  $a_1 = A + B$   
Put  $n = 20$ ,  $a_{20} = 20A + B = (l)$   
 $\therefore S_{20} = \frac{2n}{2}(A + B + 20A + B)$   $(\because S_n = \frac{n}{2}(a + l))$   
 $= 10(21A + 2B)$   
 $= 210A + 20B$   
 $\therefore S_n = 210A + 2B$ 

26.

25.

Sol: Given, n<sup>th</sup> term  $a_n = 2 - 3n$ 

Put n = 1,  $a_1 = 2 - 3.1 = -1$ Put n = 25,  $a_{15} = l = 2 - 3.15 = -43$   $\therefore 25 = \frac{25}{2} (-1 - 43) = \frac{25}{2} (-44) = -925$  $\therefore S_{25} = -925$ 

# 27.

Sol: Given,  $a_n = 7 - 3n$ Put n = 1,  $a_1 = 7 - 3.1 = 4$ Put n = 25,  $a_{25} = l = 7 - 3.25 = -68$   $\therefore S_{25} = \frac{25}{2}(4 - 68) \quad (\because S_n = \frac{n}{2}(a + l))$   $= \frac{25}{2} \times -64$  = -800 $\therefore S_{25} = -800$ 

#### 28.

$$Solution Solution S$$

29.

Sol:

Given, 
$$S_7 = 49$$
  
 $\frac{7}{2}(2a + (7 - 1)d) = 49$   $(: S_n = \frac{n}{2}\{2a + (n - 1)d\})$   
 $\frac{7}{2}(2a + 6d) = 49$   
 $\frac{7}{2} \times 2(a + 3d) = 49$ 

$$a + 3d = \frac{49}{7} = 7 \dots (i) \text{ and}$$

$$S_{17} = 289$$

$$\frac{17}{2} (2a + (17 - 1)d) = 289$$

$$\frac{17}{2} \times 2(a + 8d) = 289$$

$$a + 8d = \frac{289}{17} = 17 \dots (ii)$$
Subtract (i) from (ii)
$$a + 8d = 17$$

$$\frac{a + 3d = 7}{5d = 10}$$

$$d = 2$$
put d = 2, in (i)  $\Longrightarrow a + 3 \times 2 = 7$ 

$$a = 1$$

$$\therefore S_n = \frac{n}{2} \{2.1 + (n - 1).2\} \quad \left( \therefore S_n = \frac{n}{2} (2a + (n - 1)d) \right)$$

$$= n\{1 + n - 1\}$$

$$\therefore S_n = n^2.$$

Sol: Given, a = 5, 1 = 45, Sum of terms = 400  $\therefore S_n = 400$   $\frac{n}{2}{5 + 45} = 400$   $\frac{n}{2} = 50 = 400$   $n = 40 \times \frac{2}{5}$   $\therefore n = 16$   $16^{\text{th}}$  term is 45  $a_{16} = 45 \implies 5 + (16 - 1) \times d = 45 = 15 \times d = 40$   $d = \frac{408}{15} = \frac{8}{3}$  $\therefore n = 16$ ,  $d = \frac{8}{3}$ 

31.

Sol:

Given, sum of n terms  $S_n = \frac{3n^2}{2} + \frac{13}{2}n$ Let,  $a_n = S_n - S_{n-1}$  (: Replace n by (n-1) is  $S_n$  to get  $S_{n-1} = \frac{3(n-1)^2}{2} + \frac{13}{2}(n-1)$ )  $a_n = \frac{3n^2}{2} + \frac{13}{2}n - \frac{3(n-1)^2}{2} - \frac{13}{2}(n-1)$  $= \frac{3}{2}\{n^2 - (n-1)^2\} + \frac{13}{2}\{n - (n-1)\}$ 

$$= \frac{3}{2} \{n^2 - n^2 + 2n - 1\} + \frac{13}{2} \{1\}$$
  
=  $3n + \frac{10}{2} = 3n + 5$   
Put n = 25,  $a_{25} = 3(25) + 5 = 75 + 5 = 80$   
 $\therefore 25^{\text{th}} \text{ term } a_{25} = 80$ 

Sol: Given a = 5, d = 3,  $a_n = 50$ (i)  $a_n = 50$ a + (n-1)d = 505 + (n-1)3 = 50(n-1)3 = 45 $n-1=\frac{45}{3}=15$ n = 16 Given,  $a_n = 4, d = 2, S_n = -14$  a + (n - 1).2 = 4 and  $\frac{n}{2}[2a + (n - 1).2] = -14$  a + 2n = 6 n[2a + 2n - 2] = -14(or)  $\frac{n}{2}[a + 2n - 2] = -14$ (ii) n[2a + 2n - 2] = -14(or)  $\frac{n}{2}[a + a_n] = -14$   $\frac{n}{2}[a + 4] = -14$  $\overline{n}[6-2n+4] = -28$ n[10 - 2n] = -28 $2n^2 - 10n - 28 = 0$  $2(n^2 - 5n - 14) = 0$ (n+2)(n-7) = 0N = -2, n = 7: n = -2 is not a natural number. So, n = 7. Given, a = 3, n = 8,  $S_n = 192$ . (iii)  $S_n = \frac{n}{2} [2a + (n-1)d]$  $192 \times 2 = 8[6 + (8 - 1)d]$  $\frac{192 \times 2}{8} = 6 + 7d$ 48 = 6 + 7d

7d = 42  
d = 6  
(iv) Given, 
$$a_n = 28$$
,  $S_n = 144$ ,  $n = 9$   
 $S_n = \frac{n}{2}[a + l]$   
 $144 = \frac{9}{2}[a + 28]$   
 $144 = \frac{2}{9} = a + 28$   
 $a + 28 = 32$   
 $a = 4$   
(v) Given,  $a = 8$ , 62 and  $S_n = 210$   
 $S_n = \frac{n}{2}[a + l]$   
 $210 = \frac{n}{2}[8 + 62]$   
 $210 \times 2 = n[70]$   
 $n = \frac{210 \times 2}{70} = 6$   
 $a + (n - 1) d = 62$   
 $8 + (6 - 1) d = 62$   
 $8 + (6 - 1) d = 62$   
 $5d = 54$   
 $d = 10.8$   
(vi) Given  
 $a = 2, d = 8$  and  $S_n = 90$   
 $90 = \frac{n}{2}[4 + (n - 1)8]$  ( $\therefore S_n = \frac{n}{2}[2a + (n - 1)d]$ )  
 $180 = n[4 + 8n - 8]$   
 $8n^2 - 4n - 180 = 0$   
 $4(2n^2 - n - 45) = 0$   
 $2n^2 - n - 45 = 0$   
 $(2n + 1) (n - 5) = 0$   
 $\therefore n = -\frac{1}{2}$  is not a natural no.  $n = 5$   
 $a_n = 2 + 4(8)$  ( $\therefore a_n = a + (n - 1)d$ )  
 $a_n = 32$ 

Sol:

Let 'a' be the money he saved in first year

 $\implies$  First year he saved the money = Rs a

He saved Rs 100 more than, he did in preceding year.

 $\implies$  Second year he saved the money = Rs (a + 100)

 $\Rightarrow$  Third year he saved the money = Rs. (a + 2 (100))

So, the sequence is a, a + 100, a + 2(100), ....., This is in AP with common difference (d) = 100.  $\Rightarrow$  Sum of money he saved in 10 years  $S_{10} = 16,500 \ rupees$   $S_n = \frac{n}{2}(2a + (n - 1)d)$   $S_{10} = \frac{10}{2}(2a + (10 - 1), 100)$   $16,500 = 5(2a + 9 \times 100)$   $2a + 900 = \frac{16500}{5} = 3300$  2a = 2400  $a = \frac{2400}{2} = 1200$  $\therefore$  He saved the money in first year (a) = Rs. 1200

#### 34.

100ks, likekaway Sol: Given Saving in  $1^{st}$  yr  $(a_1) = \text{Rs } 32$ Saving in  $2^{nd}$  yr  $(a_2) = \text{Rs } 36$ Increase in salary every year (d) = Rs 4Let in n years his saving will be Rs 200  $\Rightarrow S_n = 200$  $\Rightarrow \frac{n}{2}[2a + (n-1)d] = 200$  $\Rightarrow \frac{n}{2}[64 + 4n - 4] = 200$  $\Rightarrow \frac{n}{2}[4n+60] = 200$  $\Rightarrow 2n^2 + 30n = 200$  $\Rightarrow n^2 + 15 - 100 = 0$ [Divide by 2]  $\Rightarrow n^2 + 20n - 5n - 100 = 0$  $\implies n(n+20) - 5(n+20) = 0$  $\Rightarrow$  (n + 20)(n - 5) = 0 If n + 20 = 0 or n - 5 = 0(Rejected as n cannot be negative) n = -20or n = 5∴ In 5 years his saving will be Rs 200

### 35.

Sol:

Given

A man arranges to pay off a debt of Rs 3600 by 40 annual installments which form an A.P i.e., sum of all 40 installments = Rs 3600  $S_{40} = 3600$ 

Let, the money he paid in first installment is a, and every year he paid with common difference = d

Then,

$$S40 = 3600 \qquad (\because S_n = \frac{n}{2} [2a + (n-1)d])$$

$$\frac{40}{x} [2a + (40 - 1)d] = 3600$$

$$2a + 39d = \frac{3600}{20} = 180 \dots \dots (i)$$
but,

He died by leaving one third of the debt unpaid that means he paid remaining money in 30 installments.

: The money he paid in 30 installments =  $3600 - \frac{3600}{3} = 3600 - 1200$ :  $S_{30} = 2400$ 

$$S_{30} = 2400$$
  
=  $\frac{30}{2} [2a + (30 - 1)d] = 2400$  (∴  $S_n = \frac{n}{2}(2a + (n - 1)d)$ )  
 $2a + 2ad = \frac{2400}{15} = 160 \dots (ii)$   
(i) - (ii) ⇒  $2a + 39d = 180$   
 $\frac{2a + 29d = 160}{0 + 10 d = 20}$   
 $d = \frac{20}{10} = 2$   
put d = 2 in (ii)  $2a + 29 (2) = 160$   
 $2a = 102$   
 $a = \frac{102}{2} = 51$   
∴ The value of his first installment = 51.