Mark the correct alternative in each of the following :

Question 1.

If the equation $x^{2}+4 x+k=0$ has real and distinct roots, then
(a) $\mathrm{k}<4$
(b) $\mathrm{k}>4$
(c) $\mathrm{k} \geq 4$
(d) $\mathrm{k} \leq 4$

Solution:

(a) In the equation $x^{2}+4 x+k=0$
$\mathrm{a}=1, \mathrm{~b}=4, \mathrm{c}=\mathrm{k}$
$\mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}=(4)^{2}-4 \times 1 \times \mathrm{k}=16-4 \mathrm{k}$
Roots are real and distinct
D >0
$\Rightarrow 16-4 \mathrm{k}>0$
$\Rightarrow 16>4 \mathrm{k}$
$\Rightarrow 4>k$
\Rightarrow k <4

Question 2.

If the equation $\mathrm{x}^{2}-\mathrm{ax}+1=0$ has two distinct roots, then
(a) $|\mathrm{a}|=2$
(b) $|\mathrm{a}|<2$
(c) $|\mathrm{a}|>2$
(d) None of these

Solution:

(c) In the equation $x^{2}-a x+1=0$
$\mathrm{a}=1, \mathrm{~b}=-\mathrm{a}, \mathrm{c}=1$
$\mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}=(-\mathrm{a})^{2}-4 \times 1 \times 1=\mathrm{a}^{2}-4$
Roots are distinct
D >0
$\Rightarrow a^{2}-4>0$
$\Rightarrow a^{2}>4$
$\Rightarrow a^{2}>(2)^{2}$
$\Rightarrow|a|>2$

Question 3.

If the equation $9 x^{2}+6 k x+4=0$, has equal roots, then the roots are both equal to
(a) ± 23
(b) ± 32
(c) 0
(d) ± 3

Solution:

(a)

In the equation

$$
\begin{aligned}
& 9 x^{2}+6 k x+4=0 \\
& a=9, b=6 k, c=4 \text { then } \\
& \mathrm{D}=b^{2}-4 a c \\
& =(6 k)^{2}-4 \times 9 \times 4 \\
& =36 k^{2}-144
\end{aligned}
$$

\because Roots are equal
$\therefore \mathrm{D}=0$
$\Rightarrow 36 k^{2}-144=0 \Rightarrow 36 k^{2}=144$
$\Rightarrow k^{2}=\frac{144}{36}=4=(\pm 2)^{2}$
$\therefore k= \pm 2$
\therefore Roots are $=\frac{-b}{2 a}=\frac{ \pm 2 \times 6}{2 \times 9}= \pm \frac{2}{3}$

Question 4.

If $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ has equal roots, then $\mathrm{c}=$
(a) $\frac{-b}{2 a}$
(b) $\frac{b}{2 a}$
(c) $\frac{-b^{2}}{4 a}$
(d) $\frac{b^{2}}{4 a}$

Solution:
(d) In the equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$
$D=b^{2}-4 a c$
Roots are equal
$\mathrm{D}=0=>\mathrm{b}^{2}-4 \mathrm{ac}=0$
$\Rightarrow 4 \mathrm{ac}=\mathrm{b}^{2}$
$\Rightarrow \mathrm{c}=\mathrm{b} 24 \mathrm{a}$

Question 5.

If the equation $\mathrm{ax}^{2}+2 \mathrm{x}+\mathrm{a}=0$ has two distinct roots, if
(a) $a= \pm 1$
(b) $\mathrm{a}=0$
(c) $\mathrm{a}=0,1$
(d) $a=-1,0$

Solution

(a) In the equation $\mathrm{ax}^{2}+2 \mathrm{x}+\mathrm{a}=0$
$\mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}=(2)^{2}-4 \times \mathrm{a} \times \mathrm{a}=4-4 \mathrm{a}^{2}$
Roots are real and equal
$\mathrm{D}=0$
$\Rightarrow 4-4 a^{2}=0$
$\Rightarrow 4=4 a^{2}$
$\Rightarrow 1=a^{2}$
$\Rightarrow a^{2}=1$
$=>a^{2}=(\pm 1)^{2}$
$\Rightarrow \mathrm{a}= \pm 1$

Question 6.

The positive value of k for which the equation $x^{2}+k x+64=0$ and $x^{2}-8 x+k=0$ will both have real roots, is
(a) 4
(b) 8
(c) 12
(d) 16

Solution:

(d) In the equation $x^{2}+\mathrm{kx}+64=0$

$$
\begin{aligned}
& a=1, b=k, c=64 \\
& \mathrm{D}=b^{2}-4 a c=k^{2}-4 \times 1 \times 64 \\
& =k^{2}-256
\end{aligned}
$$

\because The roots are real
$\therefore \mathrm{D} \geq 0 \Rightarrow k^{2}-256 \geq 0$
$\Rightarrow k^{2} \geq 256 \Rightarrow k^{2} \geq(\pm 16)^{2}$
$\Rightarrow k \geq 16$
Only positive value is taken
Now in second equation

$$
\begin{aligned}
& x^{2}-8 x+k=0 \\
& D=(-8)^{2}-4 \times 1 \times k=64-4 k
\end{aligned}
$$

\because Roots are real
$\therefore \mathrm{D} \geq 0 \Rightarrow 64-4 k \geq 0 \Rightarrow 64 \geq 4 k$

$$
\begin{equation*}
16 \geq k \tag{ii}
\end{equation*}
$$

From (i) and

$$
16 \geq k \geq 16 \Rightarrow k=16
$$

Question 7.

The value of $\sqrt{6+\sqrt{6+\sqrt{6+}}} \ldots$ is
(a) 4
(b) 3
(c) -2
(d) 3.5

Solution:

(b)

$$
\begin{aligned}
& \text { Let } x=\sqrt{6+\sqrt{6+\sqrt{6+}}} \ldots \\
& x=\sqrt{6+x} \Rightarrow x^{2}=6+x \\
\Rightarrow & x^{2}-x-6=0 \\
\Rightarrow & x^{2}-3 x+2 x-6=0 \\
\Rightarrow & x(x-3)+2(x-3)=0 \\
\Rightarrow & (x-3)(x+2)=0 \\
& \text { Either } x-3=0, \text { then } x=3 \\
& \text { or } x+2=0, \text { then } x=-2 \\
& \text { Now if } x=3, \text { then } \\
& 3=\sqrt{6+\sqrt{6+\sqrt{6+}}} \\
= & \sqrt{6+3}=\sqrt{9}=3 \\
& \text { If } x=-2, \text { then } \\
& x=\sqrt{6+x} \\
\Rightarrow & -2=\sqrt{6-2}=-2=\sqrt{4}=2
\end{aligned}
$$

Which is not possible
$\mathrm{x}=3$ is correct
Question 8.
If 2 is a root of the equation $\mathrm{x}^{2}+\mathrm{bx}+12=0$ and the equation $\mathrm{x}^{2}+\mathrm{bx}+\mathrm{q}=0$ has equal roots, then $\mathrm{q}=$
(a) 8
(b) -8
(c) 16
(d) -16

Solution:

(c)

$$
x^{2}+b x+12=0
$$

$\because 2$ is its root, then it will satisfy it
$\therefore(2)^{2}+b \times 2 \times 12 \Rightarrow 4+2 b+12=0$
$\Rightarrow 2 b+16=0 \Rightarrow b=\frac{-16}{2}=-8$
Now equation
$x^{2}+b x+q=0$, has equal roots, then
$\mathrm{D}=0 \Rightarrow b^{2}-4 q=0$
$\Rightarrow(-8)^{2}-4 q=0 \Rightarrow 64=4 q$
$\Rightarrow q=16$

Question 9.

If the equation $\left(a^{2}+b^{2}\right) x^{2}-2(a c+b d) x+c^{2}+d^{2}=0$ has equal roots, then
(a) $a b=c d$
(b) $a d=b c$
(c) $\mathrm{ad}=\sqrt{ } \mathrm{bc}$
(d) $a b=\sqrt{ } c d$

Solution:

(b)

In the equation

$$
\begin{aligned}
& \left(a^{2}+b^{2}\right) x^{2}-2(a c+b d) x+\left(c^{2}+d^{2}\right)=0 \\
& \mathrm{D}=\mathrm{B}^{2}-4 \mathrm{AC} \\
& =[-2(a c+b d)]^{2}-4\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right) \\
& =4\left[a^{2} c^{2}+b^{2} d^{2}+2 a b c d\right]-4\left[a^{2} c^{2}+a^{2} d^{2}+\right. \\
& \left.b^{2} c^{2}+b^{2} d^{2}\right] \\
& =4 a^{2} c^{2}+4 b^{2} d^{2}+8 a b c d-4 a^{2} c^{2}-4 a^{2} d^{2}- \\
& 4 b^{2} c^{2}-4 b^{2} d^{2} \\
& =8 a b c d-4 a^{2} d^{2}-4 b^{2} c^{2} \\
& =-4\left[a^{2} d^{2}+b^{2} c^{2}-2 a b c d\right] \\
& =-4(a d-b c)^{2}
\end{aligned}
$$

\because Roots are equal
$\therefore \mathrm{D}=0 \Rightarrow-4(a d-b c)^{2}=0$
$\Rightarrow a d-b c=0 \Rightarrow a d=b c$

Question 10.

If the roots of the equation $\left(a^{2}+b^{2}\right) x^{2}-2 b(a+c) x+\left(b^{2}+c^{2}\right)=0$ are equal, then ;
(a) $2 b=a+c$
(b) $b^{2}=a c$
(c) $\mathrm{b}=2 \mathrm{aca}+\mathrm{c}$
(d) $b=a c$

Solution:

(b)

In the equation

$$
\begin{aligned}
& \left(a^{2}+b^{2}\right) x^{2}-2 b(a+c) x+\left(b^{2}+c^{2}\right)=0 \\
& \mathrm{D}=\mathrm{B}^{2}-4 \mathrm{AC} \\
& =[-2 b(a+c)]^{2}-4\left(a^{2}+b^{2}\right)\left(b^{2}+c^{2}\right) \\
& =4 b^{2}\left(a^{2}+c^{2}+2 a c\right)-4\left[a^{2} b^{2}+a^{2} c^{2}+b^{4}+\right. \\
& \left.b^{2} c^{2}\right] \\
& =4 a^{2} b^{2}+4 b^{2} c^{2}+8 a b^{2} c-4 a^{2} b^{2}-4 a^{2} c^{2}-4 b^{4} \\
& -4 b^{2} c^{2} \\
& =8 a b^{2} c-4 a^{2} c^{2}-4 b^{4} \\
& =-4\left[a^{2} c^{2}+b^{4}-2 a b^{2} c\right]=-4\left[a c-b^{2}\right]^{2}
\end{aligned}
$$

\because Roots are equal
$\therefore-4(a c-b)^{2}=0$
$\Rightarrow a c-b^{2}=0 \Rightarrow a c=b^{2}$
$\Rightarrow b^{2}=a c$

Question 11.

If the equation $\mathrm{x}^{2}-\mathrm{bx}+1=0$ does not possess real roots, then
(a) $-3<$ b <3
(b) $-2<$ b <2
(c) b >2
(d) $b<-2$

Solution:

(b)

In the equation

$$
\begin{aligned}
& x^{2}-b x+1=0 \\
& \mathrm{D}=b^{2}-4 a c=(-b)^{2}-4 \times 1 \times 1 \\
& =b^{2}-4
\end{aligned}
$$

\because The roots are not real
$\therefore \mathrm{D}<0 \Rightarrow b^{2}-4<0$
$\Rightarrow b^{2}<4 \Rightarrow b^{2}<(\pm 2)^{2}$
$\therefore b<2$ and $b>-2$ or $-2<b$
$\therefore-2<b<2$

Question 12.

If $x=1$ is a common root of the equations $a x^{2}+a x+3=0$ and $x^{2}+x+b=0$, then $a b=$
(a) 3
(b) 3.5
(c) 6
(d) -3

Solution:

(a) In the equation
$\mathrm{ax}^{2}+\mathrm{ax}+3=0$ and $\mathrm{x}^{2}+\mathrm{x}+\mathrm{b}=0$
Substituting the value of $x=1$, then in $\mathrm{ax}^{2}+a x+3=0$

$$
\begin{aligned}
& a(1)^{2}+a(1)+3=0 \Rightarrow a+a+3=0 \\
\Rightarrow & 2 a+3=0 \Rightarrow 2 a=-3 \Rightarrow a=\frac{-3}{2} \\
& \text { and in } x^{2}+x+b=0 \\
& (1)^{2}+1+b=0 \Rightarrow 1+1+b=0 \Rightarrow b=-2 \\
\therefore & a b=\frac{-3}{2} \times(-2)=3
\end{aligned}
$$

Question 13.

If p and q are the roots of the equation $x^{2}-p x+q+0$, then
(a) $p=1, q=-2$
(b) $p=0, q=1$
(c) $\mathrm{p}=-2, \mathrm{q}=0$
(d) $p=-2, q=1$

Solution:

(a)
$\because p$ and q are the roots of the equation

$$
x^{2}-p x+q=0
$$

Sum of roots $=-(-p)=p$
and product of roots $=q$
(a) If $p=1, q=-2$, then equation will be

$$
\begin{aligned}
& x^{2}-(s) x+p=0 \Rightarrow x^{2}-(1-2) x+1 \times(-2) \\
& =0 \\
\Rightarrow & x^{2}+x-2=0
\end{aligned}
$$

(b) If $p=0, q=1$, then equation will be

$$
x^{2}-(0+1) x+0 \times 1=0
$$

$\Rightarrow x^{2}-x+0=0$
(c) If $p=-2, q=0$, then equation will be

$$
x^{2}-(-2+0) x+(-2 \times 0)
$$

$\Rightarrow x^{2}+2 x+0=0$
(d) $p=-2, q=1$, then equation will be
$x^{2}-(-2+1) x+(-2 \times 1)=0$
$\Rightarrow x^{2}+x-2=0$
We see that only (a) is correct
When $p=1, q=-2$

Question 14.

If a and b can take values $1,2,3,4$. Then the number of the equations of the form $a x^{2}+b x+$
$1=0$ having real roots is
(a) 10
(b) 7
(c) 6
(d) 12

Solution:

(b)
$a x^{2}+b x+1=0$
$D=b^{2}-4 a=b^{2}-4 a$
Roots are real
$\mathrm{D} \geq 0$
$\Rightarrow b^{2}-4 a \geq 0$
$\Rightarrow b^{2} \geq 4 a$
Here value of b can be 2,3 or 4
If $\mathrm{b}=2$, then a can be 1 ,
If $b=3$, then a can be 1,2
If $b=4$, then a can be $1,2,3,4$
No. of equation can be 7

Question 15.

The number of quadratic equations having real roots and which do not change by squaring their roots is
(a) 4
(b) 3
(c) 2
(d) 1

Solution:

(c) There can be two sûch quad, equations whose roots can be 1 and 0

The square of 1 and 0 remains same
No. of quad equation are 2
Question 16.
If $\left(a^{2}+b^{2}\right) x^{2}+2(a b+b d) x+c^{2}+d^{2}=0$ has no real roots, then
(a) $a d=b c$
(b) $a b=c d$
(c) $\mathrm{ac}=\mathrm{bd}$
(d) $\mathrm{ad} \neq \mathrm{bc}$

Solution:
(d)

$$
\begin{aligned}
& \left(a^{2}+b^{2}\right) x^{2}+2(a b+b d) x+c^{2}+d^{2}=0 \\
& \text { Here } \mathrm{A}=a^{2}+b^{2}, \mathrm{~B}=2(a b+b d), \mathrm{C}=c^{2}+ \\
& d^{2} \\
& \mathrm{D}=\mathrm{B}^{2}-4 \mathrm{AC}=[2(a c+b d)]^{2}-4\left(a^{2}+b^{2}\right) \\
& \left(c^{2}+d^{2}\right) \\
& =4\left[a^{2} c^{2}+b^{2} d^{2}+2 a b c d\right]-4\left[a^{2} c^{2}+a^{2} d^{2}+\right. \\
& \left.b^{2} c^{2}+b^{2} d^{2}\right] \\
& =4 a^{2} c^{2}+4 b^{2} d^{2}+8 a b c d-4 a^{2} c^{2}-4 a^{2} d^{2} \\
& -4 b^{2} c^{2}-4 b^{2} d^{2} \\
& =-4 a^{2} d^{2}-4 b^{2} c^{2}+8 a b c d \\
& =-4\left(a^{2} d^{2}+b^{2} c^{2}-2 a b c d\right) \\
& =-4(a d-b c)^{2}
\end{aligned}
$$

\because Roots are not real
$\therefore \mathrm{D}<0$
$\therefore-4(a d-b c)^{2}<0 \Rightarrow(a d-b c)^{2}<0$
$\Rightarrow a d-b c<0$ or $a d \neq b c$

Question 17.

If the sum of the roots of the equation $x^{2}-x=\lambda(2 x-1)$ is zero, then $\lambda=$
(a) -2
(b) 2
(c) -12
(d) 12

Solution:

(c)

$$
x^{2}-x=\lambda(2 x-1)
$$

$$
\Rightarrow x^{2}-x=2 \lambda x-\lambda
$$

$$
\Rightarrow x^{2}-x-2 \lambda x+\lambda=0
$$

$$
\Rightarrow x^{2}-(1+2 \lambda) x+\lambda=0
$$

Sum of roots $=\frac{-b}{a}=\frac{1+2 \lambda}{1}$

$$
\frac{1+2 \lambda}{1}=0 \Rightarrow 2 \lambda=-1
$$

$$
\lambda=-\frac{1}{2}
$$

Question 18.

If $x=1$ is a common root of $a x^{2}+a x+2=0$ and $x^{2}+x+b=0$ then, $a b=$
(a) 1
(b) 2
(c) 4
(d) 3

Solution:

(b)

$$
\begin{align*}
& a x^{2}+a x+2=0 \tag{i}\\
& x^{2}+x+b=0 \tag{ii}
\end{align*}
$$

$x=1$ is common root of equations (i) and
(ii)

Then in (i) $a(1)^{2}+a \times 1+2=0$
$\Rightarrow a+a+2=0 \Rightarrow 2 a+2=0$
$\Rightarrow 2 a=-2 \Rightarrow a=\frac{-2}{2}=-1$
$\therefore a=-1$
Then in (ii)

$$
(-1)^{2}+1+b=0 \Rightarrow 1+1+b=0
$$

$\Rightarrow 2+b=0 \Rightarrow b=-2$
$\therefore a b=(-1) \times(-2)=2$

Question 19.

The value of c for which the equation $a x^{2}+2 b x+c=0$ has equal roots is
(a) $\frac{b^{2}}{a}$
(b) $\frac{b^{2}}{4 a}$
(c) $\frac{a^{2}}{b}$
(d) $\frac{a^{2}}{4 b}$

Solution:

(a)

$$
\begin{aligned}
& a x^{2}+2 b x+c=0 \\
& \mathrm{D}=b^{2}-4 a c \\
& =(2 b)^{2}-4 \times a \times c \\
& =4 b^{2}-4 a c
\end{aligned}
$$

\because Roots are equal
$\therefore \mathrm{D}=0$
$\Rightarrow 4 b^{2}-4 a c=0$
$\Rightarrow 4 a c=4 b^{2}$
$\Rightarrow c=\frac{4 b^{2}}{4 a}=\frac{b^{2}}{a}$

Question 20.

If $\mathrm{x}^{2}+\mathrm{k}(4 \mathrm{x}+\mathrm{k}-1)+2=0$ has equal roots, then $\mathrm{k}=$
(a) $-\frac{2}{3}, 1$
(b) $\frac{2}{3},-1$
(c) $\frac{3}{2}, \frac{1}{3}$
(d) $\frac{3}{2}-,-\frac{1}{3}$

Solution:

(b)

$$
\begin{aligned}
& x^{2}+k(4 x+k-1)+2=0 \\
\Rightarrow & x^{2}+4 k x+k^{2}-k+2=0 \\
\Rightarrow & \text { Here } a=1, b=4 k, c=k^{2}-k+2 \\
\therefore & \mathrm{D}=b^{2}-4 a c \\
& =(4 k)^{2}-4 \times 1\left(k^{2}-k+2\right) \\
& =16 k^{2}-4 k^{2}+4 k-8 \\
& =12 k^{2}+4 k-8
\end{aligned}
$$

\because Roots are equal
$\therefore \mathrm{D}=0$
$\therefore 12 k^{2}+4 k-8=0$
$\Rightarrow 3 k^{2}+k-2=0$
(Dividing by 4)
Here $a=3, b=1, c=-2$
$\because k=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}=\frac{-1 \pm \sqrt{1+24}}{2 \times 3}$
$=\frac{-1 \pm \sqrt{25}}{6}=\frac{-1 \pm 5}{6}$
$\therefore k=\frac{-1+5}{6}=\frac{4}{6}=\frac{2}{3}$
and $k=\frac{-1-5}{6}=\frac{-6}{6}=-1$
$\therefore k=\frac{2}{3},-1$

Question 21.

If the sum and product of the roots of the equation $\mathrm{kx}^{2}+6 \mathrm{x}+4 \mathrm{k}=0$ are equal, then $\mathrm{k}=$
(a) $-\frac{3}{2}$
(b) $\frac{3}{2}$
(c) $\frac{2}{3}$
(d) $-\frac{2}{3}$

Solution:
(b)

$$
\begin{aligned}
& k x^{2}+6 x+4 k=0 \\
& \text { Here } a=k, b=6, c=4 k \\
& \mathrm{D}=b^{2}-4 a c=(6)^{2}-4 \times k \times 4 k \\
& =36-16 k^{2}
\end{aligned}
$$

\because Roots are equal
$\therefore \mathrm{D}=0 \Rightarrow 36-16 k^{2}=0$
$\Rightarrow 16 k^{2}=36$

$$
\begin{aligned}
& k^{2}=\frac{36}{16}=\left(\frac{6}{4}\right)^{2} \\
& k=\frac{6}{4}=\frac{3}{2}
\end{aligned}
$$

Question 22.

If $\sin \alpha$ and $\cos \alpha$ are the roots of the equations $a x^{2}+b x+c=0$, then $b^{2}=$
(a) $a^{2}-2 a c$
(b) $a^{2}+2 a c$
(b) $a^{2}-a c$
(d) $a^{2}+a c$

Solution:

(b)
$\sin \alpha$ and $\cos \alpha$ are the roots of the equations

$$
a x^{2}+b x+c=0
$$

\therefore Sum of roots $=\frac{-b}{a}$ and

$$
\text { product of roots }=\frac{c}{a}
$$

$\therefore \sin \alpha+\cos \alpha=\frac{-b}{a}$ and $\sin \alpha \cos \alpha=\frac{c}{a}$

$$
(\sin \alpha+\cos \alpha)^{2}=\left(\frac{-b}{a}\right)^{2}
$$

$\Rightarrow \sin ^{2} \alpha+\cos ^{2} \alpha+2 \sin \alpha \cos \alpha=\frac{b^{2}}{a^{2}}$
$\Rightarrow 1+2 \times \frac{c}{a}=\frac{b^{2}}{a^{2}}$
$\Rightarrow 1+\frac{2 c}{a}=\frac{b^{2}}{a^{2}} \Rightarrow b^{2}=a^{2}+2 a c$
$\therefore b^{2}=a^{2}+2 a c$

Question 23.

If 2 is a root of the equation $x^{2}+a x+12=0$ and the quadratic equation $x^{2}+a x+q=0$ has equal roots, then $\mathrm{q}=$
(a) 12
(b) 8
(c) 20
(d) 16

Solution:

(d)

2 is a root of equation $x^{2}+a x+12=0$
$\therefore(2)^{2}+a \times 2+12=0 \Rightarrow 4+2 a+12=0$
$\Rightarrow 2 a=-(12+4) \Rightarrow 2 a=-16$
$\Rightarrow a=\frac{-16}{2}=-8$
and in quadratic equation roots are equal x^{2}

$$
\begin{aligned}
& +a x+q=0 \\
\therefore & b^{2}-4 a c=0 \\
\Rightarrow & a^{2}-4 q=0 \Rightarrow(-8)^{2}-4 q=0 \\
\Rightarrow & 64-4 q=0 \Rightarrow 4 q=64 \\
\Rightarrow & q=\frac{64}{4}=16 \\
\therefore & q=16
\end{aligned}
$$

Question 24.

If the sum of the roots of the equation $x^{2}-(k+6) x+2(2 k-1)=0$ is equal to half of their product, then $\mathrm{k}=$
(a) 6
(b) 7
(c) 1
(d) 5

Solution:

(b) In the quadratic equation
$\mathrm{x}^{2}-(\mathrm{k}+6) \mathrm{x}+2(2 \mathrm{k}-1)=0$
Here $\mathrm{a}=1, \mathrm{~b}=-(\mathrm{k}+6), \mathrm{c}=2(2 \mathrm{k}-1)$
\therefore Sum of roots $=\frac{-b}{a}=\frac{[(-k+6)]}{1}=k+6$
and product of roots $=\frac{c}{a}=\frac{2(2 k-1)}{1}$
$=4 k-2$
But sum of roots $=\frac{1}{2}$ product of roots
$\therefore k+6=\frac{4 k-2}{2}$
$\Rightarrow k+6=2 k-1$
$\Rightarrow 2 k-k=6+1 \Rightarrow k=7$
$\therefore k=7$

Question 25.

If a and b are roots of the equation $x^{2}+a x+b=0$, then $a+b=$
(a) 1
(b) 2
(c) -2
(d) -1

Solution:

(d) a and b are the roots of the equation $x^{2}+a x+b=0$

Sum of roots $=-a$ and product of roots $=b$
Now $a+b=-a$
and $\mathrm{ab}=\mathrm{b}=>\mathrm{a}=1$
$2 \mathrm{a}+\mathrm{b}=0$
$\Rightarrow 2 \times 1+b=0$
$\Rightarrow \mathrm{b}=-2$
Now $\mathrm{a}+\mathrm{b}=1-2=-1$

Question 26.

A quadratic equation whose one root is 2 and the sum of whose roots is zero, is
(a) $x^{2}+4=0$
(b) $x^{2}-4=0$
(c) $4 x^{2}-1=0$
(d) $x^{2}-2=0$

Solution:

(b) Sum of roots of a quad, equation $=0$

One root = 2
Second root $=0-2=-2$
and product of roots $=2 \times(-2)=-4$
Equation will be
$x^{2}+($ sum of roots $) x+$ product of roots $=0$
$x^{2}+0 x+(-4)=0$
$=>x^{2}-4=0$

Question 27.

If one root of the equation $a x^{2}+b x+c=0$ is three times the other, then $b^{2}: a c=$
(a) $3: 1$
(b) $3: 16$
(c) $16: 3$
(d) $16: 1$

Solution:

(c)

Quad. equation is $a x^{2}+b x+c=0$
Let first root $=\alpha$, then
Second root $=3 \alpha$
\therefore Sum of root $=\alpha+3 \alpha=\frac{-b}{a} \Rightarrow 4 \alpha=\frac{-b}{a}$
$\Rightarrow \alpha=\frac{-b}{4 a}$
and produt of roots $=\alpha \times 3 \alpha=\frac{c}{a}$
$\Rightarrow 3 \dot{\alpha}^{2}=\frac{c}{a} \Rightarrow \alpha^{2}=\frac{c}{3 a}$
$\Rightarrow\left(\frac{-b}{4 a}\right)^{2}=\frac{c}{3 a}$
$\Rightarrow \frac{b^{2}}{16 a^{2}}=\frac{c}{3 a}$
$\Rightarrow \frac{b^{2}}{16 a}=\frac{c}{3}$
$\frac{b^{2}}{a c}=\frac{16}{3} \Rightarrow b^{2}: a c=16: 3$

Question 28.

If one root of the equation $2 x^{2}+k x+4=0$ is 2 , then the other root is
(a) 6
(b) -6
(c) -1
(d) 1

Solution:

(d) The given quadratic equation $2 \mathrm{x}^{2}+\mathrm{kx}+4=0$

One root is 2
Product of roots $=\mathrm{ca}=42=2$
Second root $=22=1$

Question 29.
If one root of the equation $x^{2}+a x+3=0$ is 1 , then its other root is
(a) 3
(b) -3
(c) 2
(d) -2

Solution:

(a) The quad, equation is $x^{2}+a x+3=0$

One root $=1$
and product of roots $=\mathrm{ca}=31=3$
Second root $=31=3$

Question 30.

If one root of the equation $4 x^{2}-2 x+(\lambda-4)=0$ be the reciprocal of the other, then $\lambda=$
(a) 8
(b) -8
(c) 4
(d) -4

Solution:

(a)

The quad. equation is $4 x^{2}-2 x+(\lambda-4)=0$
Let first root $=a$
Then second root $=\frac{1}{a}$
Product of roots $=\frac{c}{a}-\frac{\lambda-4}{4}$
$\Rightarrow a \times \frac{1}{a}=\frac{\lambda-4}{4}$
$\Rightarrow \frac{\lambda-4}{4}=1 \Rightarrow \lambda-4=4$
$\Rightarrow \lambda=4+4=8$

Question 31.

If $y=1$ is a common root of the equations $a y^{2}+a y+3=0$ and $y^{2}+y+b=0$, then ab equals
(a) 3
(b) -12
(c) 6
(d) -3 [CBSE 2012]

Solution:

(a)

$$
\begin{aligned}
& y=1 \\
& a x^{2}+a y+3=0 \\
\therefore & a \times(1)^{2}+a \cdot 1+3=0 \\
& a+a+3=0 \Rightarrow 2 a=-3 \\
\Rightarrow & a=\frac{-3}{2} \\
& \text { and } y^{2}+y+b=0 \\
& (1)^{2}+(1)+b=0 \Rightarrow 1+1+b=0 \\
\Rightarrow & 2+b=0 \\
\therefore & b=-2 \\
& a b=\frac{-3}{2} \times(-2)=3
\end{aligned}
$$

Question 32.

The values of k for which the quadratic equation $16 \mathrm{x}^{2}+4 \mathrm{kx}+9=0$ has real and equal roots are
(a) $6,-16$
(b) $36,-36$
(c) $6,-6$
(d) $34,-34$ [CBSE 2014]

Solution:

(c) $16 \mathrm{x}^{2}+4 \mathrm{kx}+9=0$

Here $\mathrm{a}=16, \mathrm{~b}=4 \mathrm{k}, \mathrm{c}=9$
Now $D=b^{2}-4 a c=(4 k)^{2}-4 \times 16 \times 9=16 k^{2}-576$
Roots are real and equal
$\mathrm{D}=0$ or $\mathrm{b}^{2}-4 \mathrm{ac}=0$
$\Rightarrow 16 \mathrm{k}^{2}-576=0$
$\Rightarrow \mathrm{k}^{2}-36=0$
$\Rightarrow \mathrm{k}^{2}=36=(\pm 6)^{2}$
$\mathrm{k}= \pm 6$
$\mathrm{k}=6,-6$

