#### Mark the correct alternative in each of the following : **Question 1.**

If the equation  $x^2 + 4x + k = 0$  has real and distinct roots, then (a) k < 4(b) k > 4(c)  $k \ge 4$ (d) k < 4Solution: (a) In the equation  $x^2 + 4x + k = 0$ a = 1, b = 4, c = k $D = b^2 - 4ac = (4)^2 - 4 x 1 x k = 16 - 4k$ Roots are real and distinct D > 0=> 16 - 4k > 0=> 16 > 4k=>4>k=> k < 4

## **Ouestion 2.**

If the equation  $x^2 - ax + 1 = 0$  has two distinct roots, then (a) |a| = 2(b) |a| < 2(c) |a| > 2(d) None of these Solution: (c) In the equation  $x^2 - ax + 1 = 0$ a = 1, b = -a, c = 1 $D = b^2 - 4ac = (-a)^2 - 4x + 1x + 1 = a^2 - 4$ Roots are distinct D > 0 $=>a^2-4>0$  $=> a^2 > 4$  $=>a^2>(2)^2$ => |a| > 2

# **Question 3.**

If the equation  $9x^2 + 6kx + 4 = 0$ , has equal roots, then the roots are both equal to (a)  $\pm 23$ (b)  $\pm 32$ (c) 0  $(d) \pm 3$ Solution: **(a)** 

In the equation  $9x^2 + 6kx + 4 = 0$ a = 9, b = 6k, c = 4 then  $D = b^2 - 4ac$  $= (6k)^2 - 4 \times 9 \times 4$  $= 36k^2 - 144$ : Roots are equal  $\therefore D = 0$  $\Rightarrow$  36k<sup>2</sup> - 144 = 0  $\Rightarrow$  36k<sup>2</sup> = 144  $\Rightarrow k^2 = \frac{144}{36} = 4 = (\pm 2)^2$  $\therefore k = \pm 2$  $\therefore \text{ Roots are} = \frac{-b}{2a} = \frac{\pm 2 \times 6}{2 \times 9} = \pm \frac{2}{3}$ 

#### **Question 4.**

If  $ax^2 + bx + c = 0$  has equal roots, then c =

A Roots are 
$$= \frac{1}{2a} = \frac{1}{2 \times 9} = \pm \frac{1}{3}$$
  
Question 4.  
If  $ax^2 + bx + c = 0$  has equal roots, then  $c =$   
(a)  $\frac{-b}{2a}$  (b)  $\frac{b}{2a}$   
(c)  $\frac{-b^2}{4a}$  (d)  $\frac{b^2}{4a}$   
Solution:  
(d) In the equation  $ax^2 + bx + c = 0$   
 $D = b^2 - 4ac$   
Roots are equal  
 $D = 0 \Rightarrow b^2 - 4ac = 0$   
 $\Rightarrow 4ac = b^2$   
 $\Rightarrow c = b24a$ 

# (d) In the equation $ax^2 + bx + c = 0$ $D = b^2 - 4ac$ Roots are equal $D = 0 \Longrightarrow b^2 - 4ac = 0$ $=> 4ac = b^2$

#### **Question 5.**

=> c = b24a

If the equation  $ax^2 + 2x + a = 0$  has two distinct roots, if (a)  $a = \pm 1$ (b) a = 0(c) a = 0, 1(d) a = -1, 0Solution: (a) In the equation  $ax^2 + 2x + a = 0$  $D = b^2 - 4ac = (2)^2 - 4x a x a = 4 - 4a^2$ Roots are real and equal D = 0 $=> 4 - 4a^2 = 0$  $=>4=4a^{2}$  $=> 1 = a^2$ 

=>  $a^2 = 1$ =>  $a^2 = (\pm 1)^2$ =>  $a = \pm 1$ 

## Question 6.

The positive value of k for which the equation  $x^2 + kx + 64 = 0$  and  $x^2 - 8x + k = 0$  will both have real roots, is (a) 4 (b) 8 (c) 12 (d) 16 Solution: (d) In the equation  $x^2 + kx + 64 = 0$ a = 1, b = k, c = 64 $D = b^2 - 4ac = k^2 - 4 \times 1 \times 64$  $= k^2 - 256$ : The roots are real JOHS MINCH SWEY  $\therefore D \ge 0 \Rightarrow k^2 - 256 \ge 0$  $\Rightarrow k^2 \ge 256 \Rightarrow k^2 \ge (\pm 16)^2$  $\Rightarrow k \ge 16$ ....(i) Only positive value is taken Now in second equation  $x^2 - 8x + k = 0$  $D = (-8)^2 - 4 \times 1 \times k = 64 - 4k$ ·· Roots are real  $\therefore D \ge 0 \Longrightarrow 64 - 4k \ge 0 \Longrightarrow 64 \ge 4k$ ...(ii)  $16 \ge k$ From (i) and  $16 \ge k \ge 16 \implies k = 16$ Question 7. The value of  $\sqrt{6+\sqrt{6+\sqrt{6+}}}$  ... is (b) 3 (a) 4 (d) 3.5 (c) -2 Solution: **(b)** 

Let 
$$x = \sqrt{6 + \sqrt{6 + \sqrt{6 + \dots}}}$$
  
 $x = \sqrt{6 + x} \Rightarrow x^2 = 6 + x$   
 $\Rightarrow x^2 - x - 6 = 0$   
 $\Rightarrow x^2 - 3x + 2x - 6 = 0$   
 $\Rightarrow x (x - 3) + 2 (x - 3) = 0$   
 $\Rightarrow (x - 3) (x + 2) = 0$   
Either  $x - 3 = 0$ , then  $x = 3$   
or  $x + 2 = 0$ , then  $x = -2$   
Now if  $x = 3$ , then  
 $3 = \sqrt{6 + \sqrt{6 + \sqrt{6 + \dots}}}$   
 $= \sqrt{6 + 3} = \sqrt{9} = 3$   
If  $x = -2$ , then  
 $x = \sqrt{6 + x}$   
 $\Rightarrow -2 = \sqrt{6 - 2} = -2 = \sqrt{4} = 2$   
Which is not possible  
 $x = 3$  is correct

Question 8. If 2 is a root of the equation  $x^2 + bx + 12 = 0$  and the equation  $x^2 + bx + q = 0$  has equal roots, then q = 0.+12=0 then q =(a) 8 (b) - 8(c) 16 (d) -16 Solution:

(c)  $x^2 + bx + 12 = 0$ : 2 is its root, then it will satisfy it  $\therefore (2)^2 + b \times 2 \times 12 \Longrightarrow 4 + 2b + 12 = 0$  $\Rightarrow 2b + 16 = 0 \Rightarrow b = \frac{-16}{2} = -8$ Now equation  $x^{2} + bx + q = 0$ , has equal roots, then  $D = 0 \Rightarrow b^2 - 4q = 0$  $\Rightarrow (-8)^2 - 4q = 0 \Rightarrow 64 = 4q$  $\Rightarrow q = 16$ **Ouestion 9.** If the equation  $(a^2 + b^2) x^2 - 2 (ac + bd) x + c^2 + d^2 = 0$  has equal roots, then , th (a) ab = cd(b) ad = bc (c) ad =  $\sqrt{bc}$ (d)  $ab = \sqrt{cd}$ Solution: **(b)** In the equation  $(a^{2} + b^{2}) x^{2} - 2 (ac + bd) x + (c^{2} + d^{2}) = 0$  $D = B^2 - 4AC$  $= [-2(ac + bd)]^2 - 4(a^2 + b^2)(c^2 + d^2)$  $= 4 \left[ a^2 c^2 + b^2 d^2 + 2abcd \right] - 4 \left[ a^2 c^2 + a^2 d^2 + a$  $b^2c^2 + b^2d^2$  $= 4a^2c^2 + 4b^2d^2 + 8abcd - 4a^2c^2$  $4b^2c^2 - 4b^2d^2$  $= 8abcd - 4a^2d^2 - 4b^2c^2$  $= -4 \left[ a^2 d^2 + b^2 c^2 - 2abcd \right]$  $= -4 (ad - bc)^2$ : Roots are equal  $\therefore$  D = 0  $\Rightarrow$  -4  $(ad - bc)^2 = 0$  $\Rightarrow$  ad - bc = 0  $\Rightarrow$  ad = bc

#### Question 10.

If the roots of the equation  $(a^2 + b^2) x^2 - 2b (a + c) x + (b^2 + c^2) = 0$  are equal, then ; (a) 2b = a + c(b)  $b^2 = ac$ (c) b = 2aca+c(d) b = ac Solution:

**(b)** 

In the equation

 $(a^2 + b^2) x^2 - 2b (a + c) x + (b^2 + c^2) = 0$  $D = B^2 - 4AC$  $= [-2b(a+c)]^2 - 4(a^2+b^2)(b^2+c^2)$  $= 4b^2 (a^2 + c^2 + 2ac) - 4 [a^2b^2 + a^2c^2 + b^4 + c^2 + b^4]$  $b^2c^2$  $= 4a^{2}b^{2} + 4b^{2}c^{2} + 8ab^{2}c - 4a^{2}b^{2} - 4a^{2}c^{2} - 4b^{4}$  $-4b^2c^2$  $= 8ab^2c - 4a^2c^2 - 4b^4$  $= -4 \left[ a^2 c^2 + b^4 - 2ab^2 c \right] = -4 \left[ ac - b^2 \right]^2$ :: Roots are equal  $-4(ac - b)^2 = 0$ 

$$\therefore -4 (ac - b)^2 = 0$$
  
$$\Rightarrow ac - b^2 = 0 \Rightarrow ac = b^2$$
  
$$\Rightarrow b^2 = ac$$

#### Question 11.

If the equation  $x^2 - bx + 1 = 0$  does not possess real roots, then (a) -3 < b < 3(b) -2 < b < 2(c) b > 2(d) b < -2Solution: **(b)** In the equation  $x^2 - bx + 1 = 0$ 

$$D = b^{2} - 4ac = (-b)^{2} - 4 \times 1 \times 1$$
$$= b^{2} - 4$$

- : The roots are not real
- $\therefore D < 0 \Rightarrow b^2 4 < 0$  $\Rightarrow b^2 < 4 \Rightarrow b^2 < (+2)^2$  $\therefore b < 2$  and b > -2 or -2 < b
- $\therefore -2 < b < 2$

# Question 12.

If x = 1 is a common root of the equations  $ax^2 + ax + 3 = 0$  and  $x^2 + x + b = 0$ , then ab = 0(a) 3 (b) 3.5 (c) 6 (d) -3 Solution: (a) In the equation

 $ax^{2} + ax + 3 = 0$  and  $x^{2} + x + b = 0$ Substituting the value of x = 1, then in  $ax^2 + ax + 3 = 0$  $(1)^2 + -(1) + 2 = 0 + - + - + 2 = 0$ 

$$a (1)^{2} + a (1) + 3 = 0 \Rightarrow a + a + 3 = 0$$
  

$$\Rightarrow 2a + 3 = 0 \Rightarrow 2a = -3 \Rightarrow a = \frac{-3}{2}$$
  
and in  $x^{2} + x + b = 0$   
 $(1)^{2} + 1 + b = 0 \Rightarrow 1 + 1 + b = 0 \Rightarrow b = -2$   

$$\therefore ab = \frac{-3}{2} \times (-2) = 3$$

#### Question 13.

If p and q are the roots of the equation  $x^2 - px + q + 0$ , then (a) p = 1, q = -2(b) p = 0, q = 1K.S. March away (c) p = -2, q = 0(d) p = -2, q = 1Solution: **(a)**  $\therefore$  p and q are the roots of the equation

$$x^2 - px + q = 0,$$
  
Sum of roots = -

-p) = pand product of

and product of roots 
$$= a$$

(a) If 
$$p = 1$$
,  $q = -2$ , then equation will be  
 $x^{2} - (s) x + p = 0 \Rightarrow x^{2} - (1 - 2)x + 1 \times (-2) = 0$ 

$$\Rightarrow x^2 + x - 2 = 0$$

(b) If 
$$p = 0$$
,  $q = 1$ , then equation will be  
 $x^{2} - (0 + 1)x + 0 \times 1 = 0$ 

$$\Rightarrow x^2 - x + 0 = 0$$

(c) If 
$$p = -2$$
,  $q = 0$ , then equation will be  
 $x^{2} - (-2 + 0) x + (-2 \times 0)$ 

$$\Rightarrow x^2 + 2x + 0 = 0$$

(d) 
$$p = -2$$
,  $q = 1$ , then equation will be  
 $x^2 - (-2 + 1)x + (-2 \times 1) = 0$ 

$$\Rightarrow x^2 + x - 2 = 0$$

We see that only (a) is correct

When 
$$p = 1, q = -2$$

# Question 14.

1 = 0 having real roots is (a) 10 (b) 7 (c) 6 (d) 12 Solution: **(b)**  $ax^2 + bx + 1 = 0$  $D = b^2 - 4a = b^2 - 4a$ Roots are real  $D \ge 0$  $=> b^2 - 4a \ge 0$  $\Rightarrow b^2 \ge 4a$ Here value of b can be 2, 3 or 4 If b = 2, then a can be 1, If b = 3, then a can be 1, 2 If b = 4, then a can be 1, 2, 3, 4 No. of equation can be 7

## **Question 15.**

The number of quadratic equations having real roots and which do not change by squaring Alteck 2142 their roots is

(a) 4

(b) 3

(c) 2

(d) 1

## Solution:

(c) There can be two such quad, equations whose roots can be 1 and 0 The square of 1 and 0 remains same No. of quad equation are 2

#### **Question 16.**

If  $(a^2 + b^2) x^2 + 2(ab + bd) x + c^2 + d^2 = 0$  has no real roots, then (a) ad = bc(b) ab = cd(c) ac = bd(d) ad  $\neq$  bc Solution:

(d)

$$(a^{2} + b^{2}) x^{2} + 2 (ab + bd) x + c^{2} + d^{2} = 0$$
  
Here A =  $a^{2} + b^{2}$ , B = 2  $(ab + bd)$ , C =  $c^{2} + d^{2}$   
D = B<sup>2</sup> - 4AC =  $[2 (ac + bd)]^{2} - 4 (a^{2} + b^{2})$   
 $(c^{2} + d^{2})$   
= 4  $[a^{2}c^{2} + b^{2}d^{2} + 2abcd] - 4 [a^{2}c^{2} + a^{2}d^{2} + b^{2}c^{2} + b^{2}d^{2}]$   
=  $4a^{2}c^{2} + 4b^{2}d^{2} + 8abcd - 4a^{2}c^{2} - 4a^{2}d^{2} - 4b^{2}c^{2} - 4b^{2}d^{2}$   
=  $-4a^{2}d^{2} - 4b^{2}c^{2} + 8abcd$   
=  $-4 (a^{2}d^{2} + b^{2}c^{2} - 2abcd)$   
=  $-4 (ad - bc)^{2}$   
 $\therefore$  Roots are not real  
 $\therefore$  D < 0  
 $\therefore -4 (ad - bc)^{2} < 0 \Rightarrow (ad - bc)^{2} < 0$   
 $\Rightarrow ad - bc < 0$  or  $ad \neq bc$ 

#### Question 17.

Question 17. If the sum of the roots of the equation  $x^2 - x = \lambda (2x - 1)$  is zero, then  $\lambda = (a) - 2$ (b) 2 (c) -12(d) 12 Solution: (c)  $x^2 - x = \lambda (2x - 1)$   $\Rightarrow x^2 - x = 2\lambda x - \lambda$   $\Rightarrow x^2 - x - 2\lambda x + \lambda = 0$   $\Rightarrow x^2 - (1 + 2\lambda) x + \lambda = 0$ Sum of roots =  $\frac{-b}{a} = \frac{1+2\lambda}{1}$  $\frac{1+2\lambda}{1} = 0 \Longrightarrow 2\lambda = -1$  $\lambda = -\frac{1}{2}$ 

## Question 18.

If x = 1 is a common root of  $ax^2 + ax + 2 = 0$  and  $x^2 + x + b = 0$  then, ab = 0(a) 1 (b) 2

(c) 4 (d) 3 Solution: **(b)**  $ax^2 + ax + 2 = 0$ ....(i)  $x^2 + x + b = 0$ ....(ii) x = 1 is common root of equations (i) and (ii) Then in (i)  $a(1)^2 + a \times 1 + 2 = 0$  $\Rightarrow a + a + 2 = 0 \Rightarrow 2a + 2 = 0$  $\Rightarrow 2a = -2 \Rightarrow a = \frac{-2}{2} = -1$  $\therefore a = -1$ Then in (ii)  $(-1)^2 + 1 + b = 0 \implies 1 + 1 + b = 0$  $\Rightarrow 2 + b = 0 \Rightarrow b = -2$  $\therefore ab = (-1) \times (-2) = 2$ 

#### Question 19.

away The value of c for which the equation  $ax^2 + 2bx + c = 0$  has equal roots is

(a) 
$$\frac{b^2}{a}$$
 (b)  $\frac{b^2}{4a}$   
(c)  $\frac{a^2}{b}$  (d)  $\frac{a^2}{4b}$  (e)  $\frac{a^2}{4b}$   
Solution:  
(a)  $ax^2 + 2bx + c = 0$   
 $D = b^2 - 4ac$   
 $= (2b)^2 - 4 \times a \times c$   
 $= 4b^2 - 4ac$   
 $\therefore$  Roots are equal  
 $\therefore$  D = 0  
 $\Rightarrow 4b^2 - 4ac = 0$   
 $\Rightarrow 4ac = 4b^2$   
 $\Rightarrow c = \frac{4b^2}{4a} = \frac{b^2}{a}$ 

Question 20.  
If 
$$x^2 + k (4x + k - 1) + 2 = 0$$
 has equal roots, then  $k =$ 

(a)  $-\frac{2}{3}$ , 1 (b)  $\frac{2}{3}$ , -1 (c)  $\frac{3}{2}$ ,  $\frac{1}{3}$ (d)  $\frac{3}{2}$ ,  $-\frac{1}{3}$ Solution: **(b)**  $x^{2} + k(4x + k - 1) + 2 = 0$  $\Rightarrow x^2 + 4kx + k^2 - k + 2 = 0$  $\Rightarrow$  Here  $a = 1, b = 4k, c = k^2 - k + 2$  $\therefore D = b^2 - 4ac$  $= (4k)^2 - 4 \times 1 (k^2 - k + 2)$  $= 16k^2 - 4k^2 + 4k - 8$  $= 12k^2 + 4k - 8$ : Roots are equal ∴ D = 0  $\therefore 12k^2 + 4k - 8 = 0$  $\Rightarrow 3k^2 + k - 2 = 0$ (Dividing by 4) Here a = 3, b = 1, c = -2::  $k = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1 \pm \sqrt{1 + 24}}{2 \times 3}$  $=\frac{-1\pm\sqrt{25}}{6}=\frac{-1\pm5}{6}$  $\therefore k = \frac{-1+5}{6} = \frac{4}{6} = \frac{2}{3}$ and  $k = \frac{-1-5}{6} = \frac{-6}{6} = -1$  $\therefore k=\frac{2}{3},-1$ 

## Question 21. If the sum and product of the roots of the equation $kx^2 + 6x + 4k = 0$ are equal, then k =

(a) 
$$-\frac{3}{2}$$
 (b)  $\frac{3}{2}$   
(c)  $\frac{2}{3}$  (d)  $-\frac{2}{3}$ 

Solution:

**(b)**  $kx^2 + 6x + 4k = 0$ Here a = k, b = 6, c = 4k $\mathbf{D} = b^2 - 4ac = (6)^2 - 4 \times k \times 4k$  $= 36 - 16k^2$ 

- · Roots are equal
- $\therefore$  D = 0  $\Rightarrow$  36 16k<sup>2</sup> = 0
- $\Rightarrow 16k^2 = 36$

$$k^{2} = \frac{36}{16} = \left(\frac{6}{4}\right)^{2}$$
$$k = \frac{6}{4} = \frac{3}{2}$$

#### Question 22.

Hitch away ax<sup>2</sup>+t If sin  $\alpha$  and cos  $\alpha$  are the roots of the equations  $ax^2 + bx + c = 0$ , then  $b^2 =$ (a)  $a^2 - 2ac$ (b)  $a^{2} + 2ac$ (b)  $a^{2} - ac$ (d)  $a^{2} + ac$ Solution: **(b)** 

 $\sin \alpha$  and  $\cos \alpha$  are the roots of the equations  $ax^2 + bx + c = 0$ 

$$\therefore$$
 Sum of roots =  $\frac{-b}{a}$  and

product of roots =  $\frac{c}{a}$ 

$$\therefore \sin \alpha + \cos \alpha = \frac{-b}{a}$$
 and  $\sin \alpha \cos \alpha = \frac{a}{a}$ 

 $(\sin \alpha + \cos \alpha)^2 = \left(\frac{-b}{a}\right)^2$ 

$$\Rightarrow \sin^2 \alpha + \cos^2 \alpha + 2 \sin \alpha \cos \alpha = \frac{b^2}{a^2}$$



## Question 23.

police likeling If 2 is a root of the equation  $x^2 + ax + 12 = 0$  and the quadratic equation  $x^2 + ax + q = 0$  has equal roots, then q =(a) 12

(b) 8

(c) 20

(d) 16

Solution:

(d)

2 is a root of equation  $x^2 + ax + 12 = 0$ 

 $\therefore (2)^2 + a \times 2 + 12 = 0 \Longrightarrow 4 + 2a + 12 = 0$ 

$$\Rightarrow 2a = -(12 + 4) \Rightarrow 2a = -16$$

$$\Rightarrow a = \frac{-16}{2} = -8$$

and in quadratic equation roots are equal  $x^2$ +ax + q = 0:  $b^2 - 4ac = 0$  $\Rightarrow a^2 - 4q = 0 \Rightarrow (-8)^2 - 4q = 0$  $\Rightarrow 64 - 4q = 0 \Rightarrow 4q = 64$  $\Rightarrow q = \frac{64}{4} = 16$ ∴ q = 16

#### **Question 24.**

If the sum of the roots of the equation  $x^2 - (k + 6) x + 2(2k - 1) = 0$  is equal to half of their product, then k =

- (a) 6
- (b) 7
- (c) 1 (d) 5

# Solution:

(b) In the quadratic equation  $x^{2} - (k+6)x + 2(2k-1) = 0$ Here a = 1, b = -(k + 6), c = 2(2k - 1)

 $= \frac{[(-k+6)]}{[(-k+6)]}$  $\therefore$  Sum of roots =  $\frac{-b}{a}$ k + 6

and product of roots =  $\frac{c}{a} = \frac{2(2k-1)}{1}$ 

= 4k - 2

But sum of roots =  $\frac{1}{2}$  product of roots

$$\therefore k+6 = \frac{4k-2}{2}$$
$$\Rightarrow k+6 = 2k-1$$
$$\Rightarrow 2k-k = 6+1 \Rightarrow k = 7$$
$$\therefore k = 7$$

# Question 25.

If a and b are roots of the equation  $x^2 + ax + b = 0$ , then a + b = 0(a) 1 (b) 2 (c) -2 (d) -1 Solution: (d) a and b are the roots of the equation  $x^2 + ax + b = 0$ Sum of roots = -a and product of roots = bNow a + b = -aand  $ab = b => a = 1 \dots(i)$ 2a + b = 0 $=> 2 \times 1 + b = 0$ 

=> b = -2Now a + b = 1 - 2 = -1

# **Question 26.**

A quadratic equation whose one root is 2 and the sum of whose roots is zero, is sthoolics, March away

(a)  $x^2 + 4 = 0$ (b)  $x^2 - 4 = 0$ (c)  $4x^2 - 1 = 0$ (d)  $x^2 - 2 = 0$ Solution:

(b) Sum of roots of a quad, equation = 0One root = 2Second root = 0 - 2 = -2and product of roots =  $2 \times (-2) = -4$ Equation will be  $x^{2}$  + (sum of roots) x + product of roots = 0  $x^2 + 0x + (-4) = 0$  $=> x^2 - 4 = 0$ 

# **Ouestion 27.**

If one root of the equation  $ax^2 + bx + c =$ 0 is three times the other, then  $b^2 : ac =$ (a) 3 : 1 (b) 3 : 16 (c) 16 : 3 (d) 16 : 1

Solution:

Quad. equation is  $ax^2 + bx + c = 0$ Let first root =  $\alpha$ , then Second root =  $3\alpha$  $\therefore$  Sum of root =  $\alpha + 3\alpha = \frac{-b}{\alpha} \Rightarrow 4\alpha = \frac{-b}{\alpha}$  $\Rightarrow \alpha = \frac{-b}{4a}$ ....(i) and produt of roots =  $\alpha \times 3\alpha = \frac{c}{a}$  $\Rightarrow 3\dot{\alpha}^2 = \frac{c}{a} \Rightarrow \alpha^2 = \frac{c}{3a}$ S. Hisch away  $\Rightarrow \left(\frac{-b}{4a}\right)^2 = \frac{c}{3a}$ [From (i)]  $\Rightarrow \frac{b^2}{16a^2} = \frac{c}{3a}$  $\Rightarrow \frac{b^2}{16a} = \frac{c}{3}$ (Dividing by a)  $\frac{b^2}{ac} = \frac{16}{3} \Rightarrow b^2 : ac = 16 : 3$ Question 28.

If one root of the equation  $2x^2 + kx + 4 = 0$  is 2, then the other root is (a) 6

(b) -6

(c) -1

(d) 1

# Solution:

(d) The given quadratic equation  $2x^2 + kx + 4 = 0$ One root is 2 Product of roots = ca = 42 = 2

Second root = 22 = 1

# Question 29.

If one root of the equation  $x^2 + ax + 3 = 0$  is 1, then its other root is (a) 3 (b) -3 (c) 2

(c)

(d) -2 Solution: (a) The quad, equation is  $x^2 + ax + 3 = 0$ One root =1 and product of roots = ca = 31 = 3Second root = 31 = 3

## **Question 30.**

If one root of the equation  $4x^2 - 2x + (\lambda - 4) = 0$  be the reciprocal of the other, then  $\lambda =$ (a) 8 (b) -8 (c) 4 (d) -4 Solution: **(a)** The quad. equation is  $4x^2 - 2x + (\lambda - 4) = 0$ Let first root = aThen second root =  $\frac{1}{a}$ Product of roots =  $\frac{c}{a} - \frac{\lambda - 4}{4}$  $\Rightarrow a \times \frac{1}{a} = \frac{\lambda - 4}{4}$  $\Rightarrow \frac{\lambda - 4}{4} = 1 \Rightarrow \lambda - 4 = 4$  $\Rightarrow \lambda = 4 + 4 = 8$ R Question 31.

If y = 1 is a common root of the equations  $ay^2 + ay + 3 = 0$  and  $y^2 + y + b = 0$ , then ab equals (a) 3 (b) - 12 (c) 6 (d) -3 [CBSE 2012]

Solution:

y = 1 $ax^2 + ay + 3 = 0$  $\therefore a \times (1)^2 + a \cdot 1 + 3 = 0$  $a + a + 3 = 0 \Rightarrow 2a = -3$  $\Rightarrow a = \frac{-3}{2}$ and  $y^2 + y + b = 0$  $(1)^2 + (1) + b = 0 \implies 1 + 1 + b = 0$  $\Rightarrow 2 + b = 0$  $\therefore b = -2$  $ab = \frac{-3}{2} \times (-2) = 3$ 

#### Question 32.

The values of k for which the quadratic equation  $16x^2 + 4kx + 9 = 0$  has real and equal roots

 $[J_{10}x^{2} + 4kx + 9 = 0]$ Here a = 16, b = 4k, c = 9 Now D = b<sup>2</sup> - 4ac = (4k)<sup>2</sup> - 4 x 16 x 9 = 16k<sup>2</sup> - 576 Roots are real and equal D = 0 or b<sup>2</sup> - 4ac = 0 => 16k<sup>2</sup> - 576 = 0 => k<sup>2</sup> - 36 = 0 => k<sup>2</sup> - 36 = 0 => k<sup>2</sup> - 36 = (+ c)<sup>2</sup> = ± 6 Sametent  $k = \pm 6$ k = 6, -6

**(a)**