Q1) In a \triangle ABC, if \angle A = 55 0 , \angle B = 40 0 , Find \angle C.

Solution:

Given Data:

$$\angle B = 55^{\circ}$$
, $\angle B = 40^{\circ}$, then $\angle C = ?$

We know that

In a $\triangle ABC$ sum of all angles of a triangle is 180 0

i.e.,
$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$\Rightarrow 55^{0} + 40^{0} + \angle C = 180^{0}$$

$$\Rightarrow 95^0 + \angle C = 180^0$$

$$\Rightarrow \angle C = 180^0 - 95^0$$

$$\Rightarrow \angle C = 85^{\circ}$$

Q2) If the angles of a triangle are in the ratio 1:2:3, determine three angles

Solution:

Given that,

Angles of a triangle are in the ratio 1:2:3

Let the angles be x, 2x, 3x

∴ We know that.

Sum of all angles of triangles is 180^{0}

$$x+2x+3x = 180^0$$

$$=>6x = 180^{0}$$

$$=>_{\mathbf{X}} = \frac{180^{\circ}}{6}$$

$$=>x=30^0$$

Since $x=30^0$

$$2x = 2(30)^0 = 60^0$$

$$3x = 3(30)^0 = 90^0$$

Therefore, angles are 30^{0} , 60^{0} , 90^{0}

Q3) The angles of a triangle are $(x-40^0)$, $(x-20^0)$ and $(\frac{1}{2}x-10^0)$. Find the value of x.

Solution:

Given that,

The angles of a triangle are

$$(x-40^0)$$
, $(x-20^0)$ and $(\frac{1}{2}x-10^0)$

We know that,

Sum of all angles of triangle is 180^{0}

$$\therefore (x - 40^0) + (x - 20^0) + (\frac{1}{2}x - 10^0) = 180^0$$

$$2x + \frac{1}{2}x - 70^0 = 180^0$$

$$\frac{5}{2}x = 180^0 + 70^0$$

$$5x = 2(250)^0$$

$$\mathbf{x} = \frac{500^0}{5}$$

$$x = 100^{0}$$

Q4) The angles of a triangle are arranged in ascending order of magnitude. If the difference between two consecutive angles is 10^0 , find the three angles.

Solution:

Given that,

The difference between two consecutive angles is $10^{0}\,$

Let x, $x+10^0$, $x+20^0$ be the consecutive angles that differ by 10^0

We know that,

Sum of all angles in a triangle is 180°

$$x+x+10^0+x+20^0=180^0$$

$$3x+30^0 = 180^0$$

$$=>3x = 180^0 - 30^0$$

$$=>3x = 150^0$$

$$=>x=50^0$$

Therefore, the required angles are

$$x = 50^0$$

$$x+10^0 = 50^0 + 10^0 = 60^0$$

$$x+20^0 = 50^0 + 20^0 = 70^0$$

As the difference between two consecutive angles is 10^{0} , the three angles are 50^{0} , 60^{0} , 70^{0} .

Q5) Two angles of a triangle are equal and the third angle is greater than each of those angles by 30° . Determine all the angles of the triangle.

Solution:

Given that,

Two angles of a triangle are equal and the third angle is greater than each of those angles by 30° .

Let x, x, $x+30^0$ be the angles of a triangle

We know that,

Sum of all angles in a triangle is 180^{0}

$$x + x + x + 30^0 = 180^0$$

$$3x + 30^0 = 180^0$$

$$3x = 180^0 - 30^0$$

$$3x = 150^0$$

$$x = 50^{0}$$

Therefore, the three angles are 50^{0} , 50^{0} , 80^{0} .

Q6) If one angle of a triangle is equal to the sum of the other two, show that the triangle is a right angle triangle.

Solution:

If one angle of a triangle is equal to the sum of the other two angles

$$\Rightarrow \angle B = \angle A + \angle C$$

In $\triangle ABC$,

Sum of all angles of a triangle is 180^0

$$=> \angle A + \angle B + \angle C = 180^{\circ}$$

$$\Rightarrow \angle B + \angle B = 180^0 [\angle B = \angle A + \angle C]$$

$$=>2\angle B=180^0$$

$$=> \angle B = \frac{180^{\circ}}{2}$$

$$=> \angle B = 90^0$$

Therefore, ABC is a right angled triangle.

Q7) ABC is a triangle in which $\angle A = 72^0$, the internal bisectors of angles B and C meet in O. Find the magnitude of $\angle BOC$.

Solution:

Given,

ABC is a triangle where $\angle A = 72^0$ and the internal bisector of angles B and C meeting 0.

In $\triangle ABC$,

$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$=>72^{0} + \angle B + \angle C = 180^{0}$$

$$=> \angle B + \angle C = 180^0 - 72^0$$

Dividing both sides by '2'

$$\Rightarrow \frac{\angle B}{2} + \frac{\angle C}{2} = \frac{108^0}{2}$$

$$\Rightarrow \angle OBC + \angle OCB = 54^0$$

Now, In $\triangle BOC \Rightarrow \angle OBC + \angle OCB + \angle BOC = 180^{\circ}$

$$=>54^0 + \angle BOC = 180^0$$

$$\Rightarrow \angle BOC = 180^{0} - 54^{0} = 126^{0}$$

$$\therefore \angle BOC = 126^0$$

Q8) The bisectors of base angles of a triangle cannot enclose a right angle in any case.

Solution:

In ΔXYZ ,

Sum of all angles of a triangle is 180°

i.e.,
$$\angle X + \angle Y + \angle Z = 180^0$$

Dividing both sides by '2'

$$\Rightarrow \frac{1}{2} \angle X + \frac{1}{2} \angle Y + \frac{1}{2} \angle Z = 180^{0}$$

=>
$$\frac{1}{2}$$
 \angle X + \angle OY Z + \angle OY Z = 90^0 [: OY, OZ, \angle Y and \angle Z]

$$\Rightarrow \angle OYZ + \angle OZY = 90^0 - \frac{1}{2} \angle X$$

Now in $\Delta Y OZ$

$$\therefore \angle Y OZ + \angle OY Z + \angle OZY = 180^{\circ}$$

$$\Rightarrow \angle Y OZ + 90^0 - \frac{1}{2} \angle X = 180^0$$

$$\Rightarrow \angle Y OZ = 90^0 - \frac{1}{2} \angle X$$

Therefore, the bisectors of a base angle cannot enclosure right angle.

Q9) If the bisectors of the base angles of a triangle enclose an angle of 135° , prove that the triangle is a right angle.

Solution:

Given the bisectors of the base angles of a triangle enclose an angle of 135°

i.e.,
$$\angle BOC = 135^0$$

But, We know that

$$\angle BOC = 90^0 + \frac{1}{2} \angle A$$

$$=>135^0 = 90^0 + \frac{1}{2} \angle A$$

$$\Rightarrow \frac{1}{2} \angle A = 135^0 - 90^0$$

$$=> \angle A = 45^0(2)$$

$$=> \angle A = 90^0$$

Therefore, $\triangle ABC$ is a right angle triangle that is right angled at A.

Q10) In a $\triangle ABC$, $\angle ABC = \angle ACB$ and the bisectors of $\angle ABC$ and $\angle ACB$ intersect at 0 such that $\angle BOC = 120^{0}$. Show that $\angle A = \angle B = \angle C = 60^{0}$.

Solution:

Given,

In $\triangle ABC$,

$$\angle ABC = \angle ACB$$

Dividing both sides by '2'

$$\frac{1}{2} \angle ABC = \frac{1}{2} \angle ACB$$

$$\Rightarrow \angle OBC = \angle OCB$$

 $\Rightarrow \angle OBC = \angle OCB$ [: OB, OC bisects $\angle B$ and $\angle C$]

Now,

$$\angle BOC = 90^0 + \frac{1}{2} \angle A$$

$$\Rightarrow 120^0 - 90^0 = \frac{1}{2} \angle A$$

$$=>30^0*(2)=\angle A$$

$$=> \angle A = 60^0$$

Now in $\triangle ABC$

$$\angle A + \angle ABC + \angle ACB = 180^{\circ}$$
 (Sum of all angles of a triangle)

$$=>60^{0} + 2 \angle ABC = 180^{0}$$

$$[: \angle ABC = \angle ACB]$$

$$\Rightarrow 2\angle ABC = 180^{0} - 60^{0}$$

$$=>$$
 \angle ABC $=\frac{120^{\circ}}{2}=60^{\circ}$

$$\Rightarrow$$
 \angle ABC = \angle ACB

$$\therefore \angle ACB = 60^{\circ}$$

Hence Proved.

Q11) Can a triangle have:

- (i) Two right angles?
- (ii) Two obtuse angles?
- (iii) Two acute angles?
- (iv) All angles more than 60°?
- (v) All angles less than 60°?
- (vi) All angles equal to 60"?

Justify your answer in each case.

Sol:

(i) No,

Two right angles would up to 180°. So the third angle becomes zero. This is not possible, so a triangle cannot have two right angles. [Since sum of angles in a triangle is 180⁰]

(ii) No,

A triangle can't have 2 obtuse angles. Obtuse angle means more than 90° So that the sum of the two sides will exceed 180° which is not possible. As the sum of all three angles of a triangle is 180°.

(iii) Yes

A triangle can have 2 acute angles. Acute angle means less the 90" angle.

(iv) No

Having angles more than 60^0 make that sum more than 180^0 . This is not possible. [Since the sum of all the internal angles of a triangle is 180^0]

(v) No

Having all angles less than 60^0 will make that sum less than 180^0 which is not possible.[Therefore, the sum of all the internal angles of a triangle is 180^0]

(vi) Yes

A triangle can have three angles equal to 60° . Then the sum of three angles equal to the 180° . Such triangles are called as equilateral triangle. [Since, the sum of all the internal angles of a triangle is 180°]

Q12) If each angle of a triangle is less than the sum of the other two, show that the triangle is acute angled.

Solution

Given each angle of a triangle less than the sum of the other two

$$\therefore \angle X + \angle Y + \angle Z$$

$$\Rightarrow \angle X + \angle X < \angle X + \angle Y + \angle Z$$

$$\Rightarrow 2\angle X < 180^0$$
 [Sum of all the angles of a triangle]

$$=> \angle X < 90^0$$

Similarly
$$\angle Y \le 90^0$$
 and $\angle Z \le 90^0$

Hence, the triangles are acute angled.