Surface Area and Volumes of a Sphere - 21.1

1.

Sol:

(i) Given radius $=10 \cdot 5 \mathrm{~cm}$

Surface area $=4 \pi r^{2}$
$=4 \times \frac{22}{7} \times(10 \cdot 5)^{2}$
$=1386 \mathrm{~cm}^{2}$
(ii) Given radius $=5 \cdot 6 \mathrm{~cm}$

Surface area $=4 \pi r^{2}=4 \times \frac{22}{7} \times(5 \cdot 6)^{2}=394 \cdot 24 \mathrm{~cm}^{2}$
(iii) Given radius $=14 \mathrm{~cm}$

Surface area $=4 \pi r^{2}=4 \times \frac{22}{7} \times(14)^{2}=2464 \mathrm{~cm}^{2}$
2.

Sol:

(i) Diameter $=14 \mathrm{~cm}$

Radius $=\frac{\text { Diameter }}{2}=\frac{14}{2}=7 \mathrm{~cm}$
\therefore Surface area $=4 \pi r^{2}=4 \times \frac{22}{7} \times(7)^{2}=616 \mathrm{~cm}^{2}$
(ii) Diameter $=21 \mathrm{~cm}$

Radius $=\frac{\text { Diameter }}{2}=\frac{21}{2}=10.5 \mathrm{~cm}$
\therefore Surface area $=4 \pi r^{2}=4 \pi \times(10 \cdot 5)^{2}=4 \times \frac{22}{7} \times 10 \cdot 5^{2}=1386 \mathrm{~cm}^{2}$
(iii) Diameter $=3.5 \mathrm{~cm}$

Radius $=3.5 \mathrm{~cm} / 2=1.75 \mathrm{~cm}$
\therefore Surface area $=4 \pi r^{2}=4 \times \frac{22}{7} \times \frac{3 \cdot 5}{2^{2}}=38 \cdot 5 \mathrm{~cm}^{2}$
3.

Sol:

The surface area of the hemisphere $=2 \pi r^{2}$
$=2 \times 3 \cdot 14 \times(10)^{2}$
$=628 \mathrm{~cm}^{2}$
The surface area of solid hemisphere $=3 \pi r^{2}$
$=3 \times 3 \cdot 14 \times(10)^{2}$
$=942 \mathrm{~cm}^{2}$
4.

Sol:

Surface area of a sphere is $5544 \mathrm{~cm}^{2}$
$\Rightarrow 4 \pi r^{2}=5544$
$\Rightarrow \frac{4 \times 22}{7} \times r^{2}=5544$
$\Rightarrow r^{2}=\frac{5544 \times 7}{88}$
$\Rightarrow r=\sqrt{21 \mathrm{~cm} \times 21 \mathrm{~cm}}=\sqrt{(21)^{2}} \mathrm{~cm}$
$\Rightarrow r=21 \mathrm{~cm}$.
Diameter $=2$ (radius)
$=2(21 \mathrm{~cm})$
$=42 \mathrm{~cm}$.
5.

Sol:

Given
Inner diameter of hemisphere bowl $=10 \cdot 5 \mathrm{~cm}$
Radius $=\frac{10 \cdot 5}{2} \mathrm{~cm}=5 \cdot 25 \mathrm{~cm}$.
Surface area of hemispherical bowl $=2 \pi r$
$=2\left[\frac{22}{7}\right] \times(5 \cdot 25)^{2} \mathrm{~cm}^{2}$
$=173 \cdot 25 \mathrm{~cm}^{2}$.
Cost of tin planning $100 \mathrm{~cm}^{2}$ area $=$ Rs 4
Cost of tin planning $173 \cdot 25 \mathrm{~cm}^{2}$ area $=R s\left(\frac{4 \times 173 \cdot 25}{100}\right)$
$=$ Rs 6.93
Thus, The cost of tin plating the inner side of se hemisphere bowl is Rs 6.93
6.

Sol:

Dome Radius $=63 \mathrm{~d} m=6 \cdot 3 \mathrm{~m}$
Inner $S \cdot A$ of dome $=2 \pi r^{2}=2 \times \frac{22}{7} \times(6 \cdot 3)^{2}=249 \cdot 48 \mathrm{~m}^{2}$
Now, cost of $1 m^{2}=$ Rs 2.
\therefore Cost of $249 \cdot 48 m^{2}=R s[2 \times 249 \cdot 48]$
$=$ Rs 498.96.
7.

Sol:

$\frac{3^{t h}}{4}$ of earth surface is covered by water
$\therefore \frac{1}{4}^{\text {th }}$ earth surface is covered by c and
\therefore Surface area covered by land $=\frac{1}{4} \times 4 \pi r^{2}$
$=\frac{1}{4} \times 4 \times \frac{22}{7} \times 6370^{2}$
$=1275 \cdot 27400 \mathrm{~km}^{2}$
8.

Sol:

Given length of the shape $=7 \mathrm{~cm}$

$$
\text { But length }=r+r
$$

$\Rightarrow 2 r=7 \mathrm{~cm}$
$\Rightarrow r=\frac{7}{2} \mathrm{~cm}$
$\Rightarrow r=3 \cdot 5 \mathrm{~cm}$
Also; $h=r$

Total S.A of shape $=2 \pi r h+2 \pi r^{2}=2 \pi r^{2}=2 \pi r \times r+2 \pi r^{2}$
$=2 \pi r^{2}+2 \pi r^{2}$
$=4 \pi r^{2}$
$=4 \times \frac{22}{7} \times(3 \cdot 5)^{2}$
$=154 \mathrm{~cm}^{2}$
9.

Sol:

Diameter of cone $=16 \mathrm{~cm}$.
\therefore Radius of cone $=8 \mathrm{~cm}$.
Height of cone $=15 \mathrm{~cm}$
Slant height of cone $=\sqrt{8^{2}+15^{2}}$
$=\sqrt{64+225}$
$=\sqrt{289}$
$=17 \mathrm{~cm}$
\therefore Total curved surface area of toy
$=\pi r l+2 \pi r^{2}$
$=\frac{22}{7} \times 8 \times 17+2 \times \frac{22}{7} \times 5^{2}$
$=\frac{5808}{7} \mathrm{~cm}^{2}$
Now, cost of $100 \mathrm{~cm}^{2}=$ Rs 7
$1 \mathrm{~cm}^{2}=R s \frac{7}{100}$
Hence, cost of $\frac{5808}{7} \mathrm{~cm}^{2}=\operatorname{Rs}\left(\frac{5808}{7} \times \frac{7}{100}\right)$
$=R s 58 \cdot 08$
10.

Sol:

Diameter of cylinder $=1.4 \mathrm{~m}$
\therefore Radius of cylinder $=\frac{1 \cdot 4}{2}=0.7 \mathrm{~m}$
Height of cylinder $=8 \mathrm{~m}$.
$\therefore S \cdot A$ of $\operatorname{tank}=2 \pi r h+2 \pi r^{2}$
$=2 \times \frac{22}{7} \times 0 \cdot 7 \times 8+2 \times \frac{22}{7} \times(0 \cdot 7)^{2}$
$=\frac{176}{5}+\frac{77}{25}$
$=\frac{957}{25}=38 \cdot 28 \mathrm{~cm}^{2}$

Now, cost of $1 m^{2}=R s 10$.
\therefore Cost of $38 \cdot 28 m^{2}=R s[10 \times 38 \cdot 28]$
$=$ Rs $382 \cdot 80$
11.

Sol:

Let the diameter of the earth is f then, diameter of moon will be $\frac{d}{4}$
Radius of earth $=\frac{d}{2}$
Radius of moon $=\frac{\frac{d}{2}}{4}=\frac{d}{8}$
$S \cdot A$ of moon $=4 \pi\left(\frac{d}{8}\right)^{2}$
Surface area of earth $=4 \pi\left(\frac{d}{2}\right)^{2}$
Required ratio $=\frac{4 \pi\left(\frac{d}{8}\right)^{2}}{4 \pi\left(\frac{d}{2}\right)^{2}}=\frac{4}{64}=\frac{1}{16}$
Thus, the required ratio of the surface areas is $\frac{1}{16}$
12.

Sol:

Given that only the rounded surface of the dome to be painted, we would need to find the curved surface area of the hemisphere to know the extent of painting that needs to be done. Now, circumference of the dome $=17 \cdot 6 \mathrm{~m}$.
Therefore, $17 \cdot 6=2 \pi r$.
$2 \times \frac{22}{7} r=17 \cdot 6 m$.
So, the radius of the dome $=17 \cdot 6 \times \frac{7}{2 \times 22} m=2 \cdot 8 m$
The curved surface area of the dome $=2 \pi r^{2}$
$=2 \times \frac{22}{7} \times 2 \cdot 8 \times 2 \cdot 8 \mathrm{~cm}^{2}$
$=49 \cdot 28 \mathrm{~m}^{2}$
Now, cost of painting $100 \mathrm{~cm}^{2}$ is Rs 5.

So, cost of painting $1 m^{2}=$ Rs 500
Therefore, cost of painting the whole dome
$=$ Rs $500 \times 49 \cdot 28$
$=$ Rs 24640
13.

Sol:

Wooden sphere radius $=\left(\frac{21}{2}\right) c m=10 \cdot 5 \mathrm{~cm}$.
Surface area of a wooden sphere
$=4 \pi r^{2}=4\left[\frac{22}{7}\right][10 \cdot 5]^{2} \mathrm{~cm}^{2}=1386 \mathrm{~cm}^{2}$
Radius (r^{1}) of cylindrical support $=1.5 \mathrm{~cm}$
Height $\left(h^{1}\right)$ of cylindrical support $=7 \mathrm{~cm}$
CSA of cylindrical support $=2 \pi r^{1} h\left[2 \times \frac{22}{7} \times 1 \cdot 5 \times 7\right]$
$=66 \mathrm{~cm}^{2}$
Area of circular end of cylindrical support $=\pi r^{2}\left[\frac{22}{7}(1.5)^{2}\right]=7 \cdot 07 \mathrm{~cm}^{2}$
Area to be painted silver $=[8 \times(1386-7 \cdot 07)] \mathrm{cm}^{2}$
$=8(1378 \cdot 93) \mathrm{cm}^{2}$
$=11031.44 \mathrm{~cm}^{2}$
Cost occurred in painting silver color
$=R s(11031 \cdot 44 \times 0 \cdot 25)=R s 2757.86$
Area to painted black $=(8 \times 66) \mathrm{cm}^{2}=528 \mathrm{~cm}^{2}$
Cost occurred in painting black color $=\operatorname{Rs}(528 \times 0 \cdot 05)=R s 26.40$
\therefore Total cost occurred in painting $=R s(2757 \cdot 86+26 \cdot 40)=R s 2789 \cdot 26$

