Surface Area and volume of A Right Circular cone - 20.1

1.

Sol:

Given that
Radius of its base is 21 cm
Slant height $=60 \mathrm{~cm}$
WKT, Curved surface area of a cone $=\pi r l$
\therefore Curved surface area $=\frac{22}{7} \times 21 \times 60$
$=3960 \mathrm{~cm}^{2}$
2.

Sol:

Given,
Radius of a cone $=12 \mathrm{~cm}=h$
Height of a cone $=12 \mathrm{~cm}=h$
Slant height of the cone $=\sqrt{r^{2}+h^{2}}$
$=\sqrt{5^{2}+12^{2}}=13 \mathrm{~cm}$
\therefore Curved surface Area $=\pi r l$
$=\frac{22}{7} \times 5 \times 12$
$=204 \cdot 28 \mathrm{~cm}^{2}$
3.

Sol:

Given
Radius of a cone $(r)=7 \mathrm{~cm}$.
Let ' l ' be the slant height of a cone
\therefore Curved surface area $=\pi r l$.
$\Rightarrow 176=\pi \times 7 \times l$
$\Rightarrow l=\frac{176}{7 \pi}=\frac{176 \times 7}{7 \times 22}=8 \mathrm{~cm}$.
4.

Sol:

Given that
Slant height ' l ' $=28 \mathrm{~m}$.
Height of cone $(h)=21 \mathrm{~cm}$
\therefore Radius of cone $(r)=\sqrt{25^{2}-21^{2}} \quad$ [by Pythagoras theorem]
$=7 \sqrt{7} \mathrm{~cm}$
\therefore Area of base $=\pi r^{2}$
$=\frac{22}{7} \times(7 \sqrt{7})^{2}$
$=\frac{22}{7} \times 7 \times 7 \times 7=1078 \mathrm{~cm}^{2}$.
5.

Sol:

WKT, Total surface area $=\pi r l+\pi r^{2}$
Now $l=\sqrt{h^{2}+r^{2}}$
[by Pythagoras theorem]

Here, given

Radius $=6 \mathrm{~cm}$ and height $=8 \mathrm{~cm}$
\Rightarrow length $=\sqrt{6^{2}+8^{2}}$
$=10 \mathrm{~cm}$
\therefore Total surface area $=\pi r l+\pi r^{2}$
$=\left(\frac{22}{7} \times 6 \times 10\right)+\left(\frac{22}{7} \times 6 \times 6\right)$
$=\left(\frac{1320}{7}\right)+\frac{792}{7}=301 \cdot 71 \mathrm{~cm}^{2}$
6.

Sol:

Given that,
Radius of a base of a cone $=5 \cdot 25 \mathrm{~cm}$
Slant height of cone $=10 \mathrm{~cm}$
Curved surface area of cone $=\pi r l$
$=\frac{22}{7} \times 5 \cdot 25 \times 10 \mathrm{~cm}^{2}$
$=(22 \times 0.75 \times 10) \mathrm{cm}^{2}$
$=165 \mathrm{~cm}^{2}$
Thus, the curved surface area of a cone is
$165 \mathrm{~cm}^{2}$
7.

Sol:

Given that,
Radius of base of cone $=\left(\frac{24}{2}\right)=12 m$
Slant height of cone $=21 \mathrm{~m}$.
Total surface area of cone $=\pi r^{2}+\pi r l$
$=\pi r(r+l)$
$=\frac{22}{7} \times 12 \times(12+21)$
$=\frac{22}{7} \times 12 \times 33 \mathrm{~m}^{2}$
$=1244 \cdot 57 \mathrm{~m}^{2}$.
8.

Sol:

Given that
Curved surface area of cone $=60 \pi \mathrm{~cm}^{2}$
\therefore Slant height of cone $(l)=8 \mathrm{~cm}$.
i.e., $\pi r l=60 \pi$
$\Rightarrow \pi \times r \times 8=60 \pi$
$\Rightarrow r=\frac{60}{8}=7.5$
\therefore Radius of cone $=7 \cdot 5 \mathrm{~cm}$.
9.

Sol:

Given diameter $=70 \mathrm{~cm}$
$\Rightarrow 2 r=70 \mathrm{~cm}$
$\Rightarrow r=35 \mathrm{~cm}$

Now, curved surface area $=4070 \mathrm{~cm}^{2}$
$\Rightarrow \pi r l=4070$
Where $r=$ radius of the cone
$l=$ slant height of the cone
$\therefore \pi r l=4070$
$\Rightarrow \frac{22}{7} \times 35 \times l=4070$
$\Rightarrow l=\frac{4070 \times 7}{22 \times 35}=37 \mathrm{~cm}$
\therefore Slant height of the cone $=37 \mathrm{~cm}$.
10.

Sol:

Given that,
Curved surface area $=\pi r l=792$.
Let the radius $(r)=4 x$
Height $(h)=7 x$
Now, CSA $=792$
$\frac{22}{7} \times 4 x \times 7 x=792$
$\Rightarrow 88 x^{2}=792$
$\Rightarrow x^{2}=\frac{792}{88}=9$.
$\Rightarrow x=3$.
\therefore Radius $=4 x=4 \times 3=12 \mathrm{~cm}$.
11.

Sol:

Given that,
Radius of conical cap $(r)=7 \mathrm{~cm}$.
Height of conical cap $(h)=24 \mathrm{~cm}$.
Slant height (I) of conical cap $=\sqrt{r^{2}+h^{2}}$
$=\sqrt{(7)^{2}+(24)^{2}} \mathrm{~cm}$
$=25 \mathrm{~cm}$
CSA of 1 conical cap $=\pi r l=\frac{22}{7} \times 7 \times 25 \mathrm{~cm}^{2}=550 \mathrm{~cm}^{2}$

Curved surface area of 0 such 10 conical caps $=5500 \mathrm{~cm}^{2}$
$[\because 550 \times 10]$
Thus, $5500 \mathrm{~cm}^{2}$ sheet will be req for making of 10 caps.
12.

Sol:

Given that,
Diameter of two cones area equal
\therefore Their radius are equal
Let $r_{1}=r_{2}=r$
Let ratio be x
\therefore Slant height l_{1} of $1^{\text {st }}$ cone $=4 x$
Similarly slant height l_{2} of $2^{\text {nd }}$ cone $=3 x$.
$\therefore \frac{C \cdot S A_{1}}{C \cdot S A_{2}}=\frac{\pi r_{1} l_{1}}{\pi r_{2} l_{2}}=\frac{\pi \times r \times 4 x}{\pi \times r \times 3 x}=\frac{4}{3}$.
13.

Sol:

Let curved surface area off $1^{\text {st }}$ cone $=2 x$
CSA of $2^{\text {nd }}$ cone $=x$
and slant height of $1^{\text {st }}$ cone $=h$
and slant height of $2^{\text {nd }}$ cone $=2 h$
$\therefore \frac{\text { CSA of } 1^{\text {st }} \text { cone }}{\text { CSA of } 2^{\text {nd }} \text { cone }}=\frac{2 x}{x}=\frac{2}{1}$.
$\Rightarrow \frac{\pi r_{1} l_{1}}{\pi r_{2} l_{2}}=\frac{2}{1}$
$\Rightarrow \frac{r_{1} h}{r_{2} h}=\frac{2}{1} \Rightarrow \frac{r_{1}}{r_{2}}=\frac{4}{1}$.
i.e., ratio of r_{1} and r_{2} is (4:1)
14.

Sol:

Given that,
Diameters of two cones are equal
\therefore Their radius are also equal i.e., $r_{1}=r_{2}$
Let the ratio of slant height be x
$\therefore l_{1}=5 x$ and $l_{2}=4 x$
\therefore Ratio of curved surface area $=\frac{C_{1}}{C_{2}}$
$\therefore \frac{C_{1}}{C_{2}}=\frac{\pi r_{1} l_{1}}{\pi r_{2} l_{2}}=\frac{\pi r_{1} S x}{\pi r_{2}(4 x)}=\frac{5}{4}$
\therefore Ratio of curved surface area $=5: 4$
15.

Sol:

(i) Given that,

Slant height of cone $=14 \mathrm{~cm}$
Let radius of circular end of cone $=r$.
Curved surface area of cone $=\pi r h$
$308 \mathrm{~cm}^{2}=\left(\frac{22}{7} \times r \times 14\right) \mathrm{cm} \quad\left[\because C S A=308 \mathrm{~cm}^{2}\right)$
$\Rightarrow r=\frac{308}{44} \mathrm{~cm}=7 \mathrm{~cm}$
Thus, radius of circular end of cone $=7 \mathrm{~cm}$
(ii) Given that $\mathrm{CSA}=308 \mathrm{~cm}^{2}$

WKT, total surface area of cone
= curved surface area of cone + area of base
$=\pi r l+\pi r^{2}$
$=\left[308+\frac{22}{7}(7)^{2}\right] \mathrm{cm}^{2}$
$=308+154 \mathrm{~cm}^{2}$
$=462 \mathrm{~cm}^{2}$
Thus, the total SA of the cone is $462 \mathrm{~cm}^{2}$.
16.

Sol:

Given that,
Slant height of conical tomb $(l)=25 \mathrm{~m}$
Base radius (r) of tomb $=\frac{14}{2} m=7 m$.
CSA of conical length tomb $=\pi r l$
$=\left(\frac{22}{7} \times 7 \times 25\right) m^{2}$
$=550 \mathrm{~m}^{2}$
Cost of white - washing $100 m^{2}$ area $=$ Rs 210
Cost of white - washing $550 \mathrm{~m}^{2}$ area $=R s\left(\frac{210 \times 550}{100}\right)$
= Rs 1155 .
17.

Sol:

(i) Given that

Height of conical tent $(h)=10 \mathrm{~m}$
Radius of conical tent $(r)=24 m$.
Let slant height of conical tent be l
$l^{2}=h^{2}+r^{2}=(100 m)^{2}+(24 m)^{2}=(100+576) m^{2}$
$=676 \mathrm{~m}^{2}$
$l=26 \mathrm{~m}$.
Thus, the slant height of the conical tent is 26 m .
(ii) Given that

Radius $(r)=24$
Slant height $(l)=26$
CSA of tent $=\pi r l=\frac{22}{7} \times 24 \times 26=\frac{1378}{7} \mathrm{~m}^{2}$
Cost of $1 \mathrm{~m}^{2}$ canva $S=R \mathrm{~s} 70$.
Cost of $\frac{137}{7} 28 \mathrm{~m}^{2}$ canvas $=\frac{13728}{7} \times 10$
$=R s 1,37,280$.
Thus, the cost of canvas required to make the tent is Rs 137280.
18.

Sol:

Given that,
Diameter of cylinder $=24 \mathrm{~m}$
\therefore Radius $=\frac{\text { diameter }}{2}=\frac{24 \mathrm{~cm}}{2}=12 \mathrm{~cm}$
Also Radius of cone $=12 \mathrm{~m}$.

Height of cylinder $=11 \mathrm{~m}$
Height of cone $=16-11=5 \mathrm{~m}$
Slant height of cone $=\sqrt{h^{2}+r^{2}}$
$=\sqrt{6^{2}+12^{2}}=13 \mathrm{~m}$
$\left[\because l=\sqrt{r^{2}+h^{2}}\right]$
\therefore area of canvas required for the
tent $=\pi r l+2 \pi r h$
$=\frac{22}{7}[12 \times 13+2 \times 12 \times 11]$
$=490 \cdot 285+829 \cdot 714$
$=1320 \mathrm{~m}^{2}$.
19.

Sol:

Given diameter $=105 \mathrm{~m}$
Radius $=\frac{105}{2} m=52 \cdot 5 m$.
\therefore Curved surface area of circus tent $=\pi r l+2 \pi r h$
$=\frac{22}{7} \times 52 \cdot 5 \times 53+2 \times 52 \cdot 5 \times 3 \times \frac{22}{7}$
$=8745+990$
$=9735 \mathrm{~m}^{2}$
\therefore Length of the canvas equation for tent $=\frac{\text { Area of canvas }}{\text { width of canvas }}$
$=\frac{9735}{5}=1947 \mathrm{~m}$
20.

Sol:

WKT, CSA of cone $=\pi r l$
Given circumference $=2 \pi r$
$\Rightarrow 2 \times \frac{22}{7} \times r=44 \Rightarrow \frac{r}{7}=1 \Rightarrow r=7 \mathrm{~m}$
$\therefore L=\sqrt{r^{2}+h^{2}}=\sqrt{7^{2}+10^{2}}=\sqrt{149} \mathrm{~m}$
$\therefore C S A$ of tent $=\pi r l=\frac{22}{7} \times 7 \times \sqrt{149}=22 \sqrt{149}$.
\therefore The length of can vas used in making tent

$$
\begin{aligned}
& =\frac{\text { Area of canvas }}{\text { width of canvas }} \\
& =\frac{22 \sqrt{149}}{2}=11 \sqrt{149} \\
& =134 \cdot 2 \mathrm{~m} .
\end{aligned}
$$

21.

Sol:

Given that,
Height of conical tent $(h)=8 m$.
Radius of base of tent $(r)=6 m$.
Slant height $(l)=\sqrt{r^{2}+h^{2}}=\sqrt{8^{2}+6^{2}}=\sqrt{100}=10 \mathrm{~m}$
CSA of conicalten $t=\pi r l=(3 \cdot 14 \times 6 \times 10) m^{2}$
$=188 \cdot 4 \mathrm{~m}^{2}$
Let the length of tarpaulin sheet require be L
As 200 m will be wasted, So effective length will be $(L-0 \cdot 2 m)$
Breadth of tarpaulin $=3 \mathrm{~m}$
Area of sheet $=$ CSA o sheet
$(L \times 0 \cdot 2 m \times 3) m=188 \cdot 40 m^{2}$
$\Rightarrow L-0 \cdot 2 m=62 \cdot 8 m$
$\Rightarrow L=63 \mathrm{~m}$
Thus, the length of the tarpaulin sheet will be $=163 \mathrm{~m}$.
22.

Sol:

Radius of cone $(r)=\frac{40}{2}=20 \mathrm{~m}=0 \cdot 2 \mathrm{~m}$.
Height of cone $=1 \mathrm{~m}$.
Slant height of cone $(l)=\sqrt{h^{2}+r^{2}}$
$=\sqrt{1^{2}+(0 \cdot 2)^{2} m}$
$=\sqrt{1.04} \mathrm{~m}=1.02 \mathrm{~m}$
Curved surface area of each one
$=\pi r l=(3.14 \times 0.2 \times 1.02) m^{2}$

$$
=0 \cdot 64056 \mathrm{~m}^{2}
$$

CSA of so such cone $=50 \times 0 \cdot 64056 \mathrm{~m}^{2}=32 \cdot 028 \mathrm{~m}^{2}$
Cost of painting $1 \mathrm{~m}^{2}$ area $=$ Rs 12.
Cost of painting $32 \cdot 028 m^{2}$ area $=R s(32 \cdot 028 \times 12)$
= Rs 384-326 PS.
Thus, it will cost Rs 38434 (Approx) in painting the so hollow cones.
23.

Sol:

Let us assume radius of cone $=r$.
Also, radius of cylinder $=r$.
Height of cone $=h$
And, height of cylinder $=h$.
Let C, be the curved surface area of cone
$\therefore C_{1}=\pi r \sqrt{r^{2}+h^{2}}$
Similarly, C_{2} be the curved surface area of cone cylinder.
$\therefore c_{2}=2 \pi r h$
According to question $\frac{C_{2}}{C_{1}}=\frac{8}{5}$.
$\Rightarrow \frac{2 \pi r h}{\pi r \sqrt{r^{2}+h^{2}}}=\frac{8}{5}$
$\Rightarrow 10 h=8 \sqrt{r^{2}+h^{2}}$
$\Rightarrow 100 h^{2}=64 r^{2}+64 h^{2}$
$\Rightarrow 36 h^{2}=64 r^{2}$
$\Rightarrow\left(\frac{h}{r}\right)^{2}=\frac{64}{36}$
$\Rightarrow \frac{b}{r}=\sqrt{\frac{64}{30}}=\frac{8}{6}=\frac{4}{3}$
$\therefore \frac{r}{h}=\frac{3}{4}$.

