Exercise:2.2

Page number:2.12

Question 1.

Solution :

Given: $A = \{1, 2, 3\}, B = \{3, 4\} and C = \{4, 5, 6\}$ Now, $(A \times B) = \{(1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4)\}$ $(B \times C) = \{(3, 4), (3, 5), (3, 6), (4, 4), (4, 5), (4, 6)\}$ $\therefore (\mathbf{A} \times \mathbf{B}) \cap (\mathbf{B} \times \mathbf{C}) = \{(3, 4)\}$

Question 2.

Solution :

HER HINCH BUILD Given: $A = \{2, 3\}, B = \{4, 5\} and C = \{5, 6\}$ Also, $(B \cup C) = \{4, 5, 6\}$ Thus, we have: $A \times (B \cup C) = \{(2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)\}$ And, $(B \cap C) = \{5\}$ Thus, we have: $A \times (B \cap C) = \{(2, 5), (3, 5)\}$ Now, $(A \times B) = \{(2, 4), (2, 5), (3, 4), (3, 5)\}$ $(A \times C) = \{(2, 5), (2, 6), (3, 5), (3, 6)\}$ $\therefore (A \times B) \cup (A \times C) = \{(2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)\}$

Question 3.

Solution :

Given: $A = \{1, 2, 3\}, B = \{4\} and C = \{5\}$

```
(i) A \times (B \cup C) = (A \times B) \cup (A \times C)
We have:
(B \cup C) = \{4, 5\}
```

LHS: $A \times (B \cup C) = \{(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)\}$ Now, $(A \times B) = \{(1, 4), (2, 4), (3, 4)\}$ And, $(A \times C) = \{(1, 5), (2, 5), (3, 5)\}$ RHS: $(A \times B) \cup (A \times C) = \{(1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5)\}$ \therefore LHS = RHS (ii) $A \times (B \cap C) = (A \times B) \cap (A \times C)$ We have: $(B \cap C) = \phi$ LHS: $A \times (B \cap C) = \phi$ And, $(A \times B) = \{(1, 4), (2, 4), (3, 4)\}$ $(A \times C) = \{(1, 5), (2, 5), (3, 5)\}$ RHS: $(A \times B) \cap (A \times C) = \phi$ \therefore LHS = RHS (iii) $A \times (B - C) = (A \times B) - (A \times C)$ We have: $(B-C) = \phi$ LHS: $A \times (B - C) = \phi$ Now, $(A \times B) = \{(1, 4), (2, 4), (3, 4)\}$ And, $(A \times C) = \{(1, 5), (2, 5), (3, 5)\}$ RHS: $(A \times B) - (A \times C) = \phi$ \therefore LHS = RHS **Ouestion 4. Solution :** Given: $A = \{1, 2\}, B = \{1, 2, 3, 4\}, C = \{5, 6\} and D = \{5, 6, 7, 8\}$

```
(i) A \times C \subset B \times D

LHS: A \times C = \{(1, 5), (1, 6), (2, 5), (2, 6)\}

RHS: B \times D = \{(1, 5), (1, 6), (1, 7), (1, 8), (2, 5), (2, 6), (2, 7), (2, 8), (3, 5), (3, 6), (3, 7), (3, 8), (4, 5), (4, 6), (4, 7), (4, 8)\}

\therefore A \times C \subset B \times D

(ii) A \times (B \cap C) = (A \times B) \cap (A \times C)

We have:

(B \cap C) = \phi

LHS: A \times (B \cap C) = \phi

Now,

(A \times B) = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4)\}

(A \times C) = \{(1, 5), (1, 6), (2, 5), (2, 6)\}
```

RHS: $(A \times B) \cap (A \times C) = \phi$ \therefore LHS = RHS **Question 5. Solution :** Given: $A = \{1, 2, 3\}, B = \{3, 4\} and C = \{4, 5, 6\}$ (i) $A \times (B \cap C)$ Now, $(B \cap C) = \{4\}$ $\therefore \mathbf{A} \times (\mathbf{B} \cap \mathbf{C}) = \{(1, 4), (2, 4), (3, 4)\}$ (ii) $(A \times B) \cap (A \times C)$ Now. $(A \times B) = \{(1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4)\}$ And, $(A \times C) = \{(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)\}$ $\therefore (A \times B) \cap (A \times C) = \{(1, 4), (2, 4), (3, 4)\}$ (iii) $A \times (B \cup C)$ Now, $(B \cup C) = \{3, 4, 5, 6\}$ $\therefore A \times (B \cup C) = \{(1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 3), (3, 4), (3, 5), (3, 6), (3,$ 6)} (iv) $(A \times B) \cup (A \times C)$ Now, $(A \times B) = \{(1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4)\}$ And, $(A \times C) = \{(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)\}$ $\therefore (A \times B) \cup (A \times C) = \{(1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 3), (3, 4), (3, 5), (3, 6$

Question 6.

(3, 6)

Solution :

(i) $(A \cup B) \times C = (A \times C) \cup (B \times C)$ Let (a, b) be an arbitrary element of $(A \cup B) \times C$. Thus, we have:

$$(a,b) \in (A \cup B) \times C$$

$$\Rightarrow a \in (A \cup B) \text{ and } b \in C$$

$$\Rightarrow (a \in A \text{ or } a \in B) \text{ and } b \in C$$

$$\Rightarrow (a \in A \text{ and } b \in C) \text{ or } (a \in B \text{ and } b \in C)$$

$$\Rightarrow (a,b) \in (A \times C) \text{ or } (a,b) \in (B \times C)$$

$$\Rightarrow (a,b) \in (A \times C) \cup (B \times C)$$

$$\therefore (A \cup B) \times C \subseteq (A \times C) \cup (B \times C) \quad ...(i)$$

Again, let (x, y) be an arbitrary element of $(A \times C) \cup (B \times C)$.
Thus, we have:

 $(x, y) \in (A \times C) \cup (B \times C)$ \Rightarrow (x, y) \in (A×C) or (x, y) \in (B×C) $\Rightarrow (x \in A \& y \in C) \quad or (x \in B \& y \in C)$ $\therefore C \dots (ii)$ $\therefore get:$ $\therefore = (A \times C) \cup (B \times C)$ (ii) $(A \cap B) \times C = (A \times C) \cap (B \times C)$ Let (a, b) be an arbitrary element of $(A \cap B) \times C$. Thus, we have: $i,b) \in (A \cup B) \times C$ $i \in (A \cup P^{n})$

 \Rightarrow $(a \in A \& a \in B) \& b \in C$ $\Rightarrow (a \in A \& b \in C) \& (a \in B \& b \in C)$ $\Rightarrow (a,b) \in (A \times C) \& (a,b) \in (B \times C)$ $\Rightarrow (a,b) \in (A \times C) \cup (B \times C)$ $\therefore (A \cup B) \times C \subseteq (A \times C) \cup (B \times C) \quad \dots (iii)$ Again, let (x, y) be an arbitrary element of $(A \times C) \cap (B \times C)$. Thus, we have:

$$(x, y) \in (A \times C) \cup (B \times C)$$

$$\Rightarrow (x, y) \in (A \times C) & (x, y) \in (B \times C)$$

$$\Rightarrow (x \in A & y \in C) & (x \in B & y \in C)$$

$$\Rightarrow (x \in A & x \in B) & y \in C$$

$$\Rightarrow x \in (A \cup B) & y \in C$$

$$\Rightarrow (x, y) \in (A \cup B) \times C$$

$$\therefore (A \times C) \cup (B \times C) \subseteq (A \cup B) \times C \quad ...(iv)$$

From (iii) and (iv), we get:

$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$

Question 7.

Solution :

Same textbooks, the showing Let: $(x, y) \in (A \times B)$ $\therefore x \in A, y \in B$ Now, $\because (A \times B) \subseteq (C \times D)$ $\therefore (x, y) \in (C \times D)$ Or, $x \in C and y \in D$ Thus, we have: $A \subseteq C \& B \subseteq D$