RD Sharma
Solutions
Class 11 Maths
Chapter 16
Ex 16.4

Permutations Ex 16.4 Q1

There are 4 vowels and 3 consonants in the word 'FAILURE'

We have to arrange 7 letters in a row such that consonants occupy odd places. There are 4 odd places (1,3,5,7). There consonants can be arranged in these 4 odd places in 4P_3 ways.

Remaining 3 even places (2,4,6) are to be occupied by the 4 vowels. This can be done in 4P_3 ways.

Hence, the total number of words in which consonants occupy odd places = ${}^4P_3 \times {}^4P_3$

$$= \frac{4!}{(4-3)!} \times \frac{4!}{(4-3)!}$$

$$= 4 \times \times 3 \times 2 \times 1 \times 4 \times 3 \times 2 \times 1$$

$$= 24 \times 24$$

$$= 576.$$

Permutations Ex 16.4 Q2

There are 7 letters in the word 'STRANGE', including 2 vowels (A,E) and 5 consonants (S,T,R,N,G). (i) Considering 2 vowels as one letter, we have 6 letters which can be arranged in $^6p_6 = 6!$ ways A,E can be put together in 2! ways.

Hence, required number of words

- $= 6! \times 2!$
- $= 6 \times 5 \times 4 \times 3 \times 2 \times 1 \times 2$
- $=720 \times 2$
- = 1440.
- (ii) The total number of words formed by using all the letters of the words 'STRANGE' is $^{7}p_{7} = 7!$
- $=7\times6\times5\times4\times3\times2\times1$
- =5040.

So, the total number of words in which vowels are never together

- = Total number of words number of words in which vowels are always together
- =5040 1440
- = 3600
- (iii) There are 7 letters in the word 'STRANGE'. out of these letters 'A' and 'E' are the vowels.

There are 4 odd places in the word 'STRANGE'. The two vowels can be arranged in 4p_2 ways.

The remaining 5 consonants can be arranged among themselves in 5p_5 ways.

The total number of arrangements

$$={}^{4}p_{2}\times{}^{5}p_{5}$$

$$=\frac{4!}{2!} \times 5!$$

= 1440

If we fix up D in the beginning, then the remaining 5 letters can be arranged in ${}^{5}P_{5} = 5!$ ways. so, the total number of words which begin with D = 5! $= 5 \times 4 \times 3 \times 2 \times 1 = 120.$

is the number of arrangements of 6 items, taken all at a time, which is equal

There are 6 letters in the word 'SUNDAY'. The total number of words formed with these 6 letters

Permutations Ex 16.4 Q4

to ${}^{6}P_{6} = 6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720$.

There are 4 vowels and 4 consonants in the word 'ORIENTAL'. We have to arrange 8 leeters in a row such that vowels occupy odd places. There are 4 odd places (1,3,5,7). Four vowels can be arranged in these 4 odd places in 4! ways. Remaining 4 even places (2,4,6,8) are to be occupied by the 4 consonants.

This can be done in 4! ways.

 $= 4 \times 3 \times 2 \times 1 \times 4 \times 3 \times 2 \times 1$ = 576.

Hence, the total number of words in which vowels occupy odd places = 4! x 4!

Permutations Ex 16.4 Q5

There are 6 letters in the word 'SUNDAY'. The total number of words formed with these 6 letters is the number of arrangements of 6 items, taken all at a time, which is equal to ${}^{6}P_{6} = 6!$ $=6\times5\times4\times3\times2\times1$

= 720.

If we fix up N in the begining, then the remaining 5 letters can be arranged in ${}^5P_5 = 5!$ ways so, the total number of words which begin which N = 5!

$$= 5 \times 4 \times 3 \times 2 \times 1$$
$$= 120$$

if we fix up N in the begining and Y at the end, then the remaining 4 letters can be arranged in $^{4}P_{4} = 4!$ ways.

So, the total number of words which begin with N and end with $Y = 4! = 4 \times 3 \times 2 \times 1 = 24$.

There are 10 letters in the word 'GANESHPURI'. The total number of words formed is equal to $^{10}P_{10} = 10!$ (i) If we fix up G in the begining, then the remaining 9 letters can be arranged in $^{9}P_{9} = 9!$ ways

(ii) If we fix up P in the begining and I at the end, begining 8 letters can be arranged in ${}^{8}P_{8}$ = 8!.

(iii) There are 4 vowels and 6 consonants in the word 'GANESHPURI'. Considening 4 vowels as one letter, We have 7 letters which can be arranged in $^{7}P_{7}$ = 7! ways. A,E,U,I can be put together in 4! ways.

(iv) We have to arrange 10 letters in a row such that vowels occupy even places. There are 5 even places (2,4,6,8,10). 4 vowels can be arranged in these 5 even places in ${}^{5}P_{4}$ ways. Remaining 5 odd places (1,3,5,7,9) are to be occupied by the 6 consonants.

This can be done in 6C_5 ways.

Hence, the total number of words in which vowels occupy even places = ${}^{5}P_{4} \times {}^{6}P_{5}$ $= \frac{5!}{(5-4)!} \times \frac{6!}{(6-1)!}$

$$= 5! \times 6!$$

Hence, required number of words = $7! \times 4!$.

(i) There are 6 letters in the word 'VOWELS'. The total number of words formed with these 6 letters is the number of arrangements of 6 items, taken all at a time, which is equal to

$$^{6}P_{6} = 6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720$$

(ii) If we fix up E in the begining then the remaining 5 letters can be arranged in ${}^5P_5=5!=5\times4\times3\times2\times1=120$ ways

- (iii) If we fix up 0 in the begining and L at the end, the remaining 4 letters can be arranged in 4P_4 = $4! = 4 \times 3 \times 2 \times 1 = 24$.
- (iv) There are 2 vowels and 4 consonants in the word 'VOWELS'.

 Considering 2 vowels as one letter, we have letters which can be arranged in ${}^5P_5 = 5!$ ways.

O, E can be put together in 2! ways.

Hence, required number of

words =
$$5! \times 2!$$

= $5 \times 4 \times 3 \times 2 \times 1 \times 2 \times 1$
= 120×2
= 240

(v) There are 2 vowels and 4 consonants in the word 'VOWELS'.

Considering 4 consonants as one letter, we have 3 letters which can be arranged in ${}^{3}P_{3} = 3!$ ways. U, W, L, S can be put together in 4! ways.

Hence, required number of words in which all consonants come together = $3! \times 4!$

$$= 3 \times 2 \times 4 \times 3 \times 2$$
$$= 144.$$

Permutations Ex 16.4 Q8

We have to arrange 7 letters in a row such that vowels occupy even places.

There are 3 even places (2,4,6). Three vowels can be arranged in these 3 even places in 3! ways.

Remaining 4 odd places (1,3,5,7) are to be occupied by the 4 consonants. This can be done in 4! ways.

Hence, the total number of words in which vowels occupy even places = $3! \times 4!$

$$= 3 \times 2 \times 4 \times 3 \times 2 = 144$$

Let two husbands A,B be selected out of seven males in = 7C_2 ways. excluding their wives, we have to select two ladies C,D out of remaining 5 wives is = 5C_2 ways. Thus, number of ways of selecting the players for mixed double is = $^7C_2 \times ^5C_2$ = 21×10 = 210

Now, suppose A chooses C as partner (B will automatically go to D) or A chooses D as partner (B will automatically go to C)
Thus we have, A other ways for teams.

Required number of ways = $210 \times 4 = 840$

Permutations Ex 16.4 Q10

m men can be seated in a row in ${}^{m}P_{m} = m!$ ways.

Now, in the (m+1) gaps n women can be arranged in $^{m+1}P_n$ ways.

Hence, the number of ways in which no two women sit together

$$= m! \times {m+1 \choose n}$$

$$= m! \times \frac{(m+1)!}{(m+1-n)!}$$

$$= m! \times \frac{(m+1)!}{(m-n+1)!}$$

Hence, proved

(i) MONDAY has 6 letters with no repetitions, so

Number of words using 4 letters at a time with no repetitions = ${}^{6}P_{4}$

$$=\frac{6!}{2!}$$

$$= 360$$

(ii) Number of words using all 6 letters at a time with no repetitions = 6P_6

$$=\frac{6!}{(6-6)!}$$

$$=6\times5\times4\times3\times2\times1$$

$$= 720$$

(iii) Number of words using all 6 letters, starting with vowels

$$= 2.5P_5$$

$$=2\times5\times4\times3\times2\times1$$

$$= 240$$

Permutations Ex 16.4 Q12

There are 8 letters in the word 'ORIENTAL'. The total number of three letter words is the number of arrangements of 8 items, taken 3 at a time, which is equal to

$${}^{8}P_{3} = \frac{8!}{(8-3)!}$$

$$= \frac{8!}{5!}$$

$$= \frac{8 \times 7 \times 6 \times 5!}{2!}$$

= 336.