CBSE MATHEMATICS, Class-X SOLUTIONS

Sample Question Paper

For 2021 Examination

Section 'A'		$AB = \sqrt{(0-0)^2 + (-2-6)^2}$
1 Correct oution (a)		$-\frac{1}{100} + \frac{1}{100} + 1$
Detailed Solution :		$=\sqrt{0+(-8)}$
11 11 25		$=\sqrt{8^2}$
Since $\frac{11}{2^3 \times 5} = \frac{11}{8 \times 5} \times \frac{25}{25}$	6	=8 1
275	0.	Correct option : (c) Explanation : Since $AABC \sim AEDE$ then we get
$\frac{275}{10^3} = 0.275$		AB AC BC
10		$\overline{ED} = \overline{EF} = \overline{DF}$.
Thus, $\frac{11}{23}$ will terminate after 3 decimal places.		From first two, $AB \times EF = AC \times DE$. Option (b) is
2°×5		correct.
Commonly Made Error		From last two, $BC \times EF = AC \times FD$. Option (a) is
• Students commit errors in converting the fraction		Erom first and last $BC \times DE = AB \times ED$ Option (d)
into decimal.		is correct.
	1.6	Thus, option (c) is incorrect.
	7.	Correct option : (c)
• First convert the fraction into decimal, then give the	0 2.	Explanation : Since, the angle between chord and
		tangent is equal to the angle subtended by the same
2. Correct option : (a)		$rac{}{}$ $PAT = 50^{\circ}$ 1
<i>Explanation</i> : The product of a non-zero rational	8	\rightarrow $\angle DAI = 50$. I
with and an irradonal number is always irradonal.		<i>Explanation</i> : According to the given condition,
3. Correct option : (b)	X.	Area of circle = Area of first circle
Explanation : Let $f(x) = ax^3 + bx^2 + cx + d$		+ Area of second circle
If α , β , γ are the zeroes of $f(x)$, then		$\pi R_2^2 = \pi R_1^2 + \pi R_2^2$
$\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{-1}$	0	$R^2 = R_1^2 + R_2^2 \qquad 1$
a	9.	Correct option : (a) Evaluation : The sharpened part of the pencil is
One root is zero (given) so, $\alpha = 0$. $\beta \gamma = \frac{1}{a}$ 1		cone and unsharpened part is cylinder.
4. Correct option : (d)	10.	Correct option : (d)
Explanation :		Explanation : An event that cannot occur has 0
$x^3 - x^2 = x^3 - 1 - 3x(x - 1)$		probability, such an event is called impossible
$x^3 - x^2 = x^3 - 1 - 3x^2 + 3x$		event. 1
$-x^2 + 3x^2 + 1 - 3x = 0$	11.	$2_{7}520$ Required number = I CM (1, 2, 3, 4, 5, 6, 8, 9, 10)
$2x^2 - 3x + 1 = 0$		$= 1 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 7$
It is of the form of $ax^2 + bx + c = 0$ 1		= 2,520 1
5. Correct option : (b)	12.	Positive
Explanation : The distance between two points		<i>Explanation</i> : Let $f(x) = x^2 + kx + k, k \neq 0$
(x_1, y_1) and (x_2, y_2) is given as,		On comparing the given polynomial with $ax^2 + bx$
$d = \sqrt{(x - x)^2 + (y - y)^2}$		+ <i>c</i> ,
$u = \sqrt{(x_2 - x_1) + (y_2 - y_1)}$ where $x_1 = 0$ $u_2 = 6$ and $x_3 = 0$ $u_4 = -2$		we get $a = 1, b = k, c = k$
So, distance between $A(0, 6)$ and $B(0, -2)$:		If α and β be the zeroes of the polynomial $f(x)$.

We know that, Sum of zeroes,

$$\alpha + \beta = -\frac{b}{a}$$

 $\alpha + \beta = -k$...(i)

And product of zeroes

$$\alpha \beta = \frac{c}{a}$$

$$\alpha \beta = \frac{k}{1} = k \qquad \dots (ii)$$

Case I : If *k* is negative, $\alpha\beta$ [from equation (ii)] is negative. It means α and β are of opposite sign.

Case II : If *k* is positive, then $\alpha\beta$ [from equation (ii)] is positive but $\alpha + \beta$ is negative. If, the product of two numbers is positive, then either both are negative or both are positive. But the sum of these numbers is negative, so numbers must be negative. Hence, in any case of zeroes of the given quadratic polynomial cannot both be positive. 1

13. 0,8

Explanation : Given equation is $2x^2 - kx + k = 0$ On comparing with $ax^2 + bx + c = 0$ a = 2, b = -k, c = kor, For equal roots $b^2 - 4ac = 0$ $(-k)^2 - 4(2)(k) = 0$ textbooks $(-k)^2 - 8k = 0$ k = 0, 8Hence, the required values of *k* are 0 and 8. 14. We have, a = $d = \frac{1+m}{m} - \frac{1}{m} = 1$ $a_n = \frac{1}{m} + (n-1)1$ ÷. Hence, $a_n = \frac{1}{m} + n - 1 = \frac{1 + (n - 1)}{m}m$ 1 18. Perimet OR Given sequence is an A.P. $\sqrt{2}, \sqrt{8}, \sqrt{18}, \dots$ $=\sqrt{2}.2\sqrt{2}.3\sqrt{2}...$ $a = \sqrt{2}$, $d = \sqrt{2}$ and n = 10Hence, $a_n = a + (n-1) d$ $a_{10} = \sqrt{2} + (10 - 1)\sqrt{2}$ or, $=\sqrt{2}+9\sqrt{2}$ $= 10\sqrt{2}$ $a_{10} = \sqrt{200}$.

1

Hence,

15. 2:5

Explanation :
Here,
$$BQ = \frac{5}{7} AB$$

or, $\frac{BQ}{AB} = \frac{5}{7} \Rightarrow \frac{AB}{BQ} = \frac{7}{5}$
or, $\frac{AB}{BQ} - 1 = \frac{7}{5} - 1$
or, $\frac{AB - BQ}{BQ} = \frac{AQ}{BQ} = \frac{7 - 5}{5} = \frac{2}{5}$
 $\therefore AO : BO = 2 : 5$

16. In DAOP

....

$$\angle AOP = \frac{120^{\circ}}{2} = 60^{\circ}$$

$$\angle APB = 90^{\circ} \quad \text{(given)}$$

$$AP = BP \quad \text{(tangents)}$$

$$\therefore \quad \angle OAP = \angle OBP = 90^{\circ}$$

$$\therefore \quad \angle APO + \angle OAP + \angle AOP = 180^{\circ}$$
or,
$$\angle APO + 90^{\circ} + 60^{\circ} = 180^{\circ}$$
or,
$$\angle APO + 90^{\circ} + 60^{\circ} = 180^{\circ} - 150^{\circ} = 30^{\circ}. \quad \mathbf{1}$$
[CBSE Marking Scheme, 2014]

17. Given, sec θ. sin θ = $\sin \theta$ cosθ $\tan \theta = 0 = \tan 0^{\circ}$ $\theta = 0^{\circ}$

1 +

1 +

1

[CBSE Marking Scheme, 2016]

OR

$$\frac{\tan^2 A}{\cot^2 A} = \frac{1 + \tan^2 A}{1 + \frac{1}{\tan^2 A}}$$

$$= \frac{\tan^2 A (1 + \tan^2 A)}{(\tan^2 A + 1)}$$

$$= \tan^2 A$$

er of the sector =
$$2r + \frac{2\pi r\theta}{360^{\circ}}$$

= $10.5 \times 2 + 2 \times \frac{22}{7} \times \frac{10.5 \times 60^{\circ}}{306^{\circ}}$
 0
 r
 60°
 r
 B
= $21 + 11 = 32$ cm. 1
[CBSE Marking Scheme, 2016]

19. Here, h = 40 cm, circumference = 22 cm $2\pi r = 22$

	or,	$r = \frac{22 \times 7}{2 \times 22}$	
	or,	$r = \frac{7}{2}$	
		= 3.5 cm	1
20.	Given,	median = mean + 3	
	Since,	Mode = 3Median - 2Mean	
		= 3(Mean + 3) - 2Mean	
	\Rightarrow	Mode = Mean + 9	
Hence, mode exceeds the mean by 9.			1
-			

Section 'B'

- **21.** Let $5\sqrt{6}$ be a rational number, which can be expressed as $\frac{a}{b}$, where $b \neq 0$ and a and *b* are integers.
 - $\therefore \qquad 5\sqrt{6} = \frac{a}{b} \qquad \frac{1}{2}$ $\sqrt{6} = \frac{a}{5b}$ or $\sqrt{6} = \text{rational} \qquad \frac{1}{2}$ But $\sqrt{6}$ is an irrational number.

Thus, our assumption is wrong.

Hence, $5\sqrt{6}$ is an irrational number.

22.

or,
$$\frac{AG}{CG} = \frac{BF}{FC}$$
 (By BPT)...(i) **1**
In $\triangle ADC$, $EG \mid \mid DC$

 $\frac{AE}{ED} = \frac{AG}{CG}$

From equations (i) and (ii), $\frac{AE}{ED} =$

or,

23.

$$\frac{BF}{FC}$$
 · Hence Proved. 1

$$\frac{3\tan^2 30^\circ + \tan^2 60^\circ + \csc 30^\circ - \tan 45^\circ}{\cot^2 45^\circ}$$
$$= \frac{3 \times \left(\frac{1}{\sqrt{3}}\right)^2 + (\sqrt{3})^2 + 2 - 1}{(1)^2} \quad 1$$
$$= \frac{3 \times \frac{1}{3} + 3 + 2 - 1}{1}$$
$$= 1 + 3 + 2 - 1 = 5 \qquad 1$$
[CBSE Marking Scheme, 2016]

Commonly Made Error

• Sometimes students get confused with the values of trigonometric angles. They substitute wrong values which leads to the wrong result.

Answering Tip

1

Memorize the values of trigonometric angles properly and practice more such problems to not to get confused.

24. Let the height of tower be *h* metre. From $\triangle ABD$, $\frac{h}{a} = \tan 30^{\circ}$

3

(By BPT)...(ii)

$$\therefore \qquad a \times b = \sqrt{3} \ h \times \frac{h}{\sqrt{3}}$$

$$\Rightarrow \qquad h^2 = ab$$

$$\Rightarrow \qquad h = \sqrt{ab} \ m \qquad 1$$

Hence, the height of the tower = \sqrt{ab} m

[CBSE Marking Scheme, 2014]

- 25. Here, circumference = 88 cm $2\pi r = 88$ cm or, r = 14 cmarea = πr^2 Now, 1 $= \pi \times 14 \times 14$ $=\frac{22}{7}\times 14\times 14$ $= 616 \text{ cm}^2$ 1
- **26.** Modal class is 30 35, l = 30, $f_1 = 25$, $f_0 = 10$, $f_2 = 10$ 7 and h = 5

Mode =
$$l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$

Mode = $30 + \frac{25 - 10}{50 - 10 - 7} \times 5$

OR

$$x_{1} = 5 + 7 = 12$$

$$x_{2 = 18} - x_{1} = 18 - 12 = 6$$

$$x_{3} = 18 + 5 = 23$$

$$x_{4 = 30} - x_{3} = 30 - 23 = 7$$

[CBSE Marking Scheme, 2016] $\frac{1}{2} \times 4 = 2$

Section 'C'

and

 \Rightarrow

27. Given, polynomial $f(x) = ax^2 - 5x + c$ Let the zeroes of f(x) be α and β , then according to the question Sum of zeroes = $(\alpha + \beta)$ and product of zeroes = $(\alpha\beta) = 10$

Since,
$$\alpha + \beta = -\frac{\text{Coeff. of } x}{\text{Coeff. of } x^2} \Rightarrow -\frac{-5}{a}$$
 1

 $a = \frac{1}{2}$

Constant term

Coeff. of x^2

 $10 = \frac{+5}{a}$ So,

and

=

...

$$\Rightarrow \qquad \frac{c}{a} = 10$$
$$\Rightarrow \qquad \frac{c}{1} = 10$$

2c = 10

- c = 5 $a = \frac{1}{2}$ and c = 5Hence, 1
- 28. Let one man can finish the work in *x* days and one boy can finish the same work in *y* days.

Then, work done by one man in one day = $\frac{1}{-}$ and

 $\frac{4}{x} + \frac{4}{y} = \frac{1}{3}$

work done by one boy in one day = $\frac{1}{y}$

According to the problem,

$$\frac{2}{x} + \frac{7}{y} = \frac{1}{4}$$
 ...(i)

and

and

 \Rightarrow

 \Rightarrow

So

...

1

...(ii)

Let $\frac{1}{x}$ be *a* and $\frac{1}{y}$ be *b*, then

$$2a + 7b = \frac{1}{4}$$
 ...(iii)
 $4a + 4b = \frac{1}{2}$...(iv) 1

On multiplying eqn,. (iii) by 2 and subtract eqn. (iv) from it

> $10b = \frac{1}{6}$ 1

$$b = \frac{1}{60} \Rightarrow \frac{1}{y} = \frac{1}{60}$$
$$y = 60 \text{ days.}$$

Putting $b = \frac{1}{60}$ in equation (iii),

$$2a + \frac{7}{60} = \frac{1}{4}$$
$$2a = \frac{1}{4} - \frac{7}{60}$$
$$a = \frac{1}{15}$$
$$\frac{1}{15} = \frac{1}{x}$$
$$x = 15 \text{ days.}$$

Hence, one man can finish it in 15 days and one boy in 60 days.

Commonly Made Error

Some candidates, are not able to frame this word • problem into equation.

Answering Tip

Emphasis on solving such type of application based • problem.

Λ

SAMPLE QUESTION PAPER SOLUTIONS

[CBSE Marking Scheme, 2016]

OR

20
$$Aa = (a^2+b^2), B = -2(ac+bd) \in =(c^2+d^2)$$

as roob are equal,
 $D = B^2 - 4Ac = 0.$
 $B^2 = 4Ac$
 $[-2(ac+bd)]^2 = 4(a^2+b^2)(c^2+d^2)$
 $(a^2c^2+2abcd+b^2d^2) = A(a^2c^2+a^2d^2+b^2c^2+b^2d^2)$
 $2abcd = a^2d^2 + b^2c^2$
 $0 = a^2d^2 - 2abcd+b^2c^2$
 $0 = ad-bc.$
 $ad = bc.$
 $ad = bc.$
 $ad = bc.$
 $b = d$
Hence, proved

1

[Topper's Answer, 2017]

Distance covered by second aeroplane dueEast after two hours = $650 \times 2 = 1,300$ km.Distance between two aeroplanes after 2 hours

1

$$NE = \sqrt{ON^2 + OE^2}$$

= $\sqrt{(1000)^2 + (1300)^2}$
= $\sqrt{1000000 + 1690000}$
= $\sqrt{2690000}$
= 1640.12 km

1

32. Perimeter of $\triangle ABC = AB + AC + BC$ = (AX - BX) + (AY - CY) + (BZ + ZC). 1 = AX + AY - BX + BZ + ZC - CYThe tangents of a circle, from an external point are equal.

 $=\frac{3(25)^2+13(25)}{2}-\frac{3(24)^2+13(24)}{2}$

 $S_n = \frac{3n^2 + 13n}{2}$

 $a_n = S_n - S_{n-1}$ $a_{25} = S_{25} - S_{24}$

30.

31.

or,

Distance covered by first aeroplane due North after two hours = $500 \times 2 = 1,000$ km. 1

š

or, From point $B \rightarrow BX = BZ$ From $A \rightarrow AX = AY$ and from point $C \rightarrow CZ = CY$ $\therefore \qquad P = AX + AY = 2AX$ 1 or $AX = \frac{1}{2}$ Perimeter of $\triangle ABC$. 1

[CBSE Marking Scheme, 2016]

OR

[CBSE Marking Scheme, 2014]

33. RHS =
$$\frac{p^2 - 1}{p^2 + 1}$$

= $\frac{(\csc \theta + \cot \theta)^2 - 1}{(\csc \theta + \cot \theta)^2 + 1}$
= $\frac{\csc^2 \theta + \cot^2 \theta + 2\csc \theta \cot \theta - 1}{\csc^2 \theta + \cot^2 \theta + 2\csc \theta \cot \theta + 1}$
= $\frac{1 + \cot^2 \theta + \cot^2 \theta + 2\csc \theta \cot \theta - 1}{\csc^2 \theta + \csc^2 \theta - 1 + 2\csc \theta \cot \theta + 1}$
1
= $\frac{2\cot \theta (\cot \theta + \csc \theta)}{2\csc \theta (\csc \theta + \cot \theta)}$
= $\frac{\cos \theta}{\sin \theta} \times \sin \theta = \cos \theta = LHS.$ 1

Hence proved. [CBSE Marking Scheme, 2012]

 34. (i) Favourable outcomes are (2, 2) (2, 3) (2, 5) (3, 2) (3, 3) (3, 5) (5, 2) (5, 3) (5, 5) *i.e.*, 9 outcomes.
 1

 P (a prime number on each die) = $\frac{9}{36}$ or $\frac{1}{4}$ $\frac{1}{2}$

 (ii) Favourable outcomes are (3, 6) (4, 5) (5, 4) (6, 3) (5, 6) (6, 5) *i.e.*, 6 outcomes
 1

 P (a total of 9 or 11) = $\frac{6}{36}$ or $\frac{1}{6}$ $\frac{1}{2}$

[CBSE Marking Scheme, 2016]

Commonly Made Error

- Many candidates commit the following errors :
 - (i) Total outcomes of event are incorrect.
 - (ii) Favourable outcomes are incorrect.
 - (iii) The results are not given in simplest form. 0 1

$$e.g., \frac{y}{36} = \frac{1}{4}$$

Answering Tip

Р

• All necessary outcomes must be listed before finding probability and all answers must be in the simplest form.

OR

(red ball) =
$$\frac{1}{4}$$
 and *P* (blue ball) = $\frac{1}{3}$ ¹/₂

$$\Rightarrow P(\text{orange ball}) = 1 - \left(\frac{1}{4} + \frac{1}{3}\right) = \frac{5}{12} \qquad 1$$

$$\Rightarrow \frac{5}{12} \text{ of (Total no. of balls)} = 10 \qquad \frac{1}{2}$$

$$\Rightarrow$$
 Total numbers of balls = $\frac{10 \times 12}{5}$ = 24. 1

[CBSE Marking Scheme, 2015]

Section 'D'

35. Let the first odd no. be 2x + 1: Second consecutive odd number = 2x + 1 + 2= 2x + 31 Now, according to question, $(2x+1)^2 + (2x+3)^2 = 394$ $4x^2 + 4x + 1 + 4x^2 + 12x + 9 = 394$ 1 $8x^2 + 16x - 384 = 0$ \rightarrow $x^2 + 2x - 48 = 0$ ⇒ $x^2 + 8x - 6x - 48 = 0$ \Rightarrow \Rightarrow x(x + 8) - 6(x + 8) = 01 x = -8 or 6First number = $2 \times 6 + 1$ · · . = 13

and second odd number =
$$15$$
 1

36. Since, A(-1, y) and B(5, 7) lie on a circle with centre O(2, -3y).

and the distance between *OA* and *OB* are equal. **1** \therefore *OA* = *OB*

$$\sqrt{(-1-2)^2 + (y+3y)^2} = \sqrt{(5-2)^2 + (7+3y)^2}$$

or, $\sqrt{9+(4y)^2} = \sqrt{3^2 + (7+3y)^2}$

Squaring on both sides, we get $9 + 16y^2 = 9y^2 + 42y + 58$ or, $y^2 - 6y - 7 = 0$ or, (y + 1)(y - 7) = 0 \therefore y = -1, 7When y = -1Centre O(2, -3y) = (2, 3)B = (5, 7) Radius,

$$OB = \sqrt{(5-2)^2 + (7-3)^2}$$

$$=\sqrt{9+16} = 5$$
 unit

38.

1

1

When

centre

$$(2, -3y) = (2, -21)$$

B = (5, 7)

y = 7

Radius,

$$= \sqrt{9+784}$$

 $OB = \sqrt{(2-5)^2 + (-21-7)^2}$

$$\sqrt{793}$$
 unit

37. Steps of construction :

- **1.** Draw a circle of radius 4 cm with O as centre.
- 2. Draw two radii OA and OB inclined to each other at an angle of 120°.
- 3. Draw AP \perp OA at A and BP \perp OB at B. Which meet at P.
- **4.** PA and PB are the required tangents inclined to each other an angle of 60°. **2**

Steps of Construction :

- **1.** Draw a line segment AB = 5 cm.
- **2.** Draw any ray *AX* making an acute angle down ward with *AB*.
- 3. Mark the points $A_1, A_2, A_3, \dots, A_{10}$ on *AX* such that $AA_1 = A_1A_2 = \dots = A_9A_{10}$.
- **4.** Join BA_{10} .
- 5. Through the point A_3 draw a line parallel to BA_{10} . To meet AB at P

[CBSE Marking Scheme, 2015]

x = 900 m $h = x\sqrt{3}$

$$= 900 \times 1.732$$

= 1558.8 m ∴ Hence, the height of jet = 1558.8 m. 1

[CBSE Marking Scheme, 2012]

Commonly Made Error

• Some candidates do calculation errors while solving the sum. Some take $\sqrt{3} = 1.73$ instead of 1.732 and hence write inaccurate answer.

Answering Tip

• Students should do rounding off at the end while calculating the final answer.

OR

Let *AB* and *CD* be the two posts such that AB = 2*CD*. Let *M* be the mid-point of *CA*. Let $\angle CMD = \theta$ and $\angle AMB = 90^\circ - \theta$

Oswaal CBSE Chapterwise & Topicwise ONE for ALL MATHEMATICS (STANDARD), Class – 10

8

39. Given, Depth of well = 14 m, radius = 2 m. Volume of earth taken out = $\pi r^2 h$ = $\frac{22}{2} \times 2 \times 2 \times 14$

1

 $= 176 \text{ m}^3$ Let *r* be the width of embankment The radius of outer circle of embankment

$$= 2 + r$$

Area of upper surface of embankment $- - \frac{1}{2}$

 $= \pi[(2 + r)^2 - (2)^2]$ Volume of embankment = Volume of earth taken out $1^{1/2}$ or, $\pi[(2 + r)^2 - (2)^2] \times 0.4 = 176$

or, $\pi[4 + r^2 + 4r - 4] \times 0.4 = 176$

or, $r^{2} + 4r = \frac{176 \times 7}{0.4 \times 22}$ or, $r^{2} + 4r = 140$ or, $r^{2} + 4r - 140 = 0$ or, (r + 14)(r - 10) = 0or, r = 10 m Hence, width of embankment = 10 m.

OR

Commonly Made Error

In problems related to surface area and volume, student write incorrect formula and do wrong calculation.

Answering Tip

Students should learn formulae of basic figures and do adequate practice and do correct calculation.

40.

.

Class	Class mark (x)	Frequency (f)	fx
11 – 13	12	3	36
13 – 15	14	6	84
15 – 17	16	9	144
17 – 19	18	13	234
19 – 21	20	f	20 f
21 – 23	22	5	110
23 – 25	24	4	96
		$\Sigma f = 40 + f$	$\Sigma f x = 704 + 20 f$

For *x*

 \Rightarrow

⇒

Mean =
$$18 = \frac{100 + 24 + f}{40 + f}$$
 1

$$720 + 18f = 704 + 20f$$

$$f = 8$$
1

[CBSE Marking Scheme, 2018]

 $\frac{1}{2}$