Kopykitab Same textbooks, klibck away

Miscellaneous Exercise

Question 1:

How many words, with or without meaning, each of 2 vowels and 3 consonants can be formed from the letters of the word DAUGHTER?

Solution 1:

In the word DAUGHTER, there are 3 vowels namely, A, U, and E and 5 consonants, namely, D, G, H, T, and R.
Number of ways of selecting 2 vowels of 3 vowels $={ }^{3} C_{2}=3$
Number of ways of selecting 3 consonants out of 5 consonants $={ }^{5} C_{3}=10$
Therefore, number of combinations of 2 vowels and 3 consonants $=3 \times 10=30$
Each of these 30 combinations of 2 vowels and 3 consonants can be arranged among themselves in 5 ! ways.
Hence, required number of different words $=30 \times 5!=3600$.

Question 2:

How many words, with or without meaning, can be formed using all the letters of the word EQUATION at a time so that the vowels and consonants occur together?

Solution 2:

In the word EQUATION, there are 5 vowels, namely, A, E, I, O and U and 3 consonants, namely Q, T and N .
Since all the vowels and consonants have to occur together, both (AEIOU) and (QTN) can be assumed as single objects. Then, the permutations of these 2 objects taken all at a time are counted.
This number would be ${ }^{2} P_{2}=2$!
Corresponding to each of these permutations, there are 5! Permutations of the five vowels taken all at a time and 3 ! Permutations of the 3 consonants taken all at a time.
Hence, by multiplication principle, required number of words $=2!\times 5!\times 3!=1440$.

Question 3:

A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of:
(i) exactly 3 girls
(ii) at least 3 girls?
(iii) at most 3 girls?

Solution 3:

(i) A committee of 7 has to be formed from 9 boys and 4 girls.

Since exactly 3 girls are to be there in every committee, each committee must consist of $(7-3)=4$ boys only.
Thus, in this case, required number of ways $={ }^{4} C_{3} \times{ }^{9} C_{4}=\frac{4!}{3!1!} \times \frac{9!}{4!5!}$
$=4 \times \frac{9 \times 8 \times 7 \times 6 \times 5!}{4 \times 3 \times 2 \times 5!}$
$=504$
(ii) Since at least 3 girls are to be there in every committee, the committee can consist of
(a) 3 girls and 4 boys or
(b) 4 girls and 3 boys

3 girls and 4 boys can be selected in ${ }^{4} C_{3} \times{ }^{9} C_{4}$ ways.
4 girls and 3 boys can be selected in ${ }^{4} C_{4} \times{ }^{9} C_{3}$ ways.
Therefore, in this case, required number of ways $={ }^{4} C_{3} \times{ }^{9} C_{4}+{ }^{4} C_{4} \times{ }^{9} C_{3}$
$=504+84=588$
(iii) Since atmost 3 girls are to be there in every committee, the committee can consist of
(a) 3 girls and 4 boys
(b) 2 girls and 5 boys
(c) 1 girl and 6 boys
(d) No girl and 7 boys

3 girls and 4 boys can be selected in ${ }^{4} C_{3} \times{ }^{9} C_{4}$ ways.
2 girls and 5 boys can be selected in ${ }^{4} C_{2} \times{ }^{9} C_{5}$ ways.
1 girl and 6 boys can be selected in ${ }^{4} C_{1} \times{ }^{9} C_{6}$ ways.

No girl and 7 boys can be selected in ${ }^{4} C_{0} \times{ }^{9} C_{7}$ ways.
Therefore, in this case, required number of ways
$={ }^{4} C_{3} \times{ }^{9} C_{4}+{ }^{4} C_{2} \times{ }^{9} C_{5}+{ }^{4} C_{1} \times{ }^{9} C_{6}+{ }^{4} C_{0} \times{ }^{9} C_{7}$
$=\frac{4!}{3!1!} \times \frac{9!}{4!5!}+\frac{4!}{2!2!} \times \frac{9!}{5!4!}+\frac{4!}{1!3!} \times \frac{9!}{6!3!}+\frac{4!}{0!4!} \times \frac{9!}{7!2!}$
$=504+756+336+36$
$=1632$

Question 4:

If the different permutations of all the letter of the word EXAMINATION are listed as in a dictionary, how many words are there in list before the first word starting with E ?

Solution 4:

In the given word EXAMINATION, there are 11 letters out of which, A, I and N appear 2 times and all the other letters appear only once.
The words that will be listed before the words starting with E in a dictionary will be the words that start with A only.
Therefore, to get the number of words starting with A , the letter A is fixed at the extreme left position, and then the remaining 10 letters taken all at a time are rearranged.
Since there are 2 Is and 2 Ns in the remaining 10 letters,
Number of words starting with $A=\frac{10!}{2!2!}=907200$
Thus, the required numbers of words is 907200 .

Question 5:

How many 6 -digit numbers can be formed from the digits, $0,1,3,5,7$ and 9 which are divisible by 10 and no digit is repeated?

Solution 5:

A number is divisible by 10 if its units digits is 0 .
Therefore, 0 is fixed at the units place.
Therefore, there will be as many ways as there are ways of filling 5 vacant places \square in succession by the remaining 5 digits (i.e., 1, 3, 5, 7 and 9).
The 5 vacant places can be filled in 5 ! Ways.
Hence, required number of 6-digit numbers $=5!=120$

Question 6:

The English alphabet has 5 vowels and 21 consonants. How many words with two different vowels and 2 different consonants can be formed from the alphabet?

Solution 6:

2 different vowels and 2 different consonants are to be selected from the English alphabet.
Since there are 5 vowels in the English alphabet, number of ways of selecting 2 different vowels from the alphabet $={ }^{5} C_{2}=\frac{5!}{2!3!}=10$
Since there are 21 consonants in the English alphabet, number of ways of selecting 2 different consonants from the alphabet $={ }^{21} C_{2}=\frac{21!}{2!19!}=210$
Therefore, number of combinations of 2 different vowels and 2 different consonants $=10 \times 210=2100$
Each of these 2100 combinations has 4 letters, which can be arranged among themselves in 4 ! ways.
Therefore, required number of words $=2100 \times 4!=50400$.

Question 7:

In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?

Solution 7:

It is given that the question paper consists of 12 questions divided into two parts - Part I and Part II, containing 5 and 7 questions, respectively.
A student has to attempt 8 questions, selecting at least 3 from each part.
This can be done as follows.
(a) 3 questions from part I and 5 questions from part II
(b) 4 questions from part I and 4 questions from part II
(c) 5 questions from part I and 3 questions from part II

3 questions from part I and 5 questions from part II can be selected in ${ }^{5} C_{3} \times{ }^{7} C_{5}$ ways.
4 questions from part I and 4 questions from part II can be selected in ${ }^{5} C_{4} \times{ }^{7} C_{4}$ ways.
5 questions from part I and 3 questions from part II can be selected in ${ }^{5} C_{5} \times{ }^{7} C_{3}$ ways.
Thus, required number of ways of selecting questions
$={ }^{5} C_{3} \times{ }^{7} C_{5}+{ }^{5} C_{4} \times{ }^{7} C_{4}+{ }^{5} C_{5} \times{ }^{7} C_{3}$
$=\frac{5!}{2!3!} \times \frac{7!}{2!5!}+\frac{5!}{4!1!} \times \frac{7!}{4!3!}+\frac{5!}{5!0!} \times \frac{7!}{3!4!}$
$=210+175+35=420$

Question 8:

Determine the number of 5-card combinations out of a deck of 52 cards if each selection of 5 cards has exactly one king.

Solution 8:

From a deck of 52 cards, 5 -card combinations have to be made in such a way that in each selection of 5 cards, there is exactly one king.

In a deck of 52 cards, there are 4 kings.
1 king can be selected out of 4 kings in ${ }^{4} C_{1}$ ways.
4 cards out of the remaining 48 cards can be selected in ${ }^{48} C_{4}$ ways.
Thus, the required number of 5 -card combinations is ${ }^{4} C_{1} \times{ }^{48} C_{4}$.

Question 9:

It is required to seat 5 men and 4 women in a row so that the women occupy the even places. How many such arrangements are possible?

Solution 9:

4 men and 4 women are to be seated in a row such that the women occupy the even places.
The 5 men can be seated in 5! Ways. For each arrangement, the 4 women can be seated only at the cross marked places (so that women occupy the even places).
Therefore, then women can be seated in 4 ! ways.
Thus, possible number of arrangements $=4!\times 5!=24 \times 120=2880$

Question 10:

From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen?

Solution 10:

From the class of 25 students, 10 are to be chosen for an excursion party.
Since there are 3 students who decide that either all of them will join or none fo them will join, there are two cases.
Case I: All the three students join.
Then, the remaining 7 students can be chosen from the remaining 22 students in ${ }^{22} C_{7}$ ways.
Case II: None of the three students join.
Then, 10 students can be chosen from the remaining 22 students in ${ }^{22} C_{10}$ ways.
Thus, required number of ways of choosing the excursion party is ${ }^{22} C_{7}+{ }^{22} C_{10}$.

Question 11:

In how many ways can the letters of the word ASSASSINATION be arranged so that all the S 's are together?

Solution 11:

In the given word ASSASSINATION, the letter A appears 3 times, S appears 4 times, I appears 2 times, N appears 2 times, and all the other letters appear only once. Since all the words have to be arranged in such a way that all the Ss are together, SSSS is treated as a single object for the time being. This single object together with the remaining 9 objects will account for 10 objects.

These 10 objects in which there are 3 As, 2 Is, and 2 Ns can be arranged in $\frac{10!}{3!2!2!}$ ways.
Thus, Required number of ways of arranging the letters of the given word $=\frac{10!}{3!2!2!}=151200$.

