Marking Scheme Class- X Session- 2021-22 TERM 1 Subject- Mathematics (Standard)

	SECTION A		
QN	Correct Option	HINTS/SOLUTION	MAR KS
1	(b)	Least composite number is 4 and the least prime number is 2. $LCM(4,2)$: HCF(4,2) = 4:2 = 2:1	1
2	(a)	For lines to coincide: $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ so, $\frac{5}{15} = \frac{7}{21} = \frac{-3}{-k}$ i.e. k= 9	1
3	(b)	By Pythagoras theorem The required distance $=\sqrt{(200^2 + 150^2)}$ $=\sqrt{(40000+22500)} = \sqrt{(62500)} = 250m.$ So the distance of the girl from the starting point is 250m.	1
4	(d)	Area of the Rhombus = $\frac{1}{2} d_1 d_2 = \frac{1}{2} \times 24 \times 32 = 384 \text{ cm}^2$. Using Pythagoras theorem side ² = $(\frac{1}{2}d_1)^2 + (\frac{1}{2}d_2)^2 = 12^2 + 16^2 = 144 + 256 = 400$ Side = 20cm Area of the Rhombus = base x altitude 384 = 20 x altitude So altitude = 384/20 = 19.2cm	1
5	(a)	Possible outcomes are (HH), (HT), (TH), (TT) Favorable outcomes(at the most one head) are (HT), (TH), (TT) So probability of getting at the most one head =3/4	1
6	(d)	Ratio of altitudes = Ratio of sides for similar triangles So AM:PN = AB:PQ = 2:3	1
7	(b)	$2\sin^{2}\beta - \cos^{2}\beta = 2$ Then $2\sin^{2}\beta - (1 - \sin^{2}\beta) = 2$ $3\sin^{2}\beta = 3 \text{ or } \sin^{2}\beta = 1$ $\beta \text{ is } 90^{\circ}$	1
8	(c)	Since it has a terminating decimal expansion, so prime factors of the denominator will be 2,5	1
9	(a)	Lines x=a is a line parallel to y axis and y=b is a line parallel to x axis. So they will intersect.	1
10	(d)	Distance of point A(-5,6) from the origin(0,0) is $\sqrt{(0+5)^2 + (0-6)^2} = \sqrt{25+36} = \sqrt{61}$ units	1
11	(b)	$a^2=23/25$, then $a = \sqrt{23}/5$, which is irrational	1
12	(c)	LCM X HCF = Product of two numbers 36 X 2 = 18 X x x = 4	1
13	(b)	tan A= $\sqrt{3}$ = tan 60° so $\angle A$ =60°, Hence $\angle C$ = 30°. So cos A cos C- sin A sin C = (1/2)x ($\sqrt{3}/2$) - ($\sqrt{3}/2$)x (1/2) =0	1
14	(a)	$1x + 1x + 2x = 180^{\circ}, x = 45^{\circ}.$ $\angle A, \angle B \text{ and } \angle C \text{ are } 45^{\circ}, 45^{\circ} \text{ and } 90^{\circ} \text{resp.}$ $\frac{\sec A}{\csc B} - \frac{\tan A}{\cot B} = \frac{\sec 45}{\csc 45} - \frac{\tan 45}{\cot 45} = \frac{\sqrt{2}}{\sqrt{2}} - \frac{1}{1} = 1 - 1 = 0$	1

15	(d)	total distance 176	1
		Number of revolutions = $\frac{1}{\text{circumference}} = \frac{1}{2 \text{ X}_{-}^{22} \text{ X}_{-}^{22} \text{ N}_{-}^{22} \text{ K}_{-}^{22} \text{ K}_{-$	
		$\frac{7}{-40}$	
16	(b)	perimeter of $\triangle ABC$ BC	1
_		$\frac{1}{\text{perimeter of }\Delta\text{DEF}} = \frac{1}{\text{EF}}$	
		$\frac{7.5}{1.5} = \frac{2}{1.5}$. So perimeter of $\Delta DEF = 15$ cm	
		perimeter of $\Delta DEF - 4$	
17	(b)	Since DE BC, $\triangle ABC \sim \triangle ADE$ (By AA rule of similarity)	1
		$S_0 \frac{AD}{AD} = \frac{DE}{1.e.} \frac{3}{2} = \frac{DE}{2.e.}$ So $DE = 6cm$	
- 10		AB BC 7 14	
18	(a)	Dividing both numerator and denominator by $\cos\beta$, $4\sin\beta - 3\cos\beta$, $4\tan\beta - 3$, $3-3$	1
		$\frac{1}{4\sin\beta+3\cos\beta} = \frac{1}{4\tan\beta+3} = \frac{3}{3+3} = 0$	
10		a h c	1
19	(d)	$-2(-5x + 7y = 2)$ gives $10x - 14y = -4$. Now $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} = -2$	1
20	(a)	Number of Possible outcomes are 26	1
		Favorable outcomes are M, A, T, H, E, I, C, S probability $= 8/26 = 4/13$	
		SECTION B	
21	(c)	Since $HCF = 81$, two numbers can be taken as $81x$ and $81y$,	1
		ATQ $81x + 81y = 1215$	
		Or $x+y=15$	
		1 14	
		2,13	
		4,11	
		7,8	
22	(c)	Required Area is area of triangle ACD = $\frac{1}{6}$	1
	(0)	= 6 sq units	
23	(b)	$\tan \alpha + \cot \alpha = 2$ gives $\alpha = 45^{\circ}$. So $\tan \alpha = \cot \alpha = 1$	1
		$\tan^{20}\alpha + \cot^{20}\alpha = 1^{20} + 1^{20} = 1 + 1 = 2$	
24	(a)	Adding the two given equations we get: $348x + 348y = 1/40$. So $x + y = 5$	1
25	(c)	LCM of two prime numbers = product of the numbers	1
		221= 13 x 17.	
		So $p = 17 \& q = 13$	
26	(a)	\therefore 3p - q= 51-13 = 38 Probability that the card drawn is paither a king nor a queen	1
20	(a)	$-\frac{52-8}{2}$	1
		$-\frac{52}{52}$ - 44/52 - 11/13	
27	(b)	Outcomes when 5 will come up at least once are-	1
		(1,5), (2,5), (3,5), (4,5), (5,5), (6,5), (5,1), (5,2), (5,3), (5,4) and (5,6)	
		Probability that 5 will come up at least once $= 11/36$	
28	(c)	$1 + \sin^2 \alpha = 3 \sin \alpha \cos \alpha$	1
-0	(0)	$\sin^2\alpha + \cos^2\alpha + \sin^2\alpha = 3\sin\alpha\cos\alpha$	-
		$2\sin^2\alpha - 3\sin\alpha\cos\alpha + \cos^2\alpha = 0$	
		$(2\sin\alpha - \cos\alpha)(\sin\alpha - \cos\alpha) = 0$	
		$\therefore \cot \alpha = 2 \text{ or } \cot \alpha = 1$	
29	(a)	Since ABCD is a parallelogram, diagonals AC and BD bisect each other. : mid	1
	</td <td>point of AC= mid point of BD</td> <td></td>	point of AC= mid point of BD	

		$\left(\frac{x+1}{x+1}, \frac{6+2}{x+1}\right) = \left(\frac{3+4}{x+1}, \frac{5+y}{x+1}\right)$	
		Comparing the co-ordinates we get	
		x+1 = 3+4 So $x=6$	
		$\frac{1}{2} - \frac{1}{2}$. 50, x = 0 6+2 5+y	
		Similarly, $\frac{342}{2} = \frac{349}{2}$. So, y= 3	
		$\therefore(\mathbf{x},\mathbf{y})=(6,3)$	
30	(c)	$\Delta ACD \sim \Delta ABC(AA)$	1
		$\therefore \frac{AC}{LR} = \frac{AD}{LR}$ (CPST)	
		AB AC	
		This gives $AB = 64/3$ cm	
		So $BD = AB - AD = 64/3 - 3 = 55/3$ cm.	
31	(d)	Any point (x, y) of perpendicular bisector will be equidistant from A & B.	1
		$\therefore \sqrt{(x-4)^2 + (y-5)^2} = \sqrt{(x+2)^2 + (y-3)^2}$	
		Solving we get $-12x - 4y + 28=0$ or $3x + y - 7=0$	
32	(b)	$\frac{\cot y}{=} \frac{AC/BC}{=} CD/BC = CD/2CD = \frac{1}{2}$	1
		$\cot x^{\circ} AC/CD$	
33	(9)	The smallest number by which 1/13 should be multiplied so that its decimal	1
00	(4)	avpansion terminates after two desimal points is $12/100 \text{ as}^{-1} \text{ w}^{-13} = \frac{1}{2}$	-
		expansion terminates after two declinar points is $15/100$ as $\frac{1}{13} \times \frac{1}{100} - \frac{1}{100}$	
		0.01 Ang: 12/100	
		Ans: 15/100	
34	(b)		1
		\triangle ABE is a right triangle & FDGB is a	
		square of side x cm	
		$\Delta AFD \sim \Delta DGE(AA)$	
		$\therefore \frac{AF}{P} = \frac{FD}{CPST}$	
		DG GE `´	
		16 - x - x (CDCT)	
		$\frac{G}{B} = \frac{G}{8 - x} = \frac{G}{8 - x} (CPST)$	
		128 - 24x or $x - 16/3$ cm	
		120 - 24x or x - 10/5 or 1	
35	(a)	Since P divides the line segment joining R(-1, 3) and S(9,8) in ratio k:1 \therefore	1
		coordinates of P are $\left(\frac{9k-1}{k+1}, \frac{8k+3}{k+1}\right)$	
		Since P lies on the line $x = y + 2 = 0$ then $\frac{9k - 1}{2} = \frac{8k + 3}{2} + 2 = 0$	
		b = 1 + 2 + 2 = 0 b = 1 + 2 + 2 = 0 b = 1 + 2 + 2 = 0 b = 1 + 2 + 2 = 0	
		which gives $k=2/3$	
36	(c)		1
		Shaded area = Area of semicircle + $\begin{bmatrix} E \\ E \end{bmatrix}$	
		(Area of half square – Area of two	
		quadrants)	
		= Area of semicircle +(Area of half	
		square – Area of semicircle)	
		= Area of half square	
		$-16 \times 14 \times 14 - 08 \text{ cm}^2$	
		- 72 x 14 x 14 - 900117	

37	(d)	Let O be the center of the circle. OA = OB = AB =1cm. So $\triangle OAB$ is an equilateral triangle and $\therefore \angle AOB =60^{\circ}$ Required Area= 8x Area of one segment with r=1cm, $\Theta = 60^{\circ}$ $= 8x(\frac{60}{360} \times \pi \times 1^{2} - \frac{\sqrt{3}}{4} \times 1^{2})$ $= 8(\pi/6 - \sqrt{3}/4)cm^{2}$	1
38	(b)	Sum of zeroes = $2 + \frac{1}{2} = -\frac{5}{p}$ i.e. $\frac{5}{2} = -\frac{5}{p}$. So $p = -2$ Product of zeroes = $2x \frac{1}{2} = \frac{r}{p}$ i.e. $r/p = 1$ or $r = p = -2$	1
39	(c)	$2\pi r = 100$. So Diameter = $2r = 100/\pi$ = diagonal of the square. side $\sqrt{2}$ = diagonal of square = $100/\pi$ \therefore side = $100/\sqrt{2\pi} = 50\sqrt{2}/\pi$	1
40	(b)	$3^{x+y} = 243 = 3^{5}$ So $x+y = 5$ (1) $243^{x-y} = 3$ $(3^{5})^{x-y} = 3^{1}$ So $5x - 5y = 1$ (2) Since : $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$, so unique solution	1
		SECTION C	
41	(c)	Initially, at t=0, Annie's height is 48ft So, at t =0, h should be equal to 48 $h(0) = -16(0)^2 + 8(0) + k = 48$ So k = 48	1
42	(b)	When Annie touches the pool, her height =0 feet i.e. $-16t^2 + 8t + 48 =0$ above water level $2t^2 - t - 6 = 0$ $2t^2 - 4t + 3t - 6 = 0$ 2t(t-2) + 3(t-2) = 0 (2t + 3) (t-2) = 0 i.e. $t= 2$ or $t= -3/2$ Since time cannot be negative , so $t= 2$ seconds	1
43	(d)	t= -1 & t=2 are the two zeroes of the polynomial p(t) Then p(t)=k (t1)(t-2) = k(t+1)(t-2) When t = 0 (initially) h ₁ = 48ft p(0)=k(0 ² - 0 - 2)= 48 i.e2k = 48 So the polynomial is -24(t ² - t -2) = -24t ² + 24t + 48.	
44	(c)	A polynomial q(t) with sum of zeroes as 1 and the product as -6 is given by $q(t) = k(t^2 - (sum of zeroes)t + product of zeroes)$ $= k(t^2 - 1t + -6) \dots(1)$ When t=0 (initially) q(0)= 48ft	1

		$q(0)=k(0^2-1(0)-6)=48$	
		i.e. $-6k = 48$ or $k = -8$	
		Putting $k = -8$ in equation (1), reqd. polynomial is $-8(t^2 - 1t + -6)$	
		$= -8t^2 + 8t + 48$	
45	(a)	When the zeroes are negative of each other,	1
		sum of the zeroes $= 0$	
		So, $-b/a = 0$	
		$-\frac{(k-3)}{12}=0$	
		$\frac{-12}{k-3} = 0$	
		$\begin{bmatrix} 1 & -0 \\ 1 & 2 & 0 \end{bmatrix}$	
		k-3 = 0,	
		1.e. $K = 3$.	
46	(9)	Centroid of Δ EHI with E(2.1) H(-2.4) & I(-2.2) is	1
-10	(a)	$(2^{+}-2^{+}-2^{-})^{+}+4^{+}-2) = (2^{+}2^{+})^{+}$	•
		(
45			1
47	(c)	If P needs to be at equal distance from $A(3,6)$ and $G(1,-3)$, such that A,P and G	1
		are commear, then P will be the mid-point of AG.	
		So coordinates of P will be $\left(\frac{1}{2}, \frac{1}{2}\right) = (2, 3/2)$	
48	(a)	Let the point on x axis equidistant from $I(-1,1)$ and $E(2,1)$ be $(x,0)$	1
		then $\sqrt{(x+1)^2 + (0-1)^2} = \sqrt{(x-2)^2 + (0-1)^2}$	
		$x^{2} + 1 + 2x + 1 = x^{2} + 4 - 4x + 1$	
		6x = 3	
		So $x = \frac{1}{2}$.	
		. the required point is (72, 0)	
49	(h)	Let the coordinates of the position of a player O such that his distance from	1
	(0)	K(-4.1) is twice his distance from $E(2,1)$ be $O(x, y)$	-
		Then KQ : $QE = 2$: 1	
		$O(\mathbf{x} \ \mathbf{y}) = (\frac{2X2+1X-4}{2X1+1X1})$	
		-(01) 3 3 3	
		- (0,1)	
50	(d)	Let the point on y axis equidistant from B(4.3) and C(41) be (0.y)	1
		then $\sqrt{(4-0)^2 + (3-y)^2} = \sqrt{(4-0)^2 + (y+1)^2}$	
		$16 + y^2 + 9 - 6y = 16 + y^2 + 1 + 2y$	
		-8y = -8	
		So $y = 1$.	
		\therefore the required point is (0, 1)	