Exercise 9.4

Find the sum to n terms of the series 1x2+2x3+3x4+4x5+....

Solution 1:
The given series is 1x2+2x3+3x4+4x
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Find the sum to n terms of the series 1x2x3+2x3x4+3x4x5+....

Solution 2:
The given series is 1x2x3+2x3x4+3x4x5+....n" term,

a, =n(n+1)(n+2)
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Find the sum to n terms of the series 3x1? +5x2% +7x3% +...

Solution 3:
The given series is 3x1% +5x2° +7x3 +....n" term,

a, =(2n+1)n* =2n*+n’
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Find the sum to n terms of the series 1 + ! + ! +
1x2 2x3 3x4

Solution 4:
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n" term, a, = ! 11 [By partial fractions]
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Adding the above terms column wise, we obtain
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Find the sum to n terms of the series 5% +62 +72 +.....+ 207

Solution 5:
The given series is 5% +6° +7° +.....+20? n" term,

a,=(n+4)" =n*+8n+16
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Find the sum to n terms of the series 3x8+6x11+9x14+...

Solution 6:
The given series is 3x8+6x11+9x14+.....a,

= (nth termof 3, 6,9....)><(nth termof 8,1L14....)
=(3n)(3n+5)
=9n? +15n
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Find the sum to n terms of series 1° +(12 +22)+(12 +2? +32)+....

Solution 7:
The given series is 1° +(l2 +22)+(12 +2° +32)+....an
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Find the sum to n terms of the series whose n term is given by n(n+1)(n+4).

Solution 8:
a, =n(n+1)(n+4)=n(n*+5n+4)=n’+5n" +4n

B e S
k=1 k=1 k=1 k=1
2 2
n (n4+1) N 5n(n +1g)(2n +1) s 4n(2+1)

_ n(n+1){n(n+1)+5(2n+1)+4}

2 2 3




n(n+1)[ 3n+3n+20n +10+24}
2 6

n(n+1)[ 3n?+23n+34
2 6

n(n +1)(3n2 +23n +34)
12

Find the sum to n terms of these series whose n™ terms is given by n? +2"

Solution 9:
a =n*+2"

snzzn:k2+2k =zn:k2+zn:2k ...... (1)
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Consider anzk =242+ 2% +....
k=1

The above series 2% +2°... is a G.P. with both the first term and common ratio equal to 2.
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Therefore, from (1) and (2), we obtain
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Find the sum to n terms of the serieswhose n™ terms is given by (2n—1)2

Solution 10:
a, =(2n ~1)° =4n*—4n+1
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Miscellaneous Exercise

Show that the sum of (m+n)th and (m—n)th terms of an A.P. is equal to twice the m™ term.

iglu:(;rrldl -d be the first term and the common difference of the A.P. respectively. It is known
that the k™ term of an A.P. is given by

a =a+(k-1)d

S8y, =a+(m+n-1)d

a, ,=a+(m-n-1)d

a,=a+(m-1)d

S8y Fay, =a+(m+n-1)d+a+(m-n-=1)d

=2a+(m+n-1+m-n-1)d

=2a+(2m-2)d

=2a+2(m-1)d

=2[a+(m-1)d]

= 2am

Thus, the sum of (m+n)th and (m—n)th terms of an A.P. is equal to twice the m™ term.

Let the sum of three numbers in A.P., is 24 and their product is 440, find the numbers.

Solution 2:
Let the three numbers in A.P. be a—d,a, and a+d.

According to the given information,





