## Kopykitab Same textbooks, klifck away

## Exercise 9.3

## Question 1:

Find the $20^{\text {th }}$ and $n^{\text {th }}$ terms of the G.P. $\frac{5}{2}, \frac{5}{4}, \frac{5}{8}, \ldots$

Solution 1:
The given G.P. is $\frac{5}{2}, \frac{5}{4}, \frac{5}{8}, \ldots$.
Here, $a=$ First term $=\frac{5}{2}$
$r=$ Common ratio $=\frac{5 / 4}{5 / 2}=\frac{1}{2}$
$a_{20}=a r^{20-1}=\frac{5}{2}\left(\frac{1}{2}\right)^{19}=\frac{5}{(2)(2)^{19}}=\frac{5}{(2)^{20}}$
$a_{n}=a r^{n-1}=\frac{5}{2}\left(\frac{1}{2}\right)^{n-1}=\frac{5}{(2)(2)^{n-1}}=\frac{5}{(2)^{n}}$

## Question 2:

Find the $12^{\text {th }}$ term of a G.P. whose $8^{\text {th }}$ term is 192 and the common ratio is 2 .

## Solution 2:

Common ratio, $\mathrm{r}=2$
Let be the first term of the G.P.

$$
\begin{aligned}
& \therefore a_{8}=a r^{8-1}=a r^{7} \Rightarrow a r^{7}=192 \Rightarrow a(2)^{7}=192 \Rightarrow a(7)^{7}=(2)^{6}(3) \\
& \Rightarrow a=\frac{(2)^{6} \times 3}{(2)^{7}}=\frac{3}{2} \\
& \therefore a_{12}=a r^{12-1}=\left(\frac{3}{2}\right)(2)^{11}=(3)(2)^{10}=3072 .
\end{aligned}
$$

## Question 3:

The $5^{\text {th }}, 8^{\text {th }}$ and $11^{\text {th }}$ terms of a G.P. are $p, q$ and $s$, respectively. Show that $q^{2}=p s$.

## Solution 3:

Let be the first term and $r$ be the common ratio of the G.P. According to the given condition,

$$
\begin{align*}
& a_{5}=a r^{5-1}=a r^{4}=p .  \tag{1}\\
& a_{8}=a r^{8-1}=a r^{7}=q . .  \tag{2}\\
& a_{11}=a r^{11-1}=a r^{10}=s \tag{3}
\end{align*}
$$

Dividing equation (2) by (1), we obtain

$$
\begin{align*}
& \frac{a r^{7}}{a r^{4}}=\frac{q}{p} \\
& r^{3}=\frac{q}{p} \tag{4}
\end{align*}
$$

Dividing equation (3) by (2), we obtain

$$
\begin{align*}
& \frac{a r^{10}}{a r^{7}}=\frac{s}{q} \\
& \Rightarrow r^{3}=\frac{s}{q} \tag{5}
\end{align*}
$$

Equating the values of $r^{3}$ obtained in (4) and (5), we obtain
$\frac{q}{p}=\frac{s}{q}$
$\Rightarrow q^{2}=p s$
Thus, the given result is proved.

## Question 4:

The $4^{\text {th }}$ term of a G.P. is square of its second term, and the first term is -3 . Determine its $7^{\text {th }}$ term.

## Solution 4:

Let be the first term and $r$ be the common ratio of the G.P.
$\therefore a=-3$
It is known that, $a_{n}=a r^{n-1}$
$\therefore a_{4}=a r^{3}=(-3) r^{3}$
$a_{2}=a r^{1}=(-3) r$
According to the given condition,
$(-3) r^{3}=[(-3) r]^{2}$
$\Rightarrow-3 r^{3}=9 r^{2} \Rightarrow r=-3 a_{7}=a r^{7-1}=a r^{6}=(-3)(-3)^{6}=-(3)^{7}=-2187$
Thus, the seventh term of the G.P. is -2187 .

## Question 5:

Which term of the following sequences:
(a) $2,2 \sqrt{2}, 4 \ldots$ is 128 ?
(b) $\sqrt{3}, 3,3 \sqrt{3}, \ldots \ldots$ is 729 ?
(c) $\frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \ldots$ is $\frac{1}{19683}$ ?

## Solution 5:

(a) The given sequence is $2,2 \sqrt{2}, 4 \ldots$. is 128 ?

Here, $a=2$ and $r=(2 \sqrt{2}) / 2=\sqrt{2}$
Let the $n^{\text {th }}$ term of the given sequence be 128 .

$$
\begin{aligned}
& a_{n}=a r^{n-1} \\
& \Rightarrow(2)(\sqrt{2})^{n-1}=128 \\
& \Rightarrow(2)(2)^{\frac{n-1}{2}}=(2)^{7} \\
& \Rightarrow(2)^{\frac{n-1}{2}+1}=(2)^{7} \\
& \therefore \frac{n-1}{2}+1=7 \\
& \Rightarrow \frac{n-1}{2}=6 \\
& \Rightarrow n-1=12 \\
& \Rightarrow n=13
\end{aligned}
$$

Thus, the $13^{\text {th }}$ term of the given sequence is 128 .
(b) The given sequence is $\sqrt{3}, 3,3 \sqrt{3}, \ldots \ldots$.
$a=\sqrt{3}$ and $r=\frac{3}{\sqrt{3}}=\sqrt{3}$
Let the $n^{\text {th }}$ term of the given sequence be 729 .
$a_{n}=a r^{n-1}$
$\therefore a r^{n-1}=729$
$\Rightarrow(\sqrt{3})(\sqrt{3})^{n-1}=729$
$\Rightarrow(3)^{1 / 2}(3)^{\frac{n-1}{2}}=(3)^{6}$
$\Rightarrow(3)^{\frac{1}{2}+\frac{n-1}{2}}=(3)^{6}$
$\therefore \frac{1}{2}+\frac{n-1}{2}=6$
$\Rightarrow \frac{1+n-1}{2}=6$
$\Rightarrow n=12$
Thus, the $12^{\text {th }}$ term of the given sequence is 729 .
(c) The given sequence is $\frac{1}{3}, \frac{1}{9}, \frac{1}{27} \ldots$

Here, $a=\frac{1}{3}$ and $r=\frac{1}{9} \div \frac{1}{3}=\frac{1}{3}$
Let the $n^{\text {th }}$ term of the given sequence be $\frac{1}{19683}$.
$a_{n}=a r^{n-1}$
$\therefore a r^{n-1}=\frac{1}{19683}$
$\Rightarrow\left(\frac{1}{3}\right)\left(\frac{1}{3}\right)^{n-1}=\frac{1}{19683}$
$\Rightarrow\left(\frac{1}{3}\right)^{n}=\left(\frac{1}{3}\right)^{9}$
$\Rightarrow n=9$
Thus, the $9^{\text {th }}$ term of the given sequence is $\frac{1}{19683}$.

## Question 6:

For what values of x , the numbers $\frac{2}{7}, x,-\frac{7}{2}$ are in G.P.?

## Solution 6:

The given numbers are $\frac{-2}{7}, x, \frac{-7}{2}$
Common ratio $=\frac{x}{-2 / 7}=\frac{-7 x}{2}$
Also, common ratio $=\frac{-7 / 2}{x}=\frac{-7}{2 x}$
$\therefore \frac{-7 x}{2}=\frac{-7}{2 x}$
$\Rightarrow x^{2}=\frac{-2 \times 7}{-2 \times 7}=1$
$\Rightarrow x=\sqrt{1}$
$\Rightarrow x= \pm 1$
Thus, for $x= \pm 1$, the given numbers will be in G.P.

## Question 7:

Find the sum up to 20 terms in the geometric progression $0.15,0.015,0.0015 \ldots$.

## Solution 7:

The given G.P. is $0.15,0.015,0.00015 \ldots$
Here, $a=0.15$ and $r=\frac{0.015}{0.15}=0.1$

$$
\begin{aligned}
& S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \\
& \therefore S_{20}=\frac{0.15\left[1-(0.1)^{20}\right]}{1-0.1} \\
& =\frac{0.15}{0.9}\left[1-(0.1)^{20}\right] \\
& =\frac{15}{90}\left[1-(0.1)^{20}\right] \\
& =\frac{1}{6}\left[1-(0.1)^{20}\right]
\end{aligned}
$$

## Question 8:

Find the sum of terms in the geometric progression $\sqrt{7}, \sqrt{21}, 3 \sqrt{7}, \ldots$

## Solution 8:

The given G.P. is $\sqrt{7}, \sqrt{21}, 3 \sqrt{7}, \ldots$
Here, $a=\sqrt{7}$ and $r=\frac{\sqrt{21}}{7}=\sqrt{3}$

$$
\begin{aligned}
& S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \\
& \Rightarrow S_{n}=\frac{\sqrt{7}\left[1-(\sqrt{3})^{n}\right]}{1-\sqrt{3}} \\
& \Rightarrow S_{n}=\frac{\sqrt{7}\left[1-(\sqrt{3})^{n}\right]}{1-\sqrt{3}} \times \frac{1+\sqrt{3}}{1+\sqrt{3}} \\
& \Rightarrow S_{n}=\frac{\sqrt{7}(\sqrt{3}+1)\left[1-(\sqrt{3})^{n}\right]}{1-3} \\
& \Rightarrow S_{n}=\frac{-\sqrt{7}(\sqrt{3}+1)\left[1-(\sqrt{3})^{n}\right]}{2} \\
& \Rightarrow \frac{\sqrt{7}(1+\sqrt{3})}{2}\left[(3)^{\frac{n}{2}}-1\right]
\end{aligned}
$$

## Question 9:

Find the sum of terms in the geometric progression $1,-a, a^{2},-a^{3} \ldots .$. (if $a \neq-1$ )

## Solution 9:

The given G.P. is $1,-a, a^{2},-a^{3} \ldots .$.
Here, first term $=a_{1}=1$
Common ratio $=r=-a$
$S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$
$\therefore S_{n}=\frac{1\left[1-(-a)^{n}\right]}{1-(-a)}=\frac{\left[1-(-a)^{n}\right]}{1+a}$

## Question 10:

Find the sum of terms in the geometric progression $x^{3}, x^{5}, x^{7} \ldots$..(if $\left.x \neq \pm 1\right)$

## Solution 10:

The given G.P. is $x^{3}, x^{5}, x^{7} \ldots$.
Here, $a=x^{3}$ and $r=x^{2}$

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}=\frac{x^{3}\left[1-\left(x^{2}\right)^{n}\right]}{1-x^{2}}=\frac{x^{3}\left(1-x^{2 n}\right)}{1-x^{2}}
$$

Question 11:
Evaluate $\sum_{k=1}^{11}\left(2+3^{k}\right)$
Solution 11:
$\sum_{k=1}^{11}\left(2+3^{k}\right)=\sum_{k=1}^{11}(2)+\sum_{k=1}^{11}\left(3^{k}\right)=22+\sum_{k=1}^{11} 3^{k}$
$\sum_{k=1}^{11} 3^{k}=3^{1}+3^{2}+3^{3}+\ldots \ldots+3^{11}$
The terms of this sequence $3,3^{2}, 3^{3}$ $\qquad$ forms a G.P.
$S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$
$\Rightarrow S_{n}=\frac{3\left[(3)^{11}-1\right]}{3-1}$
$\Rightarrow S_{n}=\frac{3}{2}\left(3^{11}-1\right)$
$\therefore \sum_{k=1}^{11} 3^{k}=\frac{3}{2}\left(3^{11}-1\right)$
Substituting this value in equation (1), we obtain
$\sum_{k=1}^{11}\left(2+3^{k}\right)=22+\frac{3}{2}\left(3^{11}-1\right)$

## Question 12:

The sum of first three terms of a G.P. is $\frac{39}{10}$ and their product is 1 . Find the common ratio and the terms.

## Solution 12:

Let $\frac{a}{r}, a, a r$ be the first three terms of the G.P.
$\frac{a}{r}+a+a r=\frac{39}{10}$
$\left(\frac{a}{r}\right)(a)(a r)=1$
From (2), we
Obtain $a^{3}=1$
$\Rightarrow a=1 \quad$ (Considering real roots only)
Substituting $a=1$ in equation (1), we obtain
$\frac{1}{r}+1+r=\frac{39}{10}$
$\Rightarrow 1+r+r^{2}=\frac{39}{10} r$
$\Rightarrow 10+10 r+10 r^{2}-39 r=0$
$\Rightarrow 10 r^{2}-29 r+10=0$
$\Rightarrow 10 r^{2}-25 r-4 r+10=0$
$\Rightarrow 5 r(2 r-5)-2(2 r-5)=0$
$\Rightarrow(5 r-2)(2 r-5)=0$
$\Rightarrow r=\frac{2}{5}$ or $\frac{5}{2}$
Thus, the three terms of G.P. are $\frac{5}{2}, 1$ and $\frac{2}{5}$.

## Question 13:

How many terms of G.P. $3,3^{2}, 3^{3} \ldots$ are needed to give the sum 120 ?

## Solution 13:

The given G.P. is $3,3^{2}, 3^{3} \ldots$
Let terms of this G.P. be required to obtain in the sum as 120 .
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$
Here, $a=3$ and $r=3$
$\therefore S_{n}=120=\frac{3\left(3^{n}-1\right)}{3-1}$
$\Rightarrow 120=\frac{3\left(3^{n}-1\right)}{2}$
$\Rightarrow \frac{120 \times 2}{3}=3^{n}-1$
$\Rightarrow 3^{n}-1=80$
$\Rightarrow 3^{n}=81$
$\Rightarrow 3^{n}=3^{4}$
$\therefore n=4$
Thus, four terms of the given G.P. are required to obtain the sum as 120 .

## Question 14:

The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128 . Determine the first term, the common ratio and the sum to $n$ terms of the G.P.

## Solution 14:

Let the G.P. be $a, a r, a r^{2}, a r^{3}, \ldots$. According to the given condition,

$$
\begin{align*}
& a+a r+a r^{2}=16 \text { and } a r^{3}+a r^{4}+a r^{5}=128 \\
& \Rightarrow a\left(1+r+r^{2}\right)=16  \tag{1}\\
& a r^{3}\left(1+r+r^{2}\right)=128 \tag{2}
\end{align*}
$$

Dividing equation (2) by (1), we obtain
$\frac{a r^{3}\left(1+r+r^{3}\right)}{a\left(1+r+r^{2}\right)}=\frac{128}{16}$
$\Rightarrow r^{3}=8$
$\therefore r=2$
Substituting $r=2$ in (1), we obtain $a(1+2+4)=16$
$\Rightarrow a(7)=16$
$\Rightarrow a=\frac{16}{7}$
$S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$
$\Rightarrow S_{n}=\frac{16}{7} \frac{\left(2^{n}-1\right)}{2-1}=\frac{16}{7}\left(2^{n}-1\right)$

## Question 15:

Given a G.P. with $a=729$ and $7^{\text {th }}$ term 64 , determine $S_{7}$.
Solution 15:

$$
a=729 a_{7}=64
$$

Let $r$ be the common ratio of the G.P. It is known that,
$a_{n}=a r^{n-1}$
$a_{7}=a r^{7-1}=(729) r^{6}$
$\Rightarrow 64=729 r^{6}$
$\Rightarrow r^{6}=\left(\frac{2}{3}\right)^{6}$
$\Rightarrow r=\frac{2}{3}$
Also, it is known that,
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$

$$
\begin{aligned}
& \therefore S_{7}=\frac{729\left(1-\left(\frac{2}{3}\right)^{7}\right)}{1-\frac{2}{3}} \\
& =3 \times 729\left[1-\left(\frac{2}{3}\right)^{7}\right] \\
& =(3)^{7}\left[\frac{(3)^{7}-(2)^{7}}{(3)^{7}}\right] \\
& =(3)^{7}-(2)^{7} \\
& =2187-128 \\
& =2059
\end{aligned}
$$

## Question 16:

Find a G.P. for which sum of the first two terms is -4 and the fifth term is 4 times the third term.

## Solution 16:

Let be the first term and $r$ be the common ratio of the G.P.
According to the given conditions,
$A_{2}=-4=\frac{a\left(1-r^{2}\right)}{1-r}$
$a_{5}=4 \times a_{3}$
$\Rightarrow a r^{4}=4 a r^{2} \Rightarrow r^{2}=4$
$\therefore r= \pm 2$
From (1), we obtain
$-4=\frac{a\left[1-(2)^{2}\right]}{1-2}$ for $r=2$
$\Rightarrow-4=\frac{a(1-4)}{-1}$
$\Rightarrow-4=a(3)$
$\Rightarrow a=\frac{-4}{3}$
Also, $-4=\frac{a\left[1-(-2)^{2}\right]}{1-(-2)}$ for $r=-2$
$\Rightarrow-4=\frac{a(1-4)}{1+2}$
$\Rightarrow-4=\frac{a(-3)}{3}$
$\Rightarrow a=4$
Thus, the required G.P. is $\frac{-4}{3}, \frac{-8}{3}, \frac{-16}{3}, \ldots$ or $4,-8,-16,-32 \ldots$

## Question 17:

If the $4^{\text {th }}, 10^{\text {th }}$ and $16^{\text {th }}$ terms of a G.P. are $x, y$, and $z$, respectively. Prove that $x, y, z$ are in G.P.

## Solution 17:

Let be the first term and $r$ be the common ratio of the G.P.
According to the given condition,

$$
\begin{align*}
& a_{4}=a r^{3}=x  \tag{1}\\
& a_{10}=a r^{9}=y  \tag{2}\\
& a_{16}=a r^{15}=z \tag{3}
\end{align*}
$$

Dividing (2) by (1), we obtain
$\frac{y}{x}=\frac{a r^{9}}{a r^{3}} \Rightarrow \frac{y}{x}=r^{6}$
Dividing (3) by (2), we obtain
$\frac{z}{y}=\frac{a r^{15}}{a r^{9}} \Rightarrow \frac{z}{y}=r^{6}$
$\therefore \frac{y}{x}=\frac{z}{y}$
Thus, $x, y, z$ are in G.P.

## Question 18:

Find the sum to terms of the sequence, $8,88,888,8888 \ldots$

## Solution 18:

The given sequence is $8,88,888,8888 \ldots$
This sequence is not a G.P. However, it can be changed to G.P. by writing the terms as
$S_{n}=8+88+888+8888+$ $\qquad$ to n terms
$=\frac{8}{9}[9+99+999+9999+$ $\qquad$ to $n$ terms ]
$=\frac{8}{9}\left[(10-1)+\left(10^{2}-1\right)+\left(10^{3}-1\right)+\left(10^{4}-1\right)+\ldots \ldots .\right.$. to $n$ terms $]$
$=\frac{8}{9}\left[\left(10+10^{2}+\ldots \ldots . n\right.\right.$ terms $)-(1+1+1+\ldots . . n$ terms $\left.)\right]$

$$
\begin{aligned}
& =\frac{8}{9}\left[\frac{10\left(10^{n}-1\right)}{10-1}-n\right] \\
& =\frac{8}{9}\left[\frac{10\left(10^{n}-1\right)}{9}-n\right] \\
& =\frac{80}{81}\left(10^{n}-1\right)-\frac{8}{9} n
\end{aligned}
$$

## Question 19:

Find the sum of the products of the corresponding terms of the sequences $2,4,8,16,32$ and 128 , 32, 8, 2, 1/2.

## Solution 19:

Required sum $=2 \times 128+4 \times 32+8 \times 8+16 \times 2+32 \times \frac{1}{2}$
$=64\left[4+2+1+\frac{1}{2}+\frac{1}{2^{2}}\right]$
Here, $4,2,1, \frac{1}{2}, \frac{1}{2^{2}}$ is a G.P.
First term, $a=4$
Common ratio, $r=\frac{1}{2}$
It is known that, $S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$
$\therefore S_{5}=\frac{4\left[1-\left(\frac{1}{2}\right)^{5}\right]}{1-\frac{1}{2}}=\frac{4\left[1-\frac{1}{32}\right]}{\frac{1}{2}}=8\left(\frac{32-1}{32}\right)=\frac{31}{4}$
$\therefore$ Required sum $=64\left(\frac{31}{4}\right)=(16)(31)=496$

## Question 20:

Show that the products of the corresponding terms of the sequences form $a, a r, a r^{2}, \ldots . . a r^{n-1}$ and $A, A R, A R^{2}, A R^{n-1}$ a G.P., and find the common ratio.

## Solution 20:

It has to be proved that the sequence: $a A, a r A R, a r^{2} A R^{2}, \ldots \ldots . . a r^{n-1} A R^{n-1}$, forms a G.P.
$\frac{\text { Second term }}{\text { First term }}=\frac{a r A R}{a A}=r R$
$\frac{\text { Third term }}{\text { Second term }}=\frac{a r^{2} A R^{2}}{a r A R}=r R$
Thus, the above sequence forms a G.P. and the common ratio is rR .

## Question 21:

Find four numbers forming a geometric progression in which third term is greater than the first term by 9 , and the second term is greater than the $4^{\text {th }}$ by 18 .

Solution 21:
Let a be the first term and r be the common ratio of the G.P.
$a_{1}=a, a_{2}=a r, a_{3}=a r^{2}, a_{4}=a r^{3}$
By the given condition,

$$
\begin{align*}
& a_{3}=a_{1}+9 \Rightarrow a r^{2}=a+9  \tag{1}\\
& a_{4}=a_{4}+18 \Rightarrow a r=a r^{3}+18 \tag{2}
\end{align*}
$$

From (1) and (2), we obtain
$a\left(r^{2}-1\right)=9$.
$\operatorname{ar}\left(1-r^{2}\right)=18$
Dividing (4) by (3), we obtain
$\frac{\operatorname{ar}\left(1-r^{2}\right)}{a\left(r^{2}-1\right)}=\frac{18}{9}$
$\Rightarrow-r=2$
$\Rightarrow r=-2$
Substituting the value of $r$ in (1), we obtain
$4 a=a+9$
$\Rightarrow 3 a=9$
$\therefore a=3$
Thus, the first four numbers of the G.P. are $3,3(-2), 3(-2)^{2}$, and $3(-2)^{3}$ i.e., $3,-6,12$ and -24 .

## Question 22:

If $p^{t h}, q^{t h}$ and $r^{\text {th }}$ terms of a G.P. are $a, b$ and $c$, respectively. Prove that $a^{q-r} \cdot b^{r-p} \cdot c^{p-q}=1$.

## Solution 22:

Let A be the first term and R be the common ratio of the G.P.
According to the given information,

$$
\begin{aligned}
& A R^{p-1}=a \\
& A R^{q-1}=b \\
& A R^{r-1}=c
\end{aligned}
$$

$$
\begin{aligned}
& a^{q-r} \cdot b^{r-p} \cdot c^{p-q} \\
& =A^{q-r} \times R^{(p-1)(q-r)} \times A^{r-p} \times R^{(q-1)(r-p)} \times A^{p-q} \times R^{(r-1)(p-q)} \\
& =A^{q-r+r-p+p-q} \times R^{(p r-p r-q+r)+(r q-r+p-p q)+(p r-p-q r+q)} \\
& =A^{0} \times R^{0} \\
& =1
\end{aligned}
$$

Thus, the given result is proved.

## Question 23:

If the first and the $n^{\text {th }}$ term of a G.P. are and $b$, respectively, and if $P$ is the product of terms, prove that $P^{2}=(a b)^{n}$.

## Solution 23:

The first term of the G.P is and the last term is $b$.
Therefore, the G.P. is $a, a r, a r^{2}, a r^{3} \ldots . a r^{n-1}$, where $r$ is the common ratio.

$$
\begin{align*}
& b=a r^{n-1} \ldots \ldots . .(1)  \tag{1}\\
& P=\text { Product of terms } \\
& =(a)(a r)\left(a r^{2}\right) \ldots \ldots .\left(a r^{n-1}\right) \\
& =(a \times a \times \ldots a)\left(r \times r^{2} \times \ldots . r^{n-1}\right) \\
& =a^{n} r^{1+2+\ldots .(n-1)} \ldots \ldots . .(2) \tag{2}
\end{align*}
$$

Here, $1,2, \ldots . .(n-1)$ is an A.P.

$$
\begin{aligned}
& \therefore 1+2+\ldots \ldots .+(n-1) \\
& =\frac{n-1}{2}[2+(n-1-1) \times 1]=\frac{n-1}{2}[2+n-2]=\frac{n(n-1)}{2} \\
& P=a^{n} r^{\frac{n(n-1)}{2}} \\
& \therefore P^{2}=a^{2 n} r^{n(n-1)} \\
& =\left[a^{2} r^{(n-1)}\right]^{n} \\
& =\left[a \times a r^{n-1}\right]^{n} \\
& =(a b)^{n} \quad \quad \quad[\operatorname{Using}(1)]
\end{aligned}
$$

Thus, the given result is proved.

## Question 24:

Show that the ratio of the sum of first terms of a G.P. to the sum of terms from $(n+1)^{\text {th }}$ to $(2 n)^{\text {th }}$ term is $\frac{1}{r^{n}}$.

## Solution 24:

Let be the first term and $r$ be the common ratio of the G.P.
Sum of first terms $=\frac{a\left(1-r^{n}\right)}{(1-r)}$
Since there are terms from $(n+1)^{\text {th }}$ to $(2 n)^{\text {th }}$ term,
Sum of terms from $(n+1)^{\text {th }}$ to $(2 n)^{\text {th }}$ term
$S_{n}=\frac{a_{n+1}\left(1-r^{n}\right)}{1-r}$
$a^{n+1}=a r^{n+1-1}=a r^{n}$
Thus, required ratio $=\frac{a\left(1-r^{n}\right)}{(1-r)} \times \frac{(1-r)}{a r^{n}\left(1-r^{n}\right)}=\frac{1}{r^{n}}$
Thus, the ratio of the sum of first terms of a G.P. to the sum of terms from $(n+1)^{\text {th }}$ to $(2 n)^{\text {th }}$ term is $\frac{1}{r^{n}}$.

## Question 25:

If $a, b, c$ and are in G.P. show that:

$$
\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=(a b+b c+c d)^{2}
$$

## Solution 25:

If $a, b, c$ and are in G.P. Therefore,

$$
\begin{align*}
b c & =a d .  \tag{1}\\
b^{2} & =a c .  \tag{2}\\
c^{2} & =b d . \tag{3}
\end{align*}
$$

It has to be proved that,
$\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=(a b+b c+c d)^{2}$
R.H.S.

$$
\begin{aligned}
& =(a b+b c+c d)^{2} \\
& =(a b+a d+c d)^{2} \quad[\operatorname{Using}(1)] \\
& =[a b+d(a+c)]^{2} \\
& =a^{2} b^{2}+2 a b d(a+c)+d^{2}(a+c)^{2} \\
& =a^{2} b^{2}+2 a^{2} b d+2 a c b d+d^{2}\left(a^{2}+2 a c+c^{2}\right) \\
& =a^{2} b^{2}+2 a^{2} c^{2}+2 b^{2} c^{2}+d^{2} a^{2}+2 d^{2} b^{2}+d^{2} c^{2} \quad[\operatorname{Using}(1) \operatorname{and}(2)] \\
& =a^{2} b^{2}+a^{2} c^{2}+a^{2} c^{2}+b^{2} c^{2}+b^{2} c^{2}+d^{2} a^{2}+d^{2} b^{2}+d^{2} b^{2}+d^{2} c^{2}
\end{aligned}
$$

$$
=a^{2} b^{2}+a^{2} c^{2}+a^{2} d^{2}+b^{2} \times b^{2}+b^{2} c^{2}+b^{2} d^{2}+c^{2} b^{2}+c^{2} \times c^{2}+c^{2} d^{2}
$$

[Using (2) and (3) and rearranging terms]
$=a^{2}\left(b^{2}+c^{2}+d^{2}\right)+b^{2}\left(b^{2}+c^{2}+d^{2}\right)+c^{2}\left(b^{2}+c^{2}+d^{2}\right)$
$=\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=$ L.H.S
$\therefore$ L.H.S $=$ R.H.S.
$\therefore\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=(a b+b c+c d)^{2}$.

## Question 26:

Insert two numbers between 3 and 81 so that the resulting sequence is G.P.

## Solution 26:

Let $G_{1}$ and $G_{2}$ be two numbers between 3 and 81 such that the series, $3, G_{1}, G_{2}, 81$, forms a G.P. Let be the first term and $r$ be the common ratio of the G.P.
$\therefore 81=(3)(r)^{3}$
$\Rightarrow r^{3}=27$
$\therefore r=3$ (Talking real roots only)
For $r=3$,
$G_{1}=a r=(3)(3)=9$
$G_{2}=a r^{2}=(3)(3)^{2}=27$
Thus, the required two numbers are 9 and 27.

## Question 27:

Find the value of so that $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$ may be the geometric mean between and $b$.

## Solution 27:

M. of and $b$ is $\sqrt{a b}$

By the given condition: $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}=\sqrt{a b}$
Squaring both sides, we obtain

$$
\begin{aligned}
& \frac{\left(a^{n+1}+b^{n+1}\right)^{2}}{\left(a^{n}+b^{n}\right)^{2}}=a b \\
& \Rightarrow a^{2 n+2}+2 a^{n+1} b^{n+1}+b^{2 n+2}=(a b)\left(a^{2 n}+2 a^{n} b^{n}+b^{2 n}\right) \\
& \Rightarrow a^{2 n+2}+2 a^{n+1} b^{n+1}+b^{2 n+2}=a^{2 n+1} b+2 a^{n+1} b^{n+1}+a b^{2 n+1} \\
& \Rightarrow a^{2 n+2}+b^{2 n+2}=a^{2 n+1} b+a b^{2 n+1} \\
& \Rightarrow a^{2 n+2}-a^{2 n+1} b=a b^{2 n+1}-b^{2 n+2}
\end{aligned}
$$

$\Rightarrow a^{2 n+1}(a-b)=b^{2 n+1}(a-b)$
$\Rightarrow\left(\frac{a}{b}\right)^{2 n+1}=1=\left(\frac{a}{b}\right)^{0}$
$\Rightarrow 2 n+1=0$
$\Rightarrow n=\frac{-1}{2}$

## Question 28:

The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio $(3+2 \sqrt{2}):(3-2 \sqrt{2})$

## Solution 28:

Le the two numbers be and $b$.
G.M. $=\sqrt{a b}$

According to the given condition,
$a+b=6 \sqrt{a b}$
$\Rightarrow(a+b)^{2}=36(a b)$
Also,
$(a-b)^{2}=(a+b)^{2}-4 a b=36 a b-4 a b=32 a b$
$\Rightarrow a-b=\sqrt{32} \sqrt{a b}$
$=4 \sqrt{2} \sqrt{a b}$
Adding (1) and (2), we obtain
$2 a=(6+4 \sqrt{2}) \sqrt{a b}$
$a=(3+2 \sqrt{2}) \sqrt{a b}$
Substituting the value of in (1), we obtain
$b=6 \sqrt{a b}-(3+2 \sqrt{2}) \sqrt{a b}$
$\Rightarrow b=(3-2 \sqrt{2}) \sqrt{a b}$
$\frac{a}{b}=\frac{(3+2 \sqrt{2}) \sqrt{a b}}{(3-2 \sqrt{2}) \sqrt{a b}}=\frac{3+2 \sqrt{2}}{3-2 \sqrt{2}}$
Thus, the required ratio is $(3+2 \sqrt{2}):(3-2 \sqrt{2})$.

## Question 29:

If A and G be A.M. and G.M., respectively between two positive numbers, prove that the numbers are $A \pm \sqrt{(A+G)(A-G)}$

## Solution 29:

It is given that A and G are A.M. and G.M. between two positive numbers.
Let these two positive numbers be and $b$.
$\therefore A M=A=\frac{a+b}{2}$
$G M=G=\sqrt{a b}$
From (1) and (2), we obtain
$a+b=2 A$
$a b=G^{2}$
Substituting the value of and $b$ from (3) and (4) in the identity
$(a-b)^{2}=(a+b)^{2}-4 a b$,
We obtain
$(a-b)^{2}=4 A^{2}-4 G^{2}=4\left(A^{2}-G^{2}\right)$
$(a-b)^{2}=4(A+G)(A-G)$
$(a-b)=2 \sqrt{(A+G)(A-G)}$
From (3) and (5), we obtain
$2 a=2 A+2 \sqrt{(A+G)(A-G)}$
$\Rightarrow a=A+\sqrt{(A+G)(A-G)}$
Substituting the value of in (3), we obtain
$b=2 A-A-\sqrt{(A+G)(A-G)}=A-\sqrt{(A+G)(A-G)}$
Thus, the two numbers are $A \pm \sqrt{(A+G)(A-G)}$.

## Question 30:

The number of bacteria in a certain culture doubles every hour. If there were 30 bacteria present in the culture originally, how many bacteria will be present at the end of $2^{\text {nd }}$ hour, $4^{\text {th }}$ hour and $n^{\text {th }}$ hour?

## Solution 30:

It is given that the number of bacteria doubles every hour. Therefore, the number of bacteria after every hour will form a G.P.
Here, $a=30$ and $r=2 \quad \therefore a_{3}=a r^{2}=(30)(2)^{2}=120$
Therefore, the number of bacteria at the end of $2^{\text {nd }}$ hour will be 120 .

$$
a_{5}=a r^{4}=(30)(2)^{4}=480
$$

The number of bacteria at the end of $4^{\text {th }}$ hour will be 480 .

$$
a_{n+1}=a r^{n}=(30) 2^{n}
$$

Thus, number of bacteria at the end of $n^{\text {th }}$ hour will be $30(2)^{n}$.

## Question 31:

What will Rs. 500 amounts to in 10 years after its deposit in a bank which pays annual interest rate of $10 \%$ compounded annually?

## Solution 31:

The amount deposited in the bank is Rs. 500.
At the end of first year, amount $=$ Rs. $500\left(1+\frac{1}{10}\right)=$ Rs. $500(1.1)$
At the end of $2^{\text {nd }}$ year, amount $=$ Rs. 500 (1.1) (1.1)
At the end of $3^{\text {rd }}$ year, amount $=$ Rs. 500 (1.1) (1.1) (1.1) and so on
$\therefore$ Amount at the end of 10 years $=$ Rs. 500 (1.1) (1.1) $\ldots . .(10$ times $)$
$=$ Rs. $500(1.1)^{10}$.

## Question 32:

If A.M. and G.M. of roots of a quadratic equation are 8 and 5 , respectively, then obtain the quadratic equation.

## Solution 32:

Let the root of the quadratic equation be and $b$.
According to the given condition,
A.M. $=\frac{a+b}{2}=8 \Rightarrow a+b=16$
G.M. $=\sqrt{a b}=5 \Rightarrow a b=25$

The quadratic equation is given by, $x^{2}-x$ (Sumof roots) $+($ Product of roots $)=0$
$x^{2}-x(a+b)+(a b)=0$
$x^{2}-16 x+25=0 \quad$ [Using (1) and (2)]
Thus, the required quadratic equation is $x^{2}-16 x+25=0$.

