Same textbooks, klick away

Question 2:

Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.

Solution 2:

Common ratio, r = 2Let be the first term of the G.P. $\therefore a_8 = ar^{8-1} = ar^7 \Longrightarrow ar^7 = 192 \Longrightarrow a(2)^7 = 192 \Longrightarrow a(7)^7 = (2)^6 (3)$ $\Rightarrow a = \frac{(2)^6 \times 3}{(2)^7} = \frac{3}{2}$ $\therefore a_{12} = ar^{12-1} = \left(\frac{3}{2}\right)(2)^{11} = (3)(2)^{10} = 3072.$

Question 3:

The 5th, 8th and 11th terms of a G.P. are p,q and s, respectively. Show that $q^2 = ps$.

Solution 3:

testimolts . Let be the first term and r be the common ratio of the G.P. According to the given condition, $a_5 = a r^{5-1} = a r^4 = p$ (1) $a_8 = a r^{8-1} = a r^7 = q$ (2) $a_{11} = a r^{11-1} = a r^{10} = s \dots (3)$ Dividing equation (2) by (1), we obtain $\frac{ar^7}{ar^4} = \frac{q}{p}$ $r^3 = \frac{q}{2} \qquad \dots \dots (4)$ Dividing equation (3) by (2), we obtain $\frac{ar^{10}}{ar^7} = \frac{s}{a}$ $\Rightarrow r^3 = \frac{s}{a}$(5) Equating the values of r^3 obtained in (4) and (5), we obtain $\underline{q} = \underline{s}$ p q $\Rightarrow q^2 = ps$

Thus, the given result is proved.

Question 4:

The 4th term of a G.P. is square of its second term, and the first term is -3. Determine its 7th term.

Solution 4:

be the first term and r be the common ratio of the G.P. Let $\therefore a = -3$ It is known that, $a_n = ar^{n-1}$ $\therefore a_4 = ar^3 = (-3)r^3$ $a_{2} = ar^{1} = (-3)r$ According to the given condition, $(-3)r^3 = \left\lceil (-3)r \right\rceil^2$ $\Rightarrow -3r^{3} = 9r^{2} \Rightarrow r = -3a_{7} = ar^{7-1} = ar^{6} = (-3)(-3)^{6} = -(3)^{7} = -2187$ Thus, the seventh term of the G.P. is -2187.

 $\int_{a}^{a} \frac{1}{19683}?$ Solution 5: (a) The given sequence is $2, 2\sqrt{2}, 4...$ is 128? Here, a = 2 and $r = (2\sqrt{2})/2 = \sqrt{2}$ Let the n^{th} term of the given security $a_n = ar^{n-1}$ $\Rightarrow (2)(\sqrt{2})^{n-1}$ \Rightarrow $(2)(\sqrt{2})^{n-1} = 128$ $\Rightarrow (2)(2)^{\frac{n-1}{2}} = (2)^7$ $\Rightarrow (2)^{\frac{n-1}{2}+1} = (2)^7$ $\therefore \frac{n-1}{2} + 1 = 7$ $\Rightarrow \frac{n-1}{2} = 6$ $\Rightarrow n-1=12$ $\Rightarrow n = 13$ Thus, the 13th term of the given sequence is 128.

(b) The given sequence is $\sqrt{3}$, 3, $3\sqrt{3}$,.... $a = \sqrt{3}$ and $r = \frac{3}{\sqrt{3}} = \sqrt{3}$ Let the n^{th} term of the given sequence be 729. $a_n = a r^{n-1}$ $\therefore a r^{n-1} = 729$ $\Rightarrow (\sqrt{3})(\sqrt{3})^{n-1} = 729$ $\Rightarrow (3)^{1/2} (3)^{\frac{n-1}{2}} = (3)^6$ $\Rightarrow (3)^{\frac{1}{2} + \frac{n-1}{2}} = (3)^6$ $\therefore \frac{1}{2} + \frac{n-1}{2} = 6$ $\Rightarrow \frac{1+n-1}{2} = 6$ $5 \cdot 9 \cdot \overline{27}^{\dots}$ $a = \frac{1}{3} \text{ and } r = \frac{1}{9} \div \frac{1}{3} = \frac{1}{3}$ Let the n^{th} term of the given sequence be $a_n = ar^{n-1}$ $ar^{n-1} = \frac{1}{19683}$ $\Rightarrow \left(\frac{1}{3}\right) \left(\frac{1}{3}\right)^{n-1} = \frac{1}{19683}$ $\Rightarrow \left(\frac{1}{3}\right)^n = \left(\frac{1}{3}\right)^9$ $\Rightarrow n = 9$ \Rightarrow n = 12 Thus, the 9th term of the given sequence is $\frac{1}{19683}$.

Question 6:

For what values of x, the numbers $\frac{2}{7}$, x, $-\frac{7}{2}$ are in G.P.?

Solution 6:

The given numbers are $\frac{-2}{7}$, x, $\frac{-7}{2}$ Common ratio $=\frac{x}{-2/7}=\frac{-7x}{2}$ Also, common ratio $=\frac{-7/2}{r}=\frac{-7}{2r}$ $\therefore \frac{-7x}{2} = \frac{-7}{2x}$ $\Rightarrow x^2 = \frac{-2 \times 7}{-2 \times 7} = 1$ $\Rightarrow x = \sqrt{1}$ $\Rightarrow x = \pm 1$ Thus, for $x = \pm 1$, the given numbers will be in G.P.

Question 7:

Find the sum up to 20 terms in the geometric progression 0.15, 0.015, 0.0015....

Question 8:

terms in the geometric progression $\sqrt{7}$, $\sqrt{21}$, $3\sqrt{7}$,... Find the sum of

Solution 8:

The given G.P. is $\sqrt{7}$, $\sqrt{21}$, $3\sqrt{7}$,... Here, $a = \sqrt{7}$ and $r = \frac{\sqrt{21}}{7} = \sqrt{3}$

$$S_{n} = \frac{a(1-r^{n})}{1-r}$$

$$\Rightarrow S_{n} = \frac{\sqrt{7}\left[1-(\sqrt{3})^{n}\right]}{1-\sqrt{3}}$$

$$\Rightarrow S_{n} = \frac{\sqrt{7}\left[1-(\sqrt{3})^{n}\right]}{1-\sqrt{3}} \times \frac{1+\sqrt{3}}{1+\sqrt{3}}$$

$$\Rightarrow S_{n} = \frac{\sqrt{7}\left(\sqrt{3}+1\right)\left[1-(\sqrt{3})^{n}\right]}{1-3}$$

$$\Rightarrow S_{n} = \frac{-\sqrt{7}\left(\sqrt{3}+1\right)\left[1-(\sqrt{3})^{n}\right]}{2}$$

$$\Rightarrow \frac{\sqrt{7}\left(1+\sqrt{3}\right)}{2}\left[(3)^{\frac{n}{2}}-1\right]$$

Question 9:

Find the sum of terms in the geometric progression $1, -a, a^2, -a^3$(if $a \neq -1$) ne textbooks

Solution 9:

The given G.P. is $1, -a, a^2, -a^3$

Here, first term $= a_1 = 1$

Common ratio = r = -a

$$S_{n} = \frac{a_{1}(1-r^{n})}{1-r}$$

$$\therefore S_{n} = \frac{1[1-(-a)^{n}]}{1-(-a)} = \frac{[1-(-a)^{n}]}{1+a}$$

Question 10:

Find the sum of terms in the geometric progression x^3, x^5, x^7(if $x \neq \pm 1$)

Solution 10:

The given G.P. is x^3, x^5, x^7 Here, $a = x^3$ and $r = x^2$ $S_{n} = \frac{a(1-r^{n})}{1-r} = \frac{x^{3}\left[1-(x^{2})^{n}\right]}{1-x^{2}} = \frac{x^{3}(1-x^{2n})}{1-x^{2}}$

Question 11: Evaluate $\sum_{k=1}^{11} (2+3^k)$

Solution 11:

$$\sum_{k=1}^{11} (2+3^k) = \sum_{k=1}^{11} (2) + \sum_{k=1}^{11} (3^k) = 22 + \sum_{k=1}^{11} 3^k \qquad \dots \dots \dots (1)$$
$$\sum_{k=1}^{11} 3^k = 3^1 + 3^2 + 3^3 + \dots \dots + 3^{11}$$

The terms of this sequence $3, 3^2, 3^3$ forms a G.P.

$$S_n = \frac{a(r^n - 1)}{r - 1}$$
$$\Rightarrow S_n = \frac{3[(3)^{11} - 1]}{3 - 1}$$
$$\Rightarrow S_n = \frac{3}{2}(3^{11} - 1)$$
$$\therefore \sum_{k=1}^{11} 3^k = \frac{3}{2}(3^{11} - 1)$$

Substituting this value in equation (1), we obtain

$$\sum_{k=1}^{11} (2+3^k) = 22 + \frac{3}{2} (3^{11} - 1)$$

Question 12:

The sum of first three terms of a G.P. is $\frac{39}{10}$ and their product is 1. Find the common ratio and the terms.

Solution 12:

Let $\frac{a}{r}$, a, ar be the first three terms of the G.P. $\frac{a}{r} + a + ar = \frac{39}{10}$ (1) $\left(\frac{a}{r}\right)(a)(ar) = 1 \qquad \dots \dots (2)$ From (2), we Obtain $a^3 = 1$ $\Rightarrow a = 1$ (Considering real roots only) Substituting a=1 in equation (1), we obtain

$$\frac{1}{r} + 1 + r = \frac{39}{10}$$

$$\Rightarrow 1 + r + r^2 = \frac{39}{10}r$$

$$\Rightarrow 10 + 10r + 10r^2 - 39r = 0$$

$$\Rightarrow 10r^2 - 29r + 10 = 0$$

$$\Rightarrow 10r^2 - 25r - 4r + 10 = 0$$

$$\Rightarrow 5r(2r - 5) - 2(2r - 5) = 0$$

$$\Rightarrow (5r - 2)(2r - 5) = 0$$

$$\Rightarrow r = \frac{2}{5} \text{ or } \frac{5}{2}$$
Thus, the three terms of G.P. are $\frac{5}{2}$, 1 and $\frac{2}{5}$

Question 13:

How many terms of G.P. $3,3^2,3^3...$ are needed to give the sum 120? Solution 13: The given G.P. is $3,3^2,3^3...$ Let terms of this G.P. be required to obtain in the sum as 120. $S_n = \frac{a(1-r^n)}{1-r}$ Here, a = 3 and r = 3 $\therefore S_n = 120 = \frac{3(3^n - 1)}{3-1}$ $\Rightarrow 120 = \frac{3(3^n - 1)}{2}$ $\Rightarrow \frac{120 \times 2}{3} = 3^n - 1$ $\Rightarrow 3^n - 1 = 80$ $\Rightarrow 3^n = 81$ $\Rightarrow 3^n = 3^4$ $\therefore n = 4$ Thus, four terms of the given G.P. are required to obtain the sum as 120.

Question 14:

The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.

Solution 14: Let the G.P. be a, ar, ar^2, ar^3, \dots According to the given condition, $a + ar + ar^2 = 16$ and $ar^3 + ar^4 + ar^5 = 128$ $\Rightarrow a(1+r+r^2)=16$(1) $ar^{3}(1+r+r^{2})=128$(2) Dividing equation (2) by (1), we obtain $\frac{ar^3(1+r+r^3)}{a(1+r+r^2)} = \frac{128}{16}$ \Rightarrow $r^3 = 8$ $\therefore r = 2$ Substituting r=2 in (1), we obtain a(1+2+4)=16 $\Rightarrow a(7) = 16$ $\Rightarrow a = \frac{16}{7}$ Hitech annaly $S_n = \frac{a(r^n - 1)}{r - 1}$ $\Rightarrow S_n = \frac{16}{7} \frac{(2^n - 1)}{2 - 1} = \frac{16}{7} (2^n - 1)$

Question 15:

Given a G.P. with a = 729 and 7th term 64, determine S_7 .

Solution 15:

 $a = 729 \ a_7 = 64$ Let *r* be the common ratio of the G.P. It is known that, $a_n = a r^{n-1}$ $a_7 = a r^{7-1} = (729) r^6$ $\Rightarrow 64 = 729 r^6$ $\Rightarrow r^6 = \left(\frac{2}{3}\right)^6$ $\Rightarrow r = \frac{2}{3}$ Also, it is known that, $S_n = \frac{a(1-r^n)}{1-r}$

$$\therefore S_{7} = \frac{729 \left(1 - \left(\frac{2}{3}\right)^{7}\right)}{1 - \frac{2}{3}}$$
$$= 3 \times 729 \left[1 - \left(\frac{2}{3}\right)^{7}\right]$$
$$= (3)^{7} \left[\frac{(3)^{7} - (2)^{7}}{(3)^{7}}\right]$$
$$= (3)^{7} - (2)^{7}$$
$$= 2187 - 128$$
$$= 2059$$

Question 16:

Find a G.P. for which sum of the first two terms is -4 and the fifth term is 4 times the third term.

Solution 16:

Let According to the given conditions,

term.
Solution 16:
Let be the first term and r be the common ratio of the G.P.
According to the given conditions,

$$A_2 = -4 = \frac{a(1-r^2)}{1-r}$$
(1)
 $a_5 = 4 \times a_3$
 $\Rightarrow ar^4 = 4ar^2 \Rightarrow r^2 = 4$
 $\therefore r = \pm 2$
From (1), we obtain
 $-4 = \frac{a[1-(2)^2]}{1-2}$ for $r = 2$
 $\Rightarrow -4 = \frac{a(1-4)}{-1}$
 $\Rightarrow -4 = a(3)$
 $\Rightarrow a = -\frac{4}{3}$
Also, $-4 = \frac{a[1-(-2)^2]}{1-(-2)}$ for $r = -2$
 $\Rightarrow -4 = \frac{a(1-4)}{1+2}$

$$\Rightarrow -4 = \frac{a(-3)}{3}$$

$$\Rightarrow a = 4$$

Thus, the required G.P. is $\frac{-4}{3}, \frac{-8}{3}, \frac{-16}{3}, \dots$ or $4, -8, -16, -32\dots$

Question 17:

If the 4th, 10th and 16th terms of a G.P. are x, y, and z, respectively. Prove that x, y, z are in G.P.

Solution 17:

Let be the first term and r be the common ratio of the G.P. According to the given condition,

$$a_{4} = ar^{3} = x \quad \dots (1)$$

$$a_{10} = ar^{9} = y \quad \dots (2)$$

$$a_{16} = ar^{15} = z \quad \dots (3)$$
Dividing (2) by (1), we obtain
$$\frac{y}{x} = \frac{ar^{9}}{ar^{3}} \Rightarrow \frac{y}{x} = r^{6}$$
Dividing (3) by (2), we obtain
$$\frac{z}{y} = \frac{ar^{15}}{ar^{9}} \Rightarrow \frac{z}{y} = r^{6}$$

$$\therefore \frac{y}{x} = \frac{z}{y}$$
Thus, x, y, z are in G.P.

Question 18:

Find the sum to terms of the sequence, 8, 88, 888, 8888

Solution 18:

The given sequence is 8, 88, 888, 8888

This sequence is not a G.P. However, it can be changed to G.P. by writing the terms as $S_n = 8 + 88 + 888 + 8888 + \dots$ to n terms

$$= \frac{8}{9} [9 + 99 + 999 + 9999 + \dots \text{ to } n \text{ terms}]$$

= $\frac{8}{9} [(10 - 1) + (10^2 - 1) + (10^3 - 1) + (10^4 - 1) + \dots \text{ to } n \text{ terms}]$
= $\frac{8}{9} [(10 + 10^2 + \dots n \text{ terms}) - (1 + 1 + 1 + \dots n \text{ terms})]$

$$= \frac{8}{9} \left[\frac{10(10^{n} - 1)}{10 - 1} - n \right]$$
$$= \frac{8}{9} \left[\frac{10(10^{n} - 1)}{9} - n \right]$$
$$= \frac{80}{81} (10^{n} - 1) - \frac{8}{9} n$$

Question 19:

Find the sum of the products of the corresponding terms of the sequences 2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2.

Solution 19:

Question 20:

Show that the products of the corresponding terms of the sequences form $a, ar, ar^2, \dots, ar^{n-1}$ and A, AR, AR^2, AR^{n-1} a G.P., and find the common ratio.

Solution 20:

It has to be proved that the sequence: aA, arAR, ar^2AR^2 , $ar^{n-1}AR^{n-1}$, forms a G.P. $\frac{\text{Second term}}{\text{First term}} = \frac{arAR}{aA} = rR$ $\frac{\text{Third term}}{\text{Second term}} = \frac{ar^2 AR^2}{arAR} = rR$ Thus, the above sequence forms a G.P. and the common ratio is rR.

Question 21:

Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4^{th} by 18.

Solution 21:

Let a be the first term and r be the common ratio of the G.P. $a_1 = a, a_2 = ar, a_3 = ar^2, a_4 = ar^3$ By the given condition, $a_3 = a_1 + 9 \Longrightarrow ar^2 = a + 9$(1) ADDRESS HINCH OWDAY $a_4 = a_4 + 18 \Longrightarrow ar = ar^3 + 18 \dots(2)$ From (1) and (2), we obtain $a(r^2-1)=9....(3)$ $ar(1-r^2)=18.....(4)$ Dividing (4) by (3), we obtain $\frac{ar(1-r^2)}{a(r^2-1)} = \frac{18}{9}$ $\Rightarrow -r = 2$ $\Rightarrow r = -2$ Substituting the value of r in (1), we obtain 4a = a + 9 $\Rightarrow 3a = 9$ $\therefore a = 3$ Thus, the first four numbers of the G.P. are 3, 3(-2), $3(-2)^2$, and $3(-2)^3$ i.e., 3,-6,12 and -24.

Question 22:

If p^{th} , q^{th} and r^{th} terms of a G.P. are a, b and c, respectively. Prove that $a^{q-r} \cdot b^{r-p} \cdot c^{p-q} = 1$.

Solution 22:

Let A be the first term and R be the common ratio of the G.P. According to the given information, $AR^{p-1} = a$ $AR^{q-1} = b$ $AR^{r-1} = c$

$$\begin{split} & a^{q-r} \cdot b^{r-p} \cdot c^{p-q} \\ &= A^{q-r} \times R^{(p-1)(q-r)} \times A^{r-p} \times R^{(q-1)(r-p)} \times A^{p-q} \times R^{(r-1)(p-q)} \\ &= A^{q-r+r-p+p-q} \times R^{(pr-pr-q+r)+(rq-r+p-pq)+(pr-p-qr+q)} \\ &= A^0 \times R^0 \\ &= 1 \\ \text{Thus, the given result is proved.} \end{split}$$

Question 23:

If the first and the n^{th} term of a G.P. are and b, respectively, and if P is the product of terms, prove that $P^2 = (ab)^n$.

Solution 23:

The first term of the G.P is and the last term is b. Therefore, the G.P. is $a, ar, ar^2, ar^3 \dots ar^{n-1}$, where r is the common ratio. $b = ar^{n-1} \dots (1)$ P = Product of terms $= (a)(ar)(ar^2)\dots (ar^{n-1})$ $= (a \times a \times \dots a)(r \times r^2 \times \dots r^{n-1})$ $= a^n r^{1+2+\dots(n-1)} \dots (2)$ Here, 1, 2,(n-1) is an A.P. $\therefore 1+2+\dots+(n-1)$ $= \frac{n-1}{2}[2+(n-1-1)\times 1] = \frac{n-1}{2}[2+n-2] = \frac{n(n-1)}{2}$ $P = a^n r^{\frac{n(n-1)}{2}}$ $\therefore P^2 = a^{2n} r^{n(n-1)}$ $= [a^2 r^{(n-1)}]^n$ $= [a \times ar^{n-1}]^n$ $= (ab)^n$ [Using(1)] Thus, the given result is proved.

Question 24:

Show that the ratio of the sum of first terms of a G.P. to the sum of terms from $(n+1)^{th}$ to

 $(2n)^{th}$ term is $\frac{1}{r^n}$.

Solution 24: be the first term and r be the common ratio of the G.P. Let terms = $\frac{a(1-r^n)}{(1-r)}$ Sum of first terms from $(n+1)^{th}$ to $(2n)^{th}$ term, Since there are Sum of terms from $(n+1)^{th}$ to $(2n)^{th}$ term $S_n = \frac{a_{n+1}\left(1 - r^n\right)}{1 - r}$ $a^{n+1} = ar^{n+1-1} = ar^n$ Thus, required ratio $= \frac{a(1-r^n)}{(1-r)} \times \frac{(1-r)}{ar^n(1-r^n)} = \frac{1}{r^n}$ Thus, the ratio of the sum of first terms of a G.P. to the sum of terms from $(n+1)^{th}$ to $(2n)^{th}$ term is $\frac{1}{r^n}$. **Ouestion 25:** If a, b, c and are in G.P. show that: $(a^{2}+b^{2}+c^{2})(b^{2}+c^{2}+d^{2})=(ab+bc+cd)^{2}$ Solution 25: are in G.P. Therefore, If a, b, c and bc = ad(1) $b^2 = ac....(2)$ $c^2 = bd$ (3) It has to be proved that, $(a^{2}+b^{2}+c^{2})(b^{2}+c^{2}+d^{2})=(ab+bc+cd)^{2}$ R.H.S. $=(ab+bc+cd)^2$ $=(ab+ad+cd)^2$ [Using(1)] $= \left[ab + d(a+c) \right]^2$ $=a^{2}b^{2}+2abd(a+c)+d^{2}(a+c)^{2}$ $=a^{2}b^{2}+2a^{2}bd+2acbd+d^{2}\left(a^{2}+2ac+c^{2}\right)$ $=a^{2}b^{2}+2a^{2}c^{2}+2b^{2}c^{2}+d^{2}a^{2}+2d^{2}b^{2}+d^{2}c^{2}$ [Using(1)and(2)] $=a^{2}b^{2}+a^{2}c^{2}+a^{2}c^{2}+b^{2}c^{2}+b^{2}c^{2}+d^{2}a^{2}+d^{2}b^{2}+d^{2}b^{2}+d^{2}c^{2}$

$$= a^{2}b^{2} + a^{2}c^{2} + a^{2}d^{2} + b^{2} \times b^{2} + b^{2}c^{2} + b^{2}d^{2} + c^{2}b^{2} + c^{2} \times c^{2} + c^{2}d^{2}$$

[Using (2) and (3) and rearranging terms]
$$= a^{2}(b^{2} + c^{2} + d^{2}) + b^{2}(b^{2} + c^{2} + d^{2}) + c^{2}(b^{2} + c^{2} + d^{2})$$

$$= (a^{2} + b^{2} + c^{2})(b^{2} + c^{2} + d^{2}) = L.H.S$$

$$\therefore L.H.S = R.H.S.$$

$$\therefore (a^{2} + b^{2} + c^{2})(b^{2} + c^{2} + d^{2}) = (ab + bc + cd)^{2}.$$

Question 26:

Insert two numbers between 3 and 81 so that the resulting sequence is G.P.

Solution 26:

Let G_1 and G_2 be two numbers between 3 and 81 such that the series, 3, $G_1, G_2, 81$, forms a G.P. Let be the first term and *r* be the common ratio of the G.P. HORES HINGH SHIEN $\therefore 81 = (3)(r)^3$ \Rightarrow $r^3 = 27$ \therefore r = 3 (Talking real roots only) For r = 3, $G_1 = ar = (3)(3) = 9$ $G_2 = ar^2 = (3)(3)^2 = 27$ Thus, the required two numbers are 9 and 27. **Question 27:** so that $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$ may be the geometric mean between Find the value of and b. **Solution 27:**

M. of and b is \sqrt{ab}

By the given condition: $\frac{a^{n+1} + b^{n+1}}{a^n + b^n} = \sqrt{ab}$

Squaring both sides, we obtain

$$\frac{\left(a^{n+1}+b^{n+1}\right)^{2}}{\left(a^{n}+b^{n}\right)^{2}} = ab$$

$$\Rightarrow a^{2n+2} + 2a^{n+1}b^{n+1} + b^{2n+2} = (ab)\left(a^{2n} + 2a^{n}b^{n} + b^{2n}\right)$$

$$\Rightarrow a^{2n+2} + 2a^{n+1}b^{n+1} + b^{2n+2} = a^{2n+1}b + 2a^{n+1}b^{n+1} + ab^{2n+1}$$

$$\Rightarrow a^{2n+2} + b^{2n+2} = a^{2n+1}b + ab^{2n+1}$$

$$\Rightarrow a^{2n+2} - a^{2n+1}b = ab^{2n+1} - b^{2n+2}$$

$$\Rightarrow a^{2n+1}(a-b) = b^{2n+1}(a-b)$$
$$\Rightarrow \left(\frac{a}{b}\right)^{2n+1} = 1 = \left(\frac{a}{b}\right)^{0}$$
$$\Rightarrow 2n+1=0$$
$$\Rightarrow n = \frac{-1}{2}$$

Question 28:

The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio $(3+2\sqrt{2}):(3-2\sqrt{2})$

Solution 28:

Le the two numbers be and b. testhooks, hisch away G.M. = \sqrt{ab} According to the given condition, $a+b=6\sqrt{ab}$(1) $\Rightarrow (a+b)^2 = 36(ab)$ Also, $(a-b)^{2} = (a+b)^{2} - 4ab = 36ab - 4ab = 32ab$ $\Rightarrow a-b=\sqrt{32}\sqrt{ab}$(2) $=4\sqrt{2}\sqrt{ab}$ Adding (1) and (2), we obtain $2a = \left(6 + 4\sqrt{2}\right)\sqrt{ab}$ $a = (3 + 2\sqrt{2})\sqrt{ab}$ in (1), we obtain Substituting the value of $b = 6\sqrt{ab} - \left(3 + 2\sqrt{2}\right)\sqrt{ab}$ $\Rightarrow b = (3 - 2\sqrt{2})\sqrt{ab}$ $\frac{a}{b} = \frac{(3+2\sqrt{2})\sqrt{ab}}{(3-2\sqrt{2})\sqrt{ab}} = \frac{3+2\sqrt{2}}{3-2\sqrt{2}}$ Thus, the required ratio is $(3+2\sqrt{2}):(3-2\sqrt{2})$.

Question 29:

If A and G be A.M. and G.M., respectively between two positive numbers, prove that the numbers are $A \pm \sqrt{(A+G)(A-G)}$

Solution 29:

It is given that A and G are A.M. and G.M. between two positive numbers. Let these two positive numbers be and b.

$$\therefore AM = A = \frac{a+b}{2} \qquad \dots(1)$$

$$GM = G = \sqrt{ab} \qquad \dots(2)$$

From (1) and (2), we obtain

$$a+b = 2A \qquad \dots(3)$$

$$ab = G^{2} \qquad \dots\dots(4)$$

Substituting the value of and b from (3) and (4) in the identity

$$(a-b)^{2} = (a+b)^{2} - 4ab,$$

We obtain

$$(a-b)^{2} = 4A^{2} - 4G^{2} = 4(A^{2} - G^{2})$$

$$(a-b)^{2} = 4(A+G)(A-G)$$

$$(a-b) = 2\sqrt{(A+G)(A-G)} \qquad \dots\dots(5)$$

From (3) and (5), we obtain

$$2a = 2A + 2\sqrt{(A+G)(A-G)}$$

Substituting the value of in (3), we obtain

$$b = 2A - A - \sqrt{(A+G)(A-G)} = A - \sqrt{(A+G)(A-G)}.$$

Thus, the two numbers are $A \pm \sqrt{(A+G)(A-G)}$.

Question 30:

The number of bacteria in a certain culture doubles every hour. If there were 30 bacteria present in the culture originally, how many bacteria will be present at the end of 2^{nd} hour, 4^{th} hour and n^{th} hour?

Solution 30:

It is given that the number of bacteria doubles every hour. Therefore, the number of bacteria after every hour will form a G.P.

Here, a = 30 and r = 2 $\therefore a_3 = ar^2 = (30)(2)^2 = 120$

Therefore, the number of bacteria at the end of 2^{nd} hour will be 120.

 $a_5 = ar^4 = (30)(2)^4 = 480$ The number of bacteria at the end of 4^{th} hour will be 480. $a_{n+1} = ar^n = (30)2^n$ Thus, number of bacteria at the end of n^{th} hour will be $30(2)^n$.

Question 31:

What will Rs. 500 amounts to in 10 years after its deposit in a bank which pays annual interest rate of 10% compounded annually?

Solution 31:

The amount deposited in the bank is Rs. 500.

At the end of first year, amount = Rs.500
$$\left(1+\frac{1}{10}\right)$$
 = Rs.500 $\left(1.1\right)$

At the end of 2^{nd} year, amount = Rs. 500 (1.1) (1.1)

At the end of 3^{rd} year, amount = Rs. 500 (1.1) (1.1) (1.1) and so on

: Amount at the end of 10 years = Rs. 500(1.1)(1.1)...(10 times)

 $= \text{Rs.500}(1.1)^{10}$.

Question 32:

If A.M. and G.M. of roots of a quadratic equation are 8 and 5, respectively, then obtain the quadratic equation.

Solution 32:

and b Let the root of the quadratic equation be According to the given condition,

A.M.
$$=\frac{a+b}{2}=8 \Rightarrow a+b=16$$
(1)
G.M. $=\sqrt{ab}=5 \Rightarrow ab=25$ (2)
The quadratic equation is given by,
 $x^2 - x(\text{Sum of roots}) + (\text{Product of roots}) = 0$
 $x^2 - x(a+b) + (ab) = 0$
 $x^2 - 16x + 25 = 0$ [Using (1) and (2)]
Thus, the required quadratic equation is $x^2 - 16x + 25 = 0$.