Exercise 9.1

Question 1:

Write the first five terms of the sequences whose n^{th} term is $a_n = n(n+2)$.

Solution 1:

$$a_n = n(n+2)$$

Substituting n = 1, 2, 3, 4 and 5, we obtain

$$a_1 = 1(1+2) = 3$$

$$a_2 = 2(2+2) = 8$$

$$a_3 = 3(3+2) = 15$$

$$a_4 = 4(4+2) = 24$$

$$a_5 = 5(5+2) = 35$$

Therefore, the required terms are 3, 8, 15, 24 and 35.

Question 2:

Write the first five terms of the sequences whose n^{th} term is $a_n = \frac{n}{n+1}$

Solution 2:

$$a_n = \frac{n}{n+1}$$

Substituting n=1,2,3,4,5, we obtain

Substituting
$$n = 1, 2, 3, 4, 5$$
, we obtain
$$a_1 = \frac{1}{1+1} = \frac{1}{2}, a_2 = \frac{2}{2+1} = \frac{2}{3}, a_3 = \frac{3}{3+1} = \frac{3}{4}, a_4 = \frac{4}{4+1} = \frac{4}{5}, a_5 = \frac{5}{5+1} = \frac{5}{6}$$

Therefore, the required terms are $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}$ and $\frac{5}{6}$

Question 3:

Write the first five terms of the sequences whose n^{th} term is $a_n = 2^n$

Solution 3:

$$a_n = 2^n$$

Substituting n=1,2,3,4,5, we obtain

$$a_1 = 2^1 = 2$$

$$a_2 = 2^2 = 4$$

$$a_3 = 2^3 = 8$$

$$a_4 = 2^4 = 16$$

$$a_5 = 2^5 = 32$$

Therefore, the required terms are 2, 4, 8, 16 and 32.

Question 4:

Write the first five terms of the sequences whose n^{th} term is $a_n = \frac{2n-3}{6}$

Solution 4:

Substituting n = 1, 2, 3, 4, 5, we obtain

$$a_1 = \frac{2 \times 1 - 3}{6} = \frac{-1}{6}$$

$$a_2 = \frac{2 \times 2 - 3}{6} = \frac{1}{6}$$

$$a_3 = \frac{2 \times 3 - 3}{6} = \frac{3}{6} = \frac{1}{2}$$

$$a_4 = \frac{2 \times 4 - 3}{6} = \frac{5}{6}$$

$$a_5 = \frac{2 \times 5 - 3}{6} = \frac{7}{6}$$

 $6 - \frac{1}{6}$ Therefore, the required terms are $\frac{-1}{6}$, $\frac{1}{6}$, $\frac{5}{2}$, $\frac{5}{6}$ and $\frac{7}{6}$.

Question 5:

Write the first five term

Solution 5:

Substituting n = 1, 2, 3, 4, 5, we obtain

$$a_1 = (-1)^{1-1} 5^{1+1} = 5^2 = 25$$

$$a_2 = (-1)^{2-1} 5^{2+1} = -5^3 = -125$$

$$a_3 = (-1)^{3-1} 5^{3+1} = 5^4 = 625$$

$$a_4 = (-1)^{4-1} 5^{4+1} = -5^5 = -3125$$

$$a^5 = (-1)^{5-1} 5^{5+1} = 5^6 = 15625$$

Therefore, the required terms are 25, -125, 625, -3125 and 15625.

Question 6:

Write the first five terms of the sequences whose n^{th} term is $a_n = n \frac{n^2 + 5}{A}$

Solution 6:

Substituting n=1,2,3,4,5, we obtain

$$a_1 = 1 \cdot \frac{1^2 + 5}{4} = \frac{6}{4} = \frac{3}{2}$$

$$a_2 = 2 \cdot \frac{2^2 + 5}{4} = 2 \cdot \frac{9}{4} = \frac{9}{2}$$

$$a_3 = 3 \cdot \frac{3^2 + 5}{4} = 3 \cdot \frac{14}{4} = \frac{21}{2}$$

$$a_4 = 4 \cdot \frac{4^2 + 5}{4} = 21$$

$$a_5 = 5 \cdot \frac{5^2 + 5}{4} = 5 \cdot \frac{30}{4} = \frac{75}{2}$$

Therefore, the required terms are $\frac{3}{2}, \frac{9}{2}, \frac{21}{2}, 21$ and $\frac{75}{2}$.

Question 7:

Find the 17th and 24th term in the following sequence whose n^{th} term is $a_n = 4n - 3$ nos

Solution 7:

Substituting n = 17, we obtain

$$a_{17} = 4(17) - 3 = 68 - 3 = 65$$

Substituting n = 24, we obtain

$$a_{24} = 4(24) - 3 = 96 - 3 = 93.$$

Question 8:

Find the 7th term in the following sequence whose n^{th} term is $a_n = \frac{n^2}{2^n}$

Solution 8:

Substituting n = 7, we obtain

$$a_7 = \frac{7^2}{2^7} = \frac{49}{128}$$

Question 9:

Find the 9th term in the following sequence whose n^{th} term is $a_n = (-1)^{n-1} n^3$

Solution 9:

Substituting n = 7, we obtain

$$a_9 = (-1)^{9-1} (9)^3 = (9)^3 = 729$$

Question 10:

Find the 20th term in the following sequence whose n^{th} term is $a_n = \frac{n(n-2)}{n+3}$

Solution 10:

Substituting n = 20, we obtain

$$a_{20} = \frac{20(20-2)}{20+3} = \frac{20(18)}{23} = \frac{360}{23}$$

Question 11:

Write the first five terms of the following sequence and obtain the corresponding series: R. Lexibooks, M.

$$a_1 = 3$$
, $a_n = 3a_{n-1} + 2$ for all $n > 1$

Solution 11:

$$a_1 = 3$$
, $a_n = 3a_{n-1} + 2$ for $n > 1$

$$\Rightarrow a_2 = 3a_1 + 2 = 3(3) + 2 = 11$$

$$a_3 = 3a_2 + 2 = 3(11) + 2 = 35$$

$$a_4 = 3a_3 + 2 = 3(35) + 2 = 107$$

$$a_5 = 3a_4 + 2 = 3(107) + 2 = 323$$

Hence, the first five terms of the sequence are 3, 11, 35, 107 and 323.

The corresponding series is 3+11+35+107+323+...

Question 12:

Write the first five terms of the following sequence and obtain the corresponding series:

$$a_1 = -1, \ a_n = \frac{a_{n-1}}{n}, \ n \ge 2$$

Solution 12:

$$a_1 = -1, \ a_n = \frac{a_{n-1}}{n}, \ n \ge 2$$

$$\Rightarrow a_2 = \frac{a_1}{2} = \frac{-1}{2}$$

$$a_3 = \frac{a_2}{3} = \frac{-1}{6}$$

$$a_4 = \frac{a_3}{4} = \frac{-1}{24}$$

$$a_5 = \frac{a_4}{5} = \frac{-1}{120}$$

Hence, the first five terms of the sequence are $-1, \frac{-1}{2}, \frac{-1}{6}, \frac{-1}{24}$ and $\frac{-1}{120}$.

The corresponding series is $\left(-1\right) + \left(\frac{-1}{2}\right) + \left(\frac{-1}{6}\right) + \left(\frac{-1}{24}\right) + \left(\frac{-1}{120}\right) + \dots$

Question 13:

Write the first five terms of the following sequence and obtain the corresponding series:

$$a_1 = a_2 = 2$$
, $a_n = a_{n-1} - 1$, $n > 2$

Solution 13:

$$a_1 = a_2 = 2$$
, $a_n = a_{n-1} - 1$, $n > 2$

$$\Rightarrow a_3 = a_2 - 1 = 2 - 1 = 1$$

$$a_4 = a_3 - 1 = 1 - 1 = 0$$

$$a_5 = a_4 - 1 = 0 - 1 = -1$$

Hence, the first five terms of the sequence are 2, 2, 1, 0 and -1.

The corresponding series is 2+2+1+0(-1)+...

Question 14:

The Fibonacci sequence is defined by $1 = a_1 = a_2$ and $a_n = a_{n-1} + a_{n-2}$, n > 2

Find
$$\frac{a_{n+1}}{a_n}$$
, for $n = 1, 2, 3, 4, 5$

Solution 14:

$$1 = a_1 = a_2$$

$$a_n = a_{n-1} + a_{n-2}, n > 2$$

$$\therefore a_3 = a_2 + a_1 = 1 + 1 = 2$$

$$a_4 = a_3 + a_2 = 2 + 1 = 3$$

$$a_5 = a_4 + a_3 = 3 + 2 = 5$$

$$a_6 = a_5 + a_4 = 5 + 3 = 8$$

$$\therefore$$
 For $n = 1$, $\frac{a_{n+1}}{a_n} = \frac{a_2}{a_1} = \frac{1}{1} = 1$

For
$$n = 2$$
, $\frac{a_{n+1}}{a_n} = \frac{a_3}{a_2} = \frac{2}{1} = 2$

For
$$n = 3$$
, $\frac{a_{n+1}}{a_n} = \frac{a_4}{a_3} = \frac{3}{2}$

For
$$n = 4$$
, $\frac{a_{n+1}}{a_n} = \frac{a_5}{a_4} = \frac{5}{3}$

For
$$n = 5$$
, $\frac{a_{n+1}}{a_n} = \frac{a_6}{a_5} = \frac{8}{5}$.