Kopykitab Same textbooks, klitck away

Exercise 7.4

Question 1:
If ${ }^{n} C_{8}={ }^{n} C_{2}$, find ${ }^{n} C_{2}$

Solution 1:
It is known that, ${ }^{n} C_{a}={ }^{n} C_{b} \Rightarrow a=b$ or $m=a+b$
Therefore,
${ }^{n} C_{8}={ }^{n} C_{2} \Rightarrow n=8+2=10$
$\therefore{ }^{n} C_{2}={ }^{10} C_{2}=\frac{10!}{2!(10-2)!}=\frac{10!}{2!8!}=\frac{10 \times 9 \times 8!}{2 \times 1 \times 8!}=45$

Question 2:

Determine n if
(i) ${ }^{2 n} C_{3}:{ }^{n} C_{3}=12: 1$
(ii) ${ }^{2 n} C_{3}:{ }^{n} C_{3}=11: 1$

Solution 2:
(i) $\frac{{ }^{2 n} C_{3}}{{ }^{n} C_{3}}=\frac{12}{1}$
$\Rightarrow \frac{(2 n)!}{3!(2 n-3)!} \times \frac{3!(n-3)!}{n!}=\frac{12}{1}$
$\Rightarrow \frac{(2 n)(2 n-1)(2 n-2)(2 n-3)!}{(2 n-3)!} \times \frac{(n-3)!}{n(n-1)(n-2)(n-3)!}=12$
$\Rightarrow \frac{2(2 n-1)(2 n-2)}{(n-1)(n-2)}=12$
$\Rightarrow \frac{4(2 n-1)(n-1)}{(n-1)(n-2)}=12$
$\Rightarrow \frac{(2 n-1)}{(n-2)}=3$
$\Rightarrow 2 n-1=3(n-2)$
$\Rightarrow 2 n-1=3 n-6$
$\Rightarrow 3 n-2 n=-1+6$
$\Rightarrow n=5$
(ii) $\frac{{ }^{2 n} C_{3}}{{ }^{n} C_{3}}=\frac{11}{1}$
$\Rightarrow \frac{(2 n)!}{3!(2 n-3)!} \times \frac{3!(n-3)!}{n!}=11$
$\Rightarrow \frac{(2 n)(2 n-1)(2 n-2)(2 n-3)!}{(2 n-3)!} \times \frac{(n-3)!}{n(n-1)(n-2)(n-3)!}$
$\Rightarrow \frac{2(2 n-1)(2 n-2)}{(n-1)(n-2)}=11$
$\Rightarrow \frac{4(2 n-1)(n-1)}{(n-1)(n-2)}=11$
$\Rightarrow \frac{4(2 n-1)}{n-2}=11$
$\Rightarrow 4(2 n-1)=11(n-2)$
$\Rightarrow 8 n-4=11 n-22$
$\Rightarrow 11 n-8 n=-4+22$
$\Rightarrow 3 n=18$
$\Rightarrow n=6$

Question 3:

How many chords can be drawn through 21 points on a circle?

Solution 3:

For drawing one chord a circle, only 2 points are required.
To know the number of chords that can be drawn through the given 21 points on a circle, the number of combinations have to be counted.
Therefore, there will be as many chords as there are combinations of 21 points taken 2 at a time.
Thus, required number of chords $={ }^{21} C_{2}=\frac{21!}{2!(21-2)!}=\frac{21!}{2!19!}=\frac{21 \times 20}{2}=210$

Question 4:

In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?

Solution 4:

A team of 3 boys and 3 girls is to be selected from 5 boys and 4 girls.
3 boys can be selected from 5 boys in ${ }^{5} C_{3}$ ways.
3 girls can be selected from 4 girls in ${ }^{4} C_{3}$ ways.
Therefore, by multiplication principle, number of ways in which a team of 3 boys and 3 girls can be selected $={ }^{5} C_{3} \times{ }^{4} C_{3}=\frac{5!}{3!2!} \times \frac{4!}{3!1!}$
$=\frac{5 \times 4 \times 3!}{3 \times 2} \times \frac{4 \times 3!}{3!}$
$=10 \times 4=40$

Question 5:

Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls each colour.

Solution 5:

There are a total of 6 red balls, 5 white balls, and 4 blue balls.
9 balls have to be selected in such a way that each selection consists of 3 balls of each colour.
Here,
3 balls can be selected from 6 red balls in ${ }^{6} C_{3}$ ways.
3 balls can be selected from 5 white balls in ${ }^{5} C_{3}$ ways.

3 balls can be selected from 5 blue balls in ${ }^{5} C_{3}$ ways.
Thus, by multiplication principle, required number of ways of selecting 9 balls.
$={ }^{6} C_{3} \times{ }^{5} C_{3} \times{ }^{5} C_{3}=\frac{6!}{3!3!} \times \frac{5!}{3!2!} \times \frac{5!}{3!2!}$
$=\frac{6 \times 5 \times 4 \times 3!}{3!\times 3 \times 2} \times \frac{5 \times 4 \times 3!}{3!\times 2 \times 1} \times \frac{5 \times 4 \times 3!}{3!\times 2 \times 1}$
$=20 \times 10 \times 10=2000$

Question 6:

Determine the number of 5 card combinations out of a deck of 52 cards if there is exactly one ace in each combination.

Solution 6:

In a deck of 52 cards, there are 4 aces. A combinations of 5 cards have to be made in which there is exactly one ace.
Then, one ace can be selected in ${ }^{4} C_{3}$ ways and the remaining 4 cards can be selected out of the 48 cards in ${ }^{48} C_{4}$ ways.
Thus, by multiplication principle, required number of 5 card combinations
$={ }^{48} C_{4} \times{ }^{4} C_{1}=\frac{48!}{4!44!} \times \frac{4!}{1!3!}$
$=\frac{48 \times 47 \times 46 \times 45}{4!\times 3 \times 2 \times 1} \times 4!$
$=778320$

Question 7:

In how many ways can one select a cricket team of eleven from 17 players in which only 5 players can bowl if each cricket team of 11 must include exactly 4 bowlers?

Solution 7:

Out of 17 players, 5 players are bowlers.
A cricket team of 11 players is to be selected in such a way that there are exactly 4 bowlers.
4 bowlers can be selected in ${ }^{5} C_{4}$ ways and the remaining 7 players can be selected out of the 12 players in ${ }^{12} C_{7}$ ways.
Thus, by multiplication principle, required number of ways of selecting cricket team $={ }^{5} C_{4} \times{ }^{12} C_{7}=\frac{5!}{4!1!} \times \frac{12!}{7!5!}=5!\times \frac{12 \times 11 \times 10 \times 9 \times 8}{5!\times 4 \times 3 \times 2 \times 1}=3960$

Question 8:

A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.

Solution 8:

There are 5 black and 6 red balls in the bag.
2 black balls can be selected out of 5 black balls in ${ }^{5} C_{2}$ ways and 3 red balls can be selected out of 6 red balls in ${ }^{6} C_{3}$ ways.
Thus, by multiplication principle, required number of ways of selecting 2 black and 3 red balls $={ }^{5} C_{2} \times{ }^{6} C_{3}=\frac{5!}{2!3!} \times \frac{6!}{3!3!}=\frac{5 \times 4}{2} \times \frac{6 \times 5 \times 4}{3 \times 2 \times 1}=10 \times 20=200$.

Question 9:

In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?

Solution 9:

There are 9 courses available out of which, 2 specific courses are compulsory for every student. Therefore, every student has to choose 3 courses out of the remaining 7 courses. This can be chosen in ${ }^{7} C_{3}$ ways.
Thus, required number of ways of choosing the programme $={ }^{7} C_{3}=\frac{7!}{3!4!}=\frac{7 \times 6 \times 5 \times 4!}{3 \times 2 \times 1 \times 4!}=35$.

