Same textbooks, klick away

Question 2:
Determine <i>n</i> if (i) ${}^{2n}C \rightarrow {}^{n}C = 12 \cdot 1$ (ii) ${}^{2n}C \rightarrow {}^{n}C = 11 \cdot 1$
(i) ${}^{2n}C_3 : {}^{n}C_3 = 12:1$ (ii) ${}^{2n}C_3 : {}^{n}C_3 = 11:1$
Solution 2:
(i) $\frac{{}^{2n}C_3}{{}^{n}C_2} = \frac{12}{1}$
$(1) - {}^{n}C_{3} - \frac{1}{1}$
$\Rightarrow \frac{(2n)!}{3!(2n-3)!} \times \frac{3!(n-3)!}{n!} = \frac{12}{1}$
$\Rightarrow \frac{(2n)(2n-1)(2n-2)(2n-3)!}{(2n-3)!} \times \frac{(n-3)!}{n(n-1)(n-2)(n-3)!} = 12$
$\Rightarrow \frac{2(2n-1)(2n-2)}{(n-1)(n-2)} = 12$
$\Rightarrow \frac{4(2n-1)(n-1)}{(n-1)(n-2)} = 12$ $\Rightarrow \frac{(2n-1)}{(n-2)} = 3$ $\Rightarrow 2n-1 = 3(n-2)$ $\Rightarrow 2n-1 = 3n-6$ $\Rightarrow 3n-2n = -1+6$ $\Rightarrow n = 5$ (ii) $\frac{{}^{2n}C_3}{{}^{n}C_3} = \frac{11}{1}$ $\Rightarrow \frac{(2n)!}{3!(2n-3)!} \times \frac{3!(n-3)!}{n!} = 11$
$\Rightarrow \frac{4(2n-1)(n-1)}{(n-1)(n-2)} = 12$
(2n-1)
$\Rightarrow \frac{(2n-1)}{(n-2)} = 3$
$\Rightarrow 2n-1=3(n-2)$
$\Rightarrow 2n-1=3(n-2)$
$\Rightarrow 2n - 1 = 3n - 6$ $\Rightarrow 2n - 2n - 1 + 6$
$\Rightarrow 3n-2n=-1+6$ $\Rightarrow n=5$
2nC 11
(ii) $\frac{{}^{2n}C_3}{{}^{n}C_3} = \frac{11}{1}$
$(2_3)^{1}$
$\Rightarrow \frac{(2n)!}{3!(2n-3)!} \times \frac{3!(n-3)!}{n!} = 11$
3!(2n-3)! n!
$\Rightarrow \frac{(2n)(2n-1)(2n-2)(2n-3)!}{(2n-3)!} \times \frac{(n-3)!}{n(n-1)(n-2)(n-3)!}$
(2n-3)! $n(n-1)(n-2)(n-3)!$
$\Rightarrow \frac{2(2n-1)(2n-2)}{(n-1)(n-2)} = 11$
$\Rightarrow \frac{4(2n-1)(n-1)}{(n-1)(n-2)} = 11$
$\Rightarrow \frac{4(2n-1)}{n-2} = 11$
$\Rightarrow 4(2n-1) = 11(n-2)$
$\Rightarrow 8n-4=11n-22$
$\Rightarrow 3n - 4 - 1n - 22$ $\Rightarrow 11n - 8n = -4 + 22$

$$\Rightarrow 3n = 18$$
$$\Rightarrow n = 6$$

Question 3:

How many chords can be drawn through 21 points on a circle?

Solution 3:

For drawing one chord a circle, only 2 points are required.

To know the number of chords that can be drawn through the given 21 points on a circle, the number of combinations have to be counted.

Therefore, there will be as many chords as there are combinations of 21 points taken 2 at a time.

Thus, required number of chords $= {}^{21}C_2 = \frac{21!}{2!(21-2)!} = \frac{21!}{2!19!} = \frac{21 \times 20}{2} = 210$

Question 4:

In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?

Solution 4:

A team of 3 boys and 3 girls is to be selected from 5 boys and 4 girls.

3 boys can be selected from 5 boys in ${}^{5}C_{3}$ ways.

3 girls can be selected from 4 girls in ${}^{4}C_{3}$ ways.

Therefore, by multiplication principle, number of ways in which a team of 3 boys and 3 girls $51 \quad 41$

can be selected = ${}^{5}C_{3} \times {}^{4}C_{3} = \frac{5!}{3!2!} \times \frac{4!}{3!1}$

 $=\frac{5\times4\times3!}{3\times2}\times\frac{4\times3!}{3!}$ $=10\times4=40$

Question 5:

Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls each colour.

Solution 5:

There are a total of 6 red balls, 5 white balls, and 4 blue balls.

9 balls have to be selected in such a way that each selection consists of 3 balls of each colour. Here,

3 balls can be selected from 6 red balls in ${}^{6}C_{3}$ ways.

3 balls can be selected from 5 white balls in ${}^{5}C_{3}$ ways.

3 balls can be selected from 5 blue balls in ${}^{5}C_{3}$ ways.

Thus, by multiplication principle, required number of ways of selecting 9 balls.

$$={}^{6}C_{3} \times {}^{5}C_{3} \times {}^{5}C_{3} = \frac{6!}{3!3!} \times \frac{5!}{3!2!} \times \frac{5!}{3!2!}$$
$$= \frac{6 \times 5 \times 4 \times 3!}{3 \times 3 \times 2} \times \frac{5 \times 4 \times 3!}{3 \times 2 \times 1} \times \frac{5 \times 4 \times 3!}{3 \times 2 \times 1}$$
$$= 20 \times 10 \times 10 = 2000$$

Question 6:

Determine the number of 5 card combinations out of a deck of 52 cards if there is exactly one ace in each combination.

Solution 6:

In a deck of 52 cards, there are 4 aces. A combinations of 5 cards have to be made in which there is exactly one ace.

Then, one ace can be selected in ${}^{4}C_{3}$ ways and the remaining 4 cards can be selected out of the

48 cards in ${}^{48}C_4$ ways.

Thus, by multiplication principle, required number of 5 card combinations

$$={}^{48}C_4 \times {}^{4}C_1 = \frac{48!}{4!44!} \times \frac{4!}{1!3!}$$
$$= \frac{48 \times 47 \times 46 \times 45}{4! \times 3 \times 2 \times 1} \times 4!$$
$$= 778320$$

Question 7:

In how many ways can one select a cricket team of eleven from 17 players in which only 5 players can bowl if each cricket team of 11 must include exactly 4 bowlers?

Solution 7:

Out of 17 players, 5 players are bowlers.

A cricket team of 11 players is to be selected in such a way that there are exactly 4 bowlers.

4 bowlers can be selected in ${}^{5}C_{4}$ ways and the remaining 7 players can be selected out of the 12 players in ${}^{12}C_{7}$ ways.

Thus, by multiplication principle, required number of ways of selecting cricket team

$$={}^{5}C_{4} \times {}^{12}C_{7} = \frac{5!}{4!1!} \times \frac{12!}{7!5!} = 5 \times \frac{12 \times 11 \times 10 \times 9 \times 8}{5 \times 4 \times 3 \times 2 \times 1} = 3960$$

Question 8:

A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.

Solution 8:

There are 5 black and 6 red balls in the bag.

2 black balls can be selected out of 5 black balls in ${}^{5}C_{2}$ ways and 3 red balls can be selected out

of 6 red balls in ${}^{6}C_{3}$ ways.

Thus, by multiplication principle, required number of ways of selecting 2 black and 3 red balls

$$={}^{5}C_{2} \times {}^{6}C_{3} = \frac{5!}{2!3!} \times \frac{6!}{3!3!} = \frac{5 \times 4}{2} \times \frac{6 \times 5 \times 4}{3 \times 2 \times 1} = 10 \times 20 = 200.$$

Question 9:

In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?

Solution 9:

There are 9 courses available out of which, 2 specific courses are compulsory for every student. Therefore, every student has to choose 3 courses out of the remaining 7 courses. This can be chosen in ${}^{7}C_{3}$ ways.

Thus, required number of ways of choosing the programme

 $={}^{7}C_{3} = \frac{7!}{3!4!} = \frac{7 \times 6 \times 5 \times 4!}{3 \times 2 \times 1 \times 4!} = 35.$