Exercise 2.3

Question 1:

Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.

(i) $\{(2,1), (5,1), (8,1), (11,1), (14,1), (17,1)\}$ (ii) $\{(2,1), (4,2), (6,3), (8,4), (10,5), (12,6), (14,7)\}$ (iii) $\{(1,3), (1,5), (2,5)\}$

Solution 1:

 $\{(2,1),(5,1),(8,1),(11,1),(14,1),(17,1)\}$

Since 2, 5, 8, 11, 14 and 17 are the elements of the domain of the given relation having their unique images, this relation is a function. Here, domain = $\{2,5,8,11,14,17\}$ and range = $\{1\}$

(ii) $\{(2,1), (4,2), (6,3), (8,4), (10,5), (12,6), (14,7)\}$

Since 2, 4, 6, 8, 10, 12 and 14 are the elements of the domain of the given relation having their unique images, this relation is a function.

Here, domain = $\{2, 4, 6, 8, 10, 12, 14\}$ and range = $\{1, 2, 3, 4, 5, 6, 7\}$

(iii) $\{(1,3),(1,5),(2,5)\}$

Since the same first element i.e., 1 corresponds to two different images i.e., 3 and 5, this relation is not a function.

(ii) $f(x) = \sqrt{9 - x^2}$

Question 2:

Find the domain and range of the following real function:

(i)
$$f(x) = -|x|$$

Solution 2:

(i) $f(x) = -|x|, x \in R$

We know that $|x| = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x < 0 \end{cases}$

$$\therefore f(x) = -|x| = \begin{cases} -x, & \text{if } x \ge 0\\ x, & \text{if } x < 0 \end{cases}$$

Since f(x) is defined for $x \in \mathbf{R}$, the domain of f is **R**.

It can be observed that the range of f(x) = -|x| is all real numbers except positive real numbers.

 \therefore The range of f is $(-\infty, 0]$.

(ii)
$$f(x) = \sqrt{9 - x^2}$$

Since $\sqrt{9-x^2}$ is defined for all real numbers that are greater than or equal to -3 and less than or equal to 3, the domain of is $\{x: -3 \le x \le 3\}$ or [-3,3].

For any value of x such that $-3 \le x \le 3$, the value of will lie between 0 and 3.

Question 3:

A function f is defined by f(x) = 2x - 5. (i) f(0), (ii) f(7)(iii) f(-3)

Solution 3:

The given function is f(x) = 2x - 5Therefore, (i) $f(0) = 2 \times 0 - 5 = 0 - 5 = -5$ (ii) $f(7) = 2 \times 7 - 5 = 14 - 5 = 9$ (iii) $f(-3) = 2 \times (-3) - 5 = -6 - 5 = -11$

Ouestion 4:

.elsius into ten (iii) t(-10)The function 't' which maps temperature in degree Celsius into temperature in degree Fahrenheit is defined by $t(C) = \frac{9C}{5} + 32$. Find (i) t (0) (ii) t(28)(iv) The value of C, when t(C) = 212**Solution 4:** The given function is $t(C) = \frac{9C}{5} + 32$. Therefore, (i) $t(0) = \frac{9 \times 0}{5} + 32 = 0 + 32 = 32$ (ii) $t(28) = \frac{9 \times 28}{5} + 32 = \frac{252 + 160}{5} = \frac{412}{5} = 82.4$ (iii) $t(-10) = \frac{9 \times (-10)}{5} + 32 = 9 \times (-2) + 32 = -18 + 32 = 14$ (iv) It is given that t(C) = 212 $\therefore 212 = \frac{9C}{5} + 32$ $\Rightarrow \frac{9C}{5} = 212 - 32$ $\Rightarrow \frac{9C}{5} = 180$ \Rightarrow 9C=180×5 $\Rightarrow C = \frac{180 \times 5}{9} = 100$ Thus, the value of t, when t(C) = 212, is 100.

Question 5:

Find the range of each of the following functions.

(i) $f(x) = 2 - 3x, x \in \mathbb{R}, x > 0.$

- (ii) $f(x) = x^2 + 2, x$, is a real number.
- (iii) f(x) = x, x is a real number.

Solution 5:

(i) $f(x) = 2 - 3x, x \in \mathbb{R}, x > 0$

The values of for various values of real numbers x > 0 can be written in the tabular form as

X	0.01	0.1	0.9	1	2	2.5	4	5	
f(x)	1.97	1.7	- 0.7	-1	- 4	- 5.5	- 10	-13	

Thus, it can be clearly observed that the range of f is the set of all real numbers less than 2. S-Hitch away i.e., range of $f = (-\infty, 2)$

Alter:

Let x > 0 $\Rightarrow 3x > 0$ $\Rightarrow 2 - 3x < 2$

$$\Rightarrow f(x) < 2$$

$$\therefore$$
 Range of $f = (-\infty, 2)$

(ii) $f(x) = x^2 + 2$, x, is a real number

The values of for various of real numbers x can be written in the tabular form as x 0 ±0.3 ±0.8 ±1 ±2 ±3

<i>f</i> (<i>x</i>)	2	2.0	9 2.64	4 3	6 1	1		
X	0		±0.3	±0.8	±1	±2	±3	
f(x)	2		2.09	2.64	3	6	11	

Thus, it can be clearly observed that the range of f is the set of all real numbers greater than 2. i.e., range of $f = [2, \infty)$

Alter:

Let x be any real number. Accordingly, $x^2 \ge 0$ $\Rightarrow x^2 + 2 \ge 0 + 2$ $\Rightarrow x^2 + 2 \ge 2$ $\Rightarrow f(x) \ge 2$ \therefore Range of $f = [2, \infty)$ (iii) f(x) = x, x is a real number

It is clear that the range of f is the set of all real numbers. \therefore Range of $f = \mathbf{R}$.