Kopykitab Same textbooks, klifck away

Exercise 1.6

Question 1:

If X and Y are two sets such that $n(X)=17, n(Y)=23$ and $n(X \cup Y)=38$, find $n(X \cap Y)$.

Solution 1:

It is given that:
$n(X)=17, n(Y)=23, n(X \cup Y)=38$
We know that:

$$
\begin{aligned}
& n(X \cup Y)=n(X)+n(Y)-n(X \cap Y) \\
& \therefore 38=17+23-n(X \cap Y) \\
& \Rightarrow n(X \cap Y)=40-38=2
\end{aligned}
$$

$\therefore n(X \cap Y)=2$

Question 2:

If X and Y are two sets such that $X \cup Y$ has 18 elements, X has 8 elements and Y has 15 elements; how many elements does $X \cap Y$ have?
$n(X \cup Y)=n(X)+n(Y)-n(X \cap Y)$
It is given that:

$$
\begin{aligned}
& n(X \cup Y)=18, n(X)=8, n(Y)=15 \\
& n(X \cap Y)=?
\end{aligned}
$$

We know that:

$$
\begin{aligned}
& \therefore 18=8+15-n(X \cap Y) \\
& \Rightarrow n(X \cap Y)=23-18=5 \\
& \therefore n(X \cap Y)=5
\end{aligned}
$$

Question 3:

In a group of 400 people, 250 can speak Hindi and 200 can speak English. How many people can speak both Hindi and English?

Solution 3:

Let H be the set of people who speak Hindi, and E be the set of people who speak English

$$
\therefore n(H \cup E)=400, n(H)=250, n(E)=200
$$

$$
n(H \cap E)=?
$$

We know that:

$$
\begin{aligned}
& n(H \cup E)=n(H)+n(\mathrm{E})-n(H \cap E) \\
& \therefore 400=250+200-n(H \cap E) \\
& \Rightarrow 400=450-n(H \cap E) \\
& \Rightarrow n(H \cap E)=450-400 \\
& \therefore n(H \cap E)=50
\end{aligned}
$$

Thus, 50 people can speak both Hindi and English.

Question 4:

If S and T are two sets such that S has 21 elements, T has 32 elements, and $S \cap T$ has 11 elements, how many elements does $S \cup T$ have?

Solution 4:

It is given that:
$n(S)=21, n(T)=32, n(S \cap T)=11$
We know that:
$n(S \cup T)=n(S)+n(T)-n(S \cap T)$
$\therefore n(S \cup T)=21+32-11=42$
Thus, the set $(S \cup T)$ has 42 elements.

Question 5:

 10 elements, how many elements does Y have?

Solution 5:

It is given that:
$n(X)=40, n(X \cup Y)=60, n(X \cap Y)=10$
We know that:
$\therefore 60=40+n(Y)-10$
$\therefore n(Y)=60-(40-10)=30$
Thus, the set Y has 30 elements.

Question 6:

In a group of 70 people, 37 like coffee, 52 like tea, and each person likes at least one of the two drinks. How many people like both coffee and tea?

Solution 6:

Let C denote the set of people who like coffee, and T denote the set of people who like tea $n(C \cup T)=70, n(C)=37, n(T)=52$

We know that:
$n(C \cup T)=n(C)+n(T)-n(C \cap T)$
$\therefore 70=37+52-n(C \cap T)$
$\Rightarrow 70=89-n(C \cap T)$
$\Rightarrow(C \cap T)=89-70=19$
Thus, 19 people like both coffee and tea.

Question 7:

In a group of 65 people, 40 like cricket, 10 like both cricket and tennis. How many like tennis only and not cricket? How many like tennis?

Solution 7:

Let C denote the set of people who like cricket, and T denote the set of people who like tennis
$\therefore n(C \cup T)=65, n(C)=40, n(C \cap T)=10$
We know that:

$$
\begin{aligned}
& n(C \cup T)=n(C)+n(T)-n(C \cap T) \\
& \therefore 65=40+n(T)-10 \\
& \Rightarrow 65=30+n(T) \\
& \Rightarrow n(T)=65-30=35
\end{aligned}
$$

Therefore, 35 people like tennis.
Now,

$$
(T-C) \cup(T \cap C)=T
$$

Also,

$$
\begin{aligned}
& (T-C) \cap(T \cap C)=\varnothing \\
& \therefore n(T)=n(T-C)+n(T \cap C) \\
& \Rightarrow 35=n(T-C)+10 \\
& \Rightarrow n(T-C)=35-10=25
\end{aligned}
$$

Thus, 25 people like only tennis.

Question 8:

In a committee, 50 people speak French, 20 speak Spanish and 10 speak both Spanish and French. How many speak at least one of these two languages?

Solution 8:

Let F be the set of people in the committee who speak French, and S be the set of people in the committee who speak Spanish
$\therefore n(F)=50, n(S)=20, n(S \cap F)=10$
We know that:
$n(S \cup F)=n(S)+n(F)-n(S \cap F)$
$=20+50-10$
$=70-10=60$
Thus, 60 people in the committee speak at least one of the two languages.

Miscellaneous Exercise 1

Question 1:

Decide, among the following sets, which sets are subsets of one and another:
$A=\left\{x: x \in R\right.$ and x satisfy $\left.x^{2}-8 x+12=0\right\}$,
$B=\{2,4,6\}, C=\{2,4,6,8 \ldots\}, D=\{6\}$.

Solution 1:

$A=\left\{x: x \in R\right.$ and x satisfy $\left.x^{2}-8 x+12=0\right\}$
2 and 6 are the only solutions of $x^{2}-8 x+12=0$.
$\therefore A=\{2,6\}$
$B=\{2,4,6\}, C=\{2,4,6,8 \ldots\}, D=\{6\}$
$\therefore D \subset A \subset B \subset C$
Hence, $A \subset B, A \subset C, B \subset C, D \subset A, D \subset B, D \subset C$

Question 2:

