Kopykıtab Same textbooks, kltsck away

NCERT Class 12 Maths Solutions

Exercise 9.1

Determine order and degree (if defined) of differential equations

 given in Exercise 1 to 10:1. $\frac{d^{4} y}{d x^{4}}+\sin \left(y^{\prime \prime \prime}\right)=0$

Sol. The given D.E. is $\frac{d^{4} y}{d x^{4}}+\sin y^{\prime \prime \prime}=0$
The highest order derivative present in the differential equation is $\frac{d^{4} y}{d x^{4}}$ and its order is 4 .

The given differential equation is not a polynomial equation in derivatives $\left(\because\right.$ The term $\sin y^{\prime \prime \prime}$ is a T-function of derivative $\left.y^{\prime \prime \prime}\right)$. Therefore degree of this D.E. is not defined.
Ans. Order 4 and degree not defined.
2. $\boldsymbol{y}^{\prime}+5 y=0$

Sol. The given D.E. is $y^{\prime}+5 y=0$.
The highest order derivative present in the D.E. is $y^{\prime}\left(=\frac{d y}{d x}\right)$ and so its order is one. The given D.E. is a polynomial equation in derivatives (y^{\prime} here) and the highest power raised to highest order derivative y^{\prime} is one, so its degree is one.

Ans. Order 1 and degree 1.
3. $\left(\frac{d s}{d t}\right)^{4}+3 s \frac{d^{2} s}{d t^{2}}=0$

Sol. The given D.E. is $\left(\frac{d s}{d t}\right)^{4}+3 s \frac{d^{2} s}{d t^{2}}=0$.
The highest order derivative present in the D.E. is $\frac{d^{2} s}{d t^{2}}$ and its order is 2 . The given D.E is a polynomial equation in derivatives and the highest power raised to highest order derivative $\frac{d^{2} s}{d t^{2}}$ is one. Therefore degree of D.E. is 1 .
Ans. Order 2 and degree 1.
4. $\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\cos \frac{d y}{d x}=0$

Sol. The given D.E. is $\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\cos \left(\frac{d y}{d x}\right)=0$.
The highest order derivative present in the differential equation is $\frac{d^{2} y}{d x^{2}}$ and its order is 2 .

The given D.E. is not a polynomial equation in derivatives $\left(\because\right.$ The term $\cos \frac{d y}{d x}$ is a T-function of derivative $\frac{d y}{d x}$). Therefore degree of this D.E. is not defined.
Ans. Order 2 and degree not defined.
5. $\frac{d^{2} y}{d x^{2}}=\cos 3 x+\sin 3 x$

Sol. The given D.E. is $\frac{d^{2} y}{d x^{2}}=\cos 3 x+\sin 3 x$.
The highest order derivative present in the D.E. is $\frac{d^{2} y}{d x^{2}}$ and its order is 2 .
The given D.E. is a polynomial equation in derivatives and the highest power raised to highest order $\frac{d^{2} y}{d x^{2}}=\left(\frac{d^{2} y}{d x^{2}}\right)^{1}$ is one, so its degree is 1 .
Ans. Order 2 and degree 1.
Remark. It may be remarked that the terms $\cos 3 x$ and $\sin 3 x$ present in the given D.E. are trigonometrical functions (but not T-functions of derivatives).
It may be noted that $\left(\cos 3 \frac{d y}{d x}\right)$ is not a polynomial function of derivatives.
6. $\left(y^{\prime \prime \prime}\right)^{2}+\left(y^{\prime \prime}\right)^{3}+\left(y^{\prime}\right)^{4}+y^{5}=0$

Sol. The given D.E. is $\left(y^{\prime \prime \prime}\right)^{2}+\left(y^{\prime \prime}\right)^{3}+\left(y^{\prime}\right)^{4}+y^{5}=0$.
The highest order derivative present in the D.E. is $y^{\prime \prime \prime}$ and its order is 3 .

The given D.E. is a polynomial equation in derivatives $y^{\prime \prime \prime}, y^{\prime \prime}$ and y^{\prime} and the highest power raised to highest order derivative $y^{\prime \prime \prime}$ is two, so its degree is 2 .
Ans. Order 3 and degree 2.
7. $y^{\prime \prime \prime}+2 y^{\prime \prime}+y^{\prime}=0$

Sol. The given D.E. is $y^{\prime \prime \prime}+2 y^{\prime \prime}+y^{\prime}=0$.
The highest order derivative present in the D.E. is $y^{\prime \prime \prime}$ and its order is 3 .
The given D.E. is a polynomial equation in derivatives $y^{\prime \prime \prime}, y^{\prime \prime}$ and y^{\prime} and the highest power raised to highest order derivative $y^{\prime \prime \prime}$ is one, so its degree is 1 .
Ans. Order 3 and degree 1.
8. $\boldsymbol{y}^{\prime}+\boldsymbol{y}=\boldsymbol{e}^{\boldsymbol{x}}$

Sol. The given D.E. is $y^{\prime}+y=e^{x}$.
The highest order derivative present in the D.E. is y^{\prime} and its order is 1 .
The given D.E. is a polynomial equation in derivative y^{\prime}. (It may be noted that e^{x} is an exponential function and not a polynomial function but is not an exponential function of derivatives) and the highest power raised to highest order derivative y^{\prime} is one, so its degree is 1 .
Ans. Order 1 and degree 1 .
9. $\boldsymbol{y}^{\prime \prime}+\left(\boldsymbol{y}^{\prime}\right)^{2}+\mathbf{2 y}=0$

Sol. The given D.E. is $y^{\prime \prime}+\left(y^{\prime}\right)^{2}+2 y=0$.
The highest order derivative present in the D.E. is $y^{\prime \prime}$ and its order is 2 .
The given D.E. is a polynomial equation in derivatives $y^{\prime \prime}$ and y^{\prime} and the highest power raised to highest order derivative $y^{\prime \prime}$ is one, so its degree is 1
Ans. Order 2 and degree 1 .
10. $y^{\prime \prime}+2 y^{\prime}+\sin y=0$

Sol. The given D.E. is $y^{\prime \prime}+2 y^{\prime}+\sin y=0$.
The highest order derivative present in the D.E. is $y^{\prime \prime}$ and its order is 2 .
The given D.E. is a polynomial equation in derivatives $y^{\prime \prime}$ and y^{\prime}. (It may be noted that $\sin y$ is not a polynomial function of y, it is a T-function of y but is not a T-function of derivatives) and the highest power raised to highest order derivative $y^{\prime \prime}$ is one, so its degree is one.
Ans. Order 2 and degree 1.

11. The degree of the differential equation

$$
\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+\left(\frac{d y}{d x}\right)^{2}+\sin \left(\frac{d y}{d x}\right)+1=0 \text { is }
$$

(A) 3
(B) 2
(C) 1
(D) Not defined.

Sol. The given D.E. is

$$
\begin{equation*}
\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+\left(\frac{d y}{d x}\right)^{2}+\sin \left(\frac{d y}{d x}\right)+1=0 \tag{i}
\end{equation*}
$$

This D.E. (i) is not a polynomial equation in derivatives.

$$
\left[\because \sin \left(\frac{d y}{d x}\right) \text { is a T-function of derivative } \frac{d y}{d x}\right]
$$

$\therefore \quad$ Degree of D.E. (i) is not defined.
Answer. Option (D) is the correct answer.
12. The order of the differential equation

$$
2 x^{2} \frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+y=0 \text { is }
$$

(A) 2
(B) 1
(C) 0
(D) Not defined

Sol. The given D.E. is $2 x^{2} \frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+y=0$
The highest order derivative present in the differential equation is $\frac{d^{2} y}{d x^{2}}$ and its order is 2 .
Answer. Order of the given D.E. is 2.

