Kopykıtab

 Same textbooks, kltick away

 Same textbooks, kltick away}

Exercise 12.2

1. Reshma wishes to mix two types of food P and Q in such a way that the vitamin contents of the mixture contain at least 8 units of vitamin A and 11 units of vitamin B. Food P costs $₹ 60 / \mathrm{kg}$ and Food Q costs $₹ 80 / \mathrm{kg}$. Food P contains 3 units/kg of vitamin A and 5 units/kg of vitamin B while food Q contains 4 units/kg of vitamin A and 2 units/kg of vitamin B. Determine the minimum cost of the mixture.
Sol. Step I. Mathematical formulation of L.P.P.
Suppose Reshma mixes $x \mathrm{~kg}$ of food P and $y \mathrm{~kg}$ of food Q . The given data is condensed in the following table:

Type of Food	Quantity (kg)	Cost (₹ $/ \mathrm{kg}$)	Vitamin A (units/kg)	Vitamin B (units/kg)
P	x	60	3	5
Q	y	80	4	2

Cost of mixture (in ₹) $=60 x+80 y$
Let $\quad Z=60 x+80 y$
We have the following mathematical model for the given problem:
Minimise $\quad Z=60 x+80 y$
subject to the constraints:
$3 x+4 y \geq 8$
(Vitamin A constraint)
[Given: Vitamin A content of foods X and Y is at least (i.e.,
2) 8 units]
$5 x+2 y \geq 11 \quad$ (Vitamin B constraint) ...(iii)
[Given: Vitamin B content of foods X and Y is at least (i.e., 2) 11 units]
$x, y \geq 0 \quad[\because$ Quantities of food can't be negative $] \quad ..(i v)$
Step II. The constraint (iv), $x, y \geq 0$.
\Rightarrow Feasible region is in first quadrant.
Table of values for the line $3 x+4 y=8$ of constraint (ii)

		8
x	0	3
y	2	0

Let us draw the line joining the points $(0,2)$ and $\left(\frac{8}{3}, 0\right)$.
Let us test for origin ($x=0, y=0$) in constraint (ii) $3 x+4 y \geq 8$, we have $0 \geq 8$ which is not true.
\therefore The region for constraint (ii) is the half plane on non-origin side of the line $3 x+4 y=8$ i.e., the region does not contain the origin.
Now table of values for the line $5 x+2 y=11$ of constraint (iii).

x	0	$\frac{11}{5}$
y	$\frac{11}{2}$	0

Let us draw the line joining the points $\left(0, \frac{11}{2}\right)$ and $\left(\frac{11}{5}, 0\right)$.
Let us test for origin $(x=0, y=0)$ in constraint (iii) $5 x+2 y \geq 11$, we have $0 \geq 11$ which is not true.
$\therefore \quad$ Region for constraint (iii) is on the non-origin side of the line i.e., does not contain the origin.

The shaded region in the figure is the feasible region determined by the system of constraints from (ii) to (iv). The feasible region is unbounded.
Step III. The coordinates of the corner points A and C are A $\left(0, \frac{11}{2}\right)$ and $C\left(\frac{8}{3}, 0\right)$ respectively.
Corner point B; is the point of intersection of the lines

$$
3 x+4 y=8 \quad \text { and } \quad 5 x+2 y=11
$$

Solve for x and y : First equation $-2 \times$ second equation gives $3 x+4 y-10 x-4 y=8-22$
$\Rightarrow \quad-7 x=-14 \quad \Rightarrow \quad x=2$
Putting $x=2$ in $3 x+4 y=8$, we have, $6+4 y=8 \Rightarrow 4 y=2$
$\Rightarrow \quad y=\frac{2}{4}=\frac{1}{2}$. Therefore vertex $\mathrm{B}\left(2, \frac{1}{2}\right)$.
Step IV. Now, we evaluate Z at each corner point.
$\left.\begin{array}{|c|c|}\hline \text { Corner Point } & \mathrm{Z}=60 x+80 y \\ \hline \mathrm{~A}\left(0, \frac{11}{2}\right) & 440 \\ \mathrm{~B}\left(2, \frac{1}{2}\right) \\ \mathrm{C}\left(\frac{8}{3}, 0\right) & 160 \\ \hline\end{array}\right\rangle=m \quad \leftarrow$ Minimum

From this table, we find that 160 is the minimum value of Z at each of the two corner points $B\left(2, \frac{1}{2}\right)$ and $C\left(\frac{8}{3}, 0\right)$.
Step V. Since the feasible region is unbounded, 160 may or may not be the minimum value of Z. To decide this, we graph the inequality $\mathrm{Z}<m$
i.e., $\quad 60 x+80 y<160$ or $3 x+4 y<8$

Table of values for the line $3 x+4 y=8$ for this constraint Z $<\boldsymbol{m}$.

The line joining these two points $(0,2)$ and $\left(\frac{8}{3}, 0\right)$ has already been drawn for the line of constraint (ii).
Let us test for origin ($x=0, y=0$) in constraint $\mathrm{Z}<m$ i.e., $\quad 3 x+4 y<8$, we have $0<8$ which is true.
\therefore Region for constraint $\mathrm{Z}<m$ in the origin side of the line $3 x+4 y=8$.
Of course points on the line segment BC are included in the feasible region (\because of constraint (ii)) and not in the half-plane determined by $\mathrm{Z}<m$ i.e., $3 x+4 y<8$. We observe that the half-plane determined by $\mathrm{Z}<m$ has no point in common with the feasible region. Hence $m=160$ is the minimum value of Z attained at each of the points $\mathrm{B}\left(2, \frac{1}{2}\right)$ and $\mathrm{C}\left(\frac{8}{3}, 0\right)$. Therefore, minimum cost $=₹ 160$ at all points lying on the segment joining $\left(2, \frac{1}{2}\right)$ and $\left(\frac{8}{3}, 0\right)$.
2. One kind of cake requires 200 g of flour and 25 g of fat, and another kind of cake requires 100 g of flour and 50 g of fat. Find the maximum number of cakes which can be made from 5 kg of flour and 1 kg of fat assuming that there is no shortage of the other ingredients used in making the cakes.
Sol. Step I. Mathematical Formulation of L.P.P.
Let x be the number of cakes of first kind and y, the number of cakes of other kind. The given data is condensed in the following table:

Kind of cake	Number of cakes	Flour $(\mathrm{gm} /$ cake $)$	Fat (gm/cake) $)$
I	x	200	25
II	y	100	50

We have the following mathematical model for the given problem:
Maximise $\mathrm{Z}=x+y$
subject to the constraints:

$$
\begin{equation*}
200 x+100 y \leq 5000 \tag{i}
\end{equation*}
$$

(Given: (Maximum) amount of flour available for both types of cakes is $5 \mathrm{~kg}=5000 \mathrm{gm}$)
Dividing by 100 ,

$$
\begin{array}{cc}
\text { or } & 2 x+y \leq 50 \\
& 25 x+50 y \leq 1000
\end{array}
$$

(Flour constraint) ...(ii)
(Fat constraint)
(Given: (Maximum) amount of fat available for both types of cakes is $1 \mathrm{~kg}=1000 \mathrm{gm}$)
Dividing by 25 ,
or $\quad x+2 y \leq 40$
(Fat constraint) ...(iii)

$$
\begin{equation*}
x, y \geq 0 \tag{iv}
\end{equation*}
$$

(\because Number of cakes can't be negative)
Step II. The constraint (iv) $x, y \geq 0$.
\Rightarrow Feasible region is in first quadrant.
Table of values for the line $2 x+y=50$ of constraint (ii)

x	0	25
y	50	0

Let us draw the line joining the points $(0,50)$ and $(25,0)$.
Let us test for origin $(0,0)(x=0$ and $y=0)$ in constraint
(ii) $2 x+y \leq 50$, we have $0 \leq 50$ which is true.
\therefore Region for constraint (ii) is towards the origin side of the line.
Table of values for the line $x+2 y=40$ of constraint (iii)

x	0	40
y	20	0

Let us draw the line joining the points $(0,20)$ and $(40,0)$.
Let us test for origin ($x=0, y=0$) in constraint (iii) $x+2 y \leq 40$, we have $0 \leq 40$ which is true.
\therefore Region for constraint (iii) is also towards the origin side of the line. The shaded region in the figure is the feasible region determined by the system of constraints from (ii) to (iv). The feasible region is bounded.

Step III. The coordinates of the corner points O, A and C are (0,0), $(25,0)$ and $(0,20)$ respectively.
Corner point B: It is the point of intersection of the boundary lines $\quad 2 x+y=50$ and $x+2 y=40$

Let us solve them for x and y.
First equation $-2 \times$ second equation gives
$2 x+y-2 x-4 y=50-80 \Rightarrow-3 y=-30 \Rightarrow y=10$.
Putting $y=10$ in $2 x+y=50$
$\Rightarrow 2 x+10=50 \Rightarrow 2 x=40 \Rightarrow x=20$
Therefore corner point B is $(20,10)$.
Step IV. Now we evaluate Z at each corner point.

Corner Point	$Z=x+y$
$\mathrm{O}(0,0)$	0
$\mathrm{~A}(25,0)$	25
$\mathrm{~B}(20,10)$	$30=\mathrm{M}$
$\mathrm{C}(0,20)$	20

By Corner Point Method, the maximum value of Z is 30 attained at the point $\mathrm{B}(20,10)$.
Hence, maximum number of cakes $=30,20$ of first kind and 10 of second kind.
3. A factory makes tennis rackets and cricket bats. A tennis racket takes 1.5 hours of machine time and 3 hours of craftman's time in its making while a cricket bat takes 3 hours of machine time and 1 hour of craftman's time. In a day, the factory has the availability of not more than 42 hours of machine time and 24 hours of craftsman's time.
(i) What number of rackets and bats must be made if the factory is to work at full capacity?
(ii) If the profit on a racket and on a bat is ₹ 20 and ₹ 10 respectively, find the maximum profit of the factory when it works at full capacity.

Sol. Step I. Mathematical Formulation of L.P.P.

Suppose x is the number of tennis rackets and y is the number of cricket bats to be made in a day. The given data is condensed in the following table:

Item	Number	Machine Time (hours/item)	Craftman's Time (hours/item)	Profit (₹)
Tennis Racket	x	1.5	3	20
Cricket Bat	y	3	1	10

Total number of items $=x+y$ and total profit $=20 x+10 y$
Let $\mathrm{Z}=x+y$ and $\mathrm{P}=20 x+10 y$
We have the following mathematical model for the given problem:
Maximise $\mathrm{Z}=x+y$ and $\mathrm{P}=20 x+10 y$
subject to the constraints:

$$
1.5 x+3 y \leq 42 \quad \text { or } \quad \frac{3}{2} x+3 y \leq 42
$$

[Given: Number of machine hours available is not more than 42 hours i.e., $\leq 42]$
Dividing by 3 and multiplying by 2 ,

$$
\begin{array}{lrr}
x+2 y \leq 28 & \text { (Machine time constraint) } & .(\text { (ii) } \\
3 x+y \leq 24 & \text { (Craftman's time constraint) } & \text {..(iii) }
\end{array}
$$

[Given: Number of craftman's hours is not more than 24 hours i.e., $\leq 24]$

$$
\begin{equation*}
x, y \geq 0 \tag{iv}
\end{equation*}
$$

(\because Number of tennis rackets and cricket bats can't be negative)
Step II. The constraint (iv) $x, y \geq 0 \Rightarrow$ Feasible region is in first quadrant.
Table of values of equation $x+2 y=28$ of constraint (ii)

x	0	28
y	14	0

Let us draw the straight line joining the points $(0,14)$ and $(28,0)$.
Let us test for origin ($x=0, y=0$) in constraint (ii)
i.e., $\quad x+2 y \leq 28$; we have $0 \leq 28$ which is true.
\therefore Region for constraint (ii) is the region towards the origin side of the line $x+2 y=28$.

Table of values of equation $3 x+y=24$ of constraint (iii)

x	0	8
y	24	0

Let us draw the line joining the points $(0,24)$ and $(8,0)$.
Let us test for origin ($x=0, y=0$) in constraint (iii) $3 x+y \leq 24$, we have $0 \leq 24$ which is true.
\therefore Region for constraint (iii) is the region towards the origin side of the line.
The shaded region in the figure is the feasible region determined by the system of constraints from (ii) to (iv). The feasible region is bounded.

Step III. The coordinates of the corner points O, A and C are $(0,0)$, $(8,0)$ and $(0,14)$ respectively.
Corner point B: It is the point of intersection of the boundary lines

$$
x+2 y=28 \quad \text { and } \quad 3 x+y=24 .
$$

First eqn. $-2 \times$ second eqn. gives

$$
\begin{aligned}
& \quad x+2 y-2(3 x+y)=28-2 \times 24 \\
& \Rightarrow \quad x+2 y-6 x-2 y=28-48 \Rightarrow-5 x=-20 \\
& \Rightarrow \quad x=4 . \\
& \text { Putting } x=4 \text { in } x+2 y=28,4+2 y=28 \\
& \Rightarrow \quad 2 y=24 \Rightarrow y=12 \\
& \therefore \quad \text { Corner point B is }(4,12) .
\end{aligned}
$$

Step IV. (i) Now, we evaluate Z at each corner point.

Corner Point	$\mathrm{Z}=x+y$
$\mathrm{O}(0,0)$	0
$\mathrm{~A}(8,0)$	8
$\mathrm{~B}(4,12)$	$16=\mathrm{M}$
$\mathrm{C}(0,14)$	14

By Corner Point Method, maximum $\mathrm{Z}=16$ at (4, 12).
(ii) Now, we evaluate P at each corner point.

Corner Point	$\mathrm{P}=20 x+10 y$
$\mathrm{O}(0,0)$	0
$\mathrm{~A}(8,0)$	160
$\mathrm{~B}(4,12)$	$200=\mathrm{M}$
$\mathrm{C}(0,14)$	140

By Corner Point Method, maximum $\mathrm{P}=200$ at (4, 12).
Hence, the factory should make 4 tennis rackets and 12 cricket bats to make use of full capacity and then the profit is also maximum equal to ₹ 200 .
4. A manufacturer produces nuts and bolts. It takes 1 hour of work on machine A and 3 hours on machine B to produce a package of nuts. It takes 3 hours on machine A and 1 hour on machine B to produce a package of bolts. He earns a profit of $₹ 17.50$ per package on nuts and $₹ 7.00$ per package on bolts. How many packages of each should be produced each day so as to maximise his profit, if he operates his machines for at the most 12 hours a day?
Sol. Sol. Step I. Mathematical Formulation of L.P.P.
Suppose the manufacturer produces x packages of nuts and y packages of bolts each day. The given data is condensed in the following table:

Item	Number of	Number of hours per package		Profit
	packages	on Machine A	on Machine B	(₹/package)
Nuts	x	1	3	17.50
Bolts	y	3	1	7.00

Total profit (in ₹) $=17.5 x+7 y$
Let $\quad \mathrm{Z}=17.5 x+7 y$
We have the following mathematical model for the given problem. Maximise $\mathrm{Z}=17.5 x+7 y$
subject to the constraints:

$$
\begin{equation*}
x+3 y \leq 12 \quad \text { (Machine A constraint) ...(ii) } \tag{i}
\end{equation*}
$$

(Given: He operates his machine A for at most 12 hours i.e., \leq 12 hours)

$$
3 x+y \leq 12 \quad \text { (Machine B constraint) } \quad \text {..(iii) }
$$

(Given: He operates his machine B also for at the most 12 hours i.e., ≤ 12 hours)

$$
\begin{equation*}
x, y \geq 0 \tag{iv}
\end{equation*}
$$

$(\because$ Number of packages of nuts and bolts can't be negative) Constraint (iv) $x, y \geq 0$
\Rightarrow Feasible region is in first quadrant.
Step-II. Table of values for the line $x+3 y=12$ of constraint (ii)

x	0	12
y	4	0

Let us draw the straight line joining the points $(0,4)$ and $(12,0)$.
Let us test for origin ($x=0, y=0$) in constraint (ii).
$x+3 y \leq 12$, we have $0 \leq 12$ which is true.
\therefore Region for constraint (ii) is the region on the origin side of the line $x+3 y=12$.
Table of values for the line $3 x+y=12$ of constraint (iii)

x	0	4
y	12	0

Let us draw the straight line joining the points $(0,12)$ and $(4,0)$. Let us test for origin ($x=0, y=0$) in constraint (iii) $3 x+y \leq 12$, we have $0 \leq 12$ which is true.
\therefore Region for constraint (iii) is also on the origin side of the line $3 x+y=12$.

The shaded region in the figure is the feasible region determined by the system of constraints from (ii) to (iv). The feasible region is bounded.
Step III. The coordinates of the corner points O, A and C are $(0,0)$, $(4,0)$ and (0,4) respectively.
Corner point B: It is the point of intersection of the boundary lines

$$
x+3 y=12 \quad \text { and } \quad 3 x+y=12
$$

Solving them for x, y :
Ist Eqn. $-3 \times$ second Eqn. gives

$$
x+3 y-3(3 x+y)=12-36
$$

$\Rightarrow x+3 y-9 x-3 y=-24 \Rightarrow-8 x=-24$
$\Rightarrow \quad x=\frac{-24}{-8}=3$
Putting $x=3$ in $x+3 y=12,3+3 y=12$
$\Rightarrow 3 y=9 \Rightarrow y=\frac{9}{3}=3$
\therefore Corner point B is (3, 3).
Step IV. Now, we evaluate Z at each corner point.

Corner Point	$\mathrm{Z}=17.5 x+7 y$
$\mathrm{O}(0,0)$	0
$\mathrm{~A}(4,0)$	70
$\mathrm{~B}(3,3)$	$73.5=\mathrm{M}$
$\mathrm{C}(0,4)$	28

By Corner Point Method, maximum $\mathrm{Z}=73.5$ at (3, 3).
Hence, the profit is maximum equal to ₹ 73.50 when 3 packages of nuts and 3 packages of bolts are manufactured.
5. A factory manufactures two types of screws, A and B. Each type of screw requires the use of two machines, an automatic and a hand operated. It takes 4 minutes on the automatic and 6 minutes on hand operated machines to
manufacture a package of screws A, while it takes 6 minutes on automatic and 3 minutes on the hand operated machines to manufacture a package of screws B. Each machine is available for at the most 4 hours on any day. The manufacturer can sell a package of screws A at a profit of ₹ 7 and screws B at a profit of ₹ 10 . Assuming that he can sell all the screws he manufactures, how many packages of each type should the factory owner produce in a day in order to maximise his profit? Determine the maximum profit.
Sol. Step I. Mathematical Formulation of L.P.P.
Suppose the factory owner produces x packages of screw A and y packages of screw B in a day. The given data is condensed in the following table:

Type of screw	Number of packages	Time in minutes per item		Profit (₹/item)
		on automatic machine	on hand operated machine	
A	x	4	6	7
B	y	6	-	10

Total profit $=7 x+10 y$
Let $\quad Z=7 x+10 y$
We have the following mathematical model for the given problem.
Maximise $\mathrm{Z}=7 x+10 y$
subject to the constraints:

$$
4 x+6 y \leq 240
$$

$[\because$ Each machine i.e., automatic machine is also available for atmost i.e., ≤ 4 hours i.e., $4 \times 60=240$ minutes]
or $\quad 2 x+3 y \leq 120$ (Automatic machine constraint) ...(ii) $6 x+3 y \leq 240$
(Same argument as given above for constraint (ii))
or
$2 x+y \leq 80$
(Hand operated machine constraint)

$$
\begin{equation*}
x, y \geq 0 \tag{iv}
\end{equation*}
$$

(\because Number of screws A and B can't be negative)
Step II. Table of values for the line $2 x+3 y=120$ of constraint (ii)

x	0	60
y	40	0

Let us draw the straight line joining the points $(0,40)$ and $(60,0)$. Let us test for origin (put $x=0, y=0$) in constraint (ii) $2 x+$ $3 y \leq 120$, we have $0 \leq 120$ which is true.
\therefore Region for constraint (ii) is on the origin side of the line

$$
2 x+3 y=120
$$

Table of values for the line $2 x+y=80$ of constraint (iii)

x	0	40
y	80	0

Let us draw the straight line joining the points $(0,80)$ and $(40,0)$. Let us test for origin (put $x=0, y=0$) in constraint (iii) $2 x+y \leq 80$, we have $0 \leq 80$ which is true.
\therefore Region for constraint (iii) is also towards the origin side of the line $2 x+y=80$.

The shaded region in the figure is the feasible region determined by the system of constraints from (ii) to (iv). The feasible region is bounded.
Step III. The coordinates of the corner points O, A and C are (0,0), $(40,0)$ and $(0,40)$ respectively.
Corner Point B: It is the point of intersection of boundary lines

$$
2 x+3 y=120 \quad \text { and } \quad 2 x+y=80
$$

Let us solve them for x and y. Subtracting $2 y=40$
$\Rightarrow \quad y=20$
Putting $y=20$ in $2 x+3 y=120 ; 2 x+60=120$
$\Rightarrow 2 x=60 \Rightarrow x=30$.
Therefore corner point B is (30, 20).
Step IV. Now, we evaluate Z at each corner point.

Corner Point	$\mathrm{Z}=7 x+10 y$
$\mathrm{O}(0,0)$	0
$\mathrm{~A}(40,0)$	280
$\mathrm{~B}(30,20)$	$410=\mathrm{M}$
$\mathrm{C}(0,40)$	400

\leftarrow Maximum

By Corner Point Method, maximum $Z=410$ at (30, 20).
Hence, the profit is maximum equal to ₹ 410 when 30 packages of screws A and 20 packages of screws B are produced in a day.
6. A cottage industry manufactures pedestal lamps and wooden shades, each requiring the use of a grinding/cutting machine and a sprayer. It takes 2 hours on grinding/cutting machine and 3 hours on the sprayer to manufacture a pedestal lamp. It takes 1 hour on the grinding/cutting machine and 2 hours on the sprayer to manufacture a shade. On any day, the sprayer is available for at the most 20 hours and the grinding/cutting machine for at the most 12 hours. The profit from the sale of a lamp is $₹ 5$ and that from a shade is ₹ 3 . Assuming that the manufacturer can sell all the lamps and shades that he produces, how should he schedule his daily production in order to maximise his profit?
Sol. Step I. Mathematical formulation of L.P.P.
Suppose the manufacturer produces x pedestal lamps and y wooden shades. The given data is condensed in the following table:

Item	Number	Time on grinding/ cutting machine (hrs/item)	Time on sprayer (hrs/item)	Profit $(₹ /$ item $)$
Pedestal lamps	x	2	3	5
Wooden shades	y	1	2	3

Total profit $=5 x+3 y$
Let $\quad Z=5 x+3 y$
We have the following mathematical model for the given problem:
Maximise $Z=5 x+3 y$
subject to the constraints:

$$
\begin{equation*}
2 x+y \leq 12 \text { (Grinding/cutting machine constraint) } \tag{i}
\end{equation*}
$$

[Given: Cutting/grinding machine is available for at the most (i.e., \leq) 12 hours]

$$
3 x+2 y \leq 20 \quad \text { (Sprayer constraint) }
$$

[Given: The sprayer is available for at the most 20 hours i.e., \leq 20]

$$
x, y \geq 0 \quad \text {...iv }(\because \text { Number of pedestal lamps }
$$ and wooden shades can't be negative)

Step II. The constraint (iv) $x, y \geq 0 \Rightarrow$ The feasible region is in first quadrant.
Table of values for the line $2 x+y=12$ of constraint (ii)

x	0	6
y	12	0

Let us draw the line joining the points $(0,12)$ and $(6,0)$.
Let us test for origin ($x=0, y=0$) in constraint (ii) $2 x+y \leq 12$,
we have $0 \leq 12$ which is true.
\therefore Region for constraint (ii) is on the origin side of the line $2 x+y=12$.
Table of values for the line $3 x+2 y=20$ of constraint (iii)

x	0	$\frac{20}{3}$
y	10	0

Let us draw the line joining the points $(0,10)$ and $\left(\frac{20}{3}, 0\right)$.

Let us test for origin $(x=0, y=0)$ in constraint (iii) $3 x+2 y \leq 20$, we have $0 \leq 20$ which is true.
\therefore Region for constraint (iii) is on the origin side of the line $3 x+2 y=20$.
The shaded region in the figure is the feasible region determined by the system of constraints from (ii) to (iv). The feasible region is bounded.
Step III. The coordinates of the corner points O, A and C are $(0,0),(6,0)$ and $(0,10)$ respectively.
Corner point B: It is the point of intersection of boundary lines

$$
2 x+y=12
$$

and

$$
3 x+2 y=20
$$

$2 \times$ First eqn. - Second eqn. gives

$$
4 x+2 y-3 x-2 y=24-20 \quad \Rightarrow \quad x=4
$$

Putting $x=4$ in $2 x+y=12$, we have $8+y=12$
$\Rightarrow \quad y=4$.
\therefore Corner point B is $(4,4)$.
Step IV. Now, we evaluate Z at each corner point.

Corner Point	$\mathrm{Z}=5 x+3 y$
$\mathrm{O}(0,0)$	0
$\mathrm{~A}(6,0)$	30
$\mathrm{~B}(4,4)$	$32=\mathrm{M}$
$\mathrm{C}(0,10)$	30

By Corner Point Method, maximum $\mathrm{Z}=32$ at (4, 4).
Hence, the profit is maximum when 4 pedestal lamps and 4 wooden shades are manufactured. Maximum profit is ₹ 32 .
7. A company manufactures two types of novelty souvenirs made of plywood. Souvenirs of type A require 5 minutes each for cutting and 10 minutes each for assembling. Souvenirs of type B require 8 minutes each for cutting and 8 minutes each for assembling. There are 3 hours 20 minutes available for cutting and 4 hours for assembling. The profit is ₹ 5 each for type A and $₹ \mathbf{6}$ each for type B souvenirs. How many souvenirs of each type should the company manufacture in order to maximise the profit?
(Important)
Sol. Step I. Mathematical formulation of L.P.P
Suppose the company manufactures x souvenirs of type A and y souvenirs of type B. The given data is condensed in the following table:

Type	Number	Time for cutting $(\mathrm{min} /$ item $)$	Time for assembling $(\mathrm{min} / \mathrm{item})$	Profit $(₹ /$ item $)$
A	x	5	10	5
B	y	8	8	6

Total profit $=5 x+6 y$
Let $\quad Z=5 x+6 y$
We have the following mathematical model for the given problem:
Maximise $Z=5 x+6 y$
subject to the constraints:

$$
5 x+8 y \leq 200 \quad \text { (Cutting constraint) } \ldots(i i)
$$

[Given: (Maximum) time available for cutting is 3 hours, 20 minutes $=3 \times 60+20=200$ minutes $]$

$$
10 x+8 y \leq 240 \quad \text { (Assembling constraint) } \quad . .(i i i)
$$

[Given: (Maximum) Time available for assembly is 4 hours

$$
\begin{align*}
& =4 \times 60=240 \text { minutes }] \\
x, y & \geq 0 \tag{iv}
\end{align*}
$$

(\because Number of souvenirs can't be negative)
Step II. Constraint (iv) $x, y \geq 0 \Rightarrow$ Feasible region is in first quadrant.
Table of values for the line $5 x+8 y=200$ of constraint (ii)

x	0	40
y	25	0

Let us draw the line joining the points $(0,25)$ and $(40,0)$.
Let us test for origin $(x=0, y=0)$ in constraint (ii) $5 x+8 y \leq 200$ we have $0 \leq 200$ which is true.
\therefore Region for constraint (ii) is on the origin side of the line $5 x+8 y=200$.
Table of values for the line $10 x+8 y=240$ of constraint (iii)

x	0	24
y	30	0

Let us draw the line joining the points $(0,30)$ and $(24,0)$.
Let us test for origin ($x=0, y=0$) in constraint (iii) $10 x+8 y \leq 240$, we have $0 \leq 240$ which is true.
\therefore Region for constraint (iii) is on the origin side of the line $10 x+8 y=240$.

The shaded region in the figure is the feasible region determined by the system of constraints from (ii) to (iv). The feasible region is bounded.
Step III. The coordinates of the corner points O, A and C are (0,0), $(24,0)$ and $(0,25)$ respectively.
Corner point B: It is the point of intersection of the boundary lines

$$
5 x+8 y=200 \quad \text { and } \quad 10 x+8 y=240
$$

Subtracting, $-5 x=-40 \Rightarrow x=\frac{-40}{-5}=8$.
Putting $x=8$ in $5 x+8 y=200$, we have

$$
40+8 y=200 \Rightarrow 8 y=160 \Rightarrow y=\frac{160}{8}=20
$$

$\therefore \quad$ Corner point $\mathrm{B}(8,20)$.
Step IV. Now, we evaluate Z at each corner point.

Corner Point	$\mathrm{Z}=5 x+6 y$
$\mathrm{O}(0,0)$	0
$\mathrm{~A}(24,0)$	120
$\mathrm{~B}(8,20)$	$160=\mathrm{M}$
$\mathrm{C}(0,25)$	150

\leftarrow Maximum

By Corner Point Method, maximum $Z=160$ at (8, 20).
Hence, the profit is maximum when 8 souvenirs of type A and 20 souvenirs of type B are manufactured.
Maximum profit = ₹ 160 .
8. A merchant plans to sell two types of personal computers a desktop model and a portable model that will cost $₹$ 25,000 and $₹ 40,000$ respectively. He estimates that the total monthly demand of computers will not exceed 250 units. Determine the number of units of each type of computers which the merchant should stock to get maximum profit if he does not want to invest more than ₹ 70 lakhs and if his profit on the desktop model is $₹ 4500$ and on portable model is $₹ 5000$.
Sol. Step I. Mathematical Formulation of L.P.P.
Suppose the merchant stocks x units of desktop model and y units of portable model. The given data is condensed in the following table.

Type of Model	Number of units	Cost $(₹ /$ unit $)$	Profit $(₹ /$ ₹nit
Desktop	x	25000	4500
Portable	y	40000	5000

Total profit $=4500 x+5000 y$
Let $\quad Z=4500 x+5000 y$
We have the following mathematical model for the given problem:
Maximise profit $Z=4500 x+5000 y$
subject to the constraints:

$$
\begin{equation*}
x+y \leq 250 \quad(\text { Demand constraint }) \tag{ii}
\end{equation*}
$$

[Given: Total monthly demand of computers will not exceed 250 i.e., $\leq 250]$
$25000 x+40000 y \leq 70,00,000$
[Given: He does not want to invest more than ₹ 70 lakhs

$$
=₹ 70 \times 100,000]
$$

Dividing every term by 5000,
or

$$
\begin{array}{rrr}
5 x+8 y \leq 1400 \quad & \text { (Investment constraint) } \\
x, y & \geq 0 & \tag{iv}\\
& (\because \quad \text { Number of computers can't be negative })
\end{array}
$$

Step II. Constraint (iv) $x, y \geq 0 \Rightarrow$ Feasible region is in first quadrant.

Table of values for the line $\boldsymbol{x}+\boldsymbol{y}=\mathbf{2 5 0}$ of constraint (ii)

x	0	250
y	250	0

Let us draw the line joining the points $(0,250)$ and $(250,0)$.
Let us test for origin ($x=0, y=0$) in constraint (ii) $x+y \leq 250$, we have $0 \leq 250$ which is true.
\therefore Region for constraint (ii) is on the origin side of the line $x+y=250$.
Table of values for the line $5 x+8 y=1400$ of constraint (iii)

x	0	280
y	175	0

Let us draw the line joining the points $(0,175)$ and $(280,0)$.
Let us test for origin $(0,0)$ in constraint (iii), $5 x+8 y \leq 1400$, we have $0 \leq 1400$ which is true.
\therefore Region for constraint (iii) is on the origin side of the line $5 x+8 y=1400$.

The shaded region in the figure is the feasible region determined by the system of constraints from (ii) to (iv). The feasible region is bounded.
Step III. The coordinates of the corner points O, A and C are (0,0), $(250,0)$ and $(0,175)$ respectively.
Corner point B: It is the point of intersection of boundary lines:

$$
x+y=250 \quad \text { and } \quad 5 x+8 y=1400
$$

Second Eqn. $-5 \times$ Ist equation gives

$$
5 x+8 y-5 x-5 y=1400-1250
$$

or $\quad 3 y=150 \Rightarrow y=\frac{150}{3}=50$
Putting $y=50$ in $x+y=250$,
we have $x+50=250 \Rightarrow x=200$
\therefore Corner point B is $(200,50)$.

Step IV. Now, we evaluate Z at each corner point.

Corner Point	$\mathrm{Z}=4500 x+5000 y$
$\mathrm{O}(0,0)$	0
$\mathrm{~A}(250,0)$	$11,25,000$
$\mathrm{~B}(200,50)$	$11,50,000=\mathrm{M}$
$\mathrm{C}(0,175)$	$8,75,000$

By Corner Point Method, maximum $Z=11,50,000$ at (200, 50).
Hence, the merchant should stock 200 units of desktop model and 50 units of portable model for a maximum profit of ₹ $11,50,000$.
9. A diet is to contain at least 80 units of vitamin A and 100 units of minerals. Two foods F_{1} and F_{2} are avialable. Food F_{1} costs $₹ 4$ per unit and food F_{2} costs $₹ 6$ per unit. One unit of food F_{1} contains 3 units of vitamin A and 4 units of minerals. One unit of food F_{2} contains 6 units of vitamin A and 3 units of minerals. Formulate this as a linear programming problem. Find the minimum cost for diet that consists of mixture of these two foods and also meets the minimal nutritional requirements.
Sol. Step I. Mathematical formulation of L.P.P.
Suppose the diet contains x units of food F_{1} and y units of food F_{2}. The given data is condensed in the following table:

Type of Food	Number of units	Cost (₹/unit)	Vitamin A (units)	Minerals (units)
F_{1}	x	4	3	4
$\mathrm{~F}_{2}$	y	6	6	3

Total cost $=4 x+6 y$
Let $Z=4 x+6 y$
We have the following mathematical model for the given problem.
Minimise $Z=4 x+6 y$
subject to the constraints:

$$
\begin{equation*}
3 x+6 y \geq 80 \quad(\text { Vitamin A constraint }) \tag{i}
\end{equation*}
$$

[Given: At least i.e., ≥ 80 units of vitamin A]

$$
4 x+3 y \geq 100 \quad \text { (Mineral constraint) ...(iii) }
$$

[Given: At least i.e., ≥ 100 units of minerals]

$$
x, y \geq 0
$$

(\because Units of vitamins and minerals can't be negative) ...(iv)
Step II. The constraint (iv) $x, y \geq 0$.
\Rightarrow Feasible region is in first quadrant.
Table of values for the line $3 x+6 y=80$ of constraint (ii)

x	0	$\frac{80}{3}$
y	$\frac{40}{3}$	0

Let us draw the line joining the points $\left(0, \frac{40}{3}\right)$ and $\left(\frac{80}{3}, 0\right)$.
Let us test for origin $(x=0, y=0)$ in constraint (ii) $3 x+6 y \geq 80$, we have $0 \geq 80$ which is not true.
\therefore Region for constraint (ii) is the half-plane not containing the origin i.e., region on the non-origin side of the line $3 x+6 y=80$.
Table of values for the line $4 x+3 y=100$ of constraint (iii)

x	0	25
y	$\frac{100}{3}$	0

Let us draw the line joining the points $\left(0, \frac{100}{3}\right)$ and (25, 0).
Let us test for origin ($x=0, y=0$) in constraint (iii) $4 x+3 y \geq 100$, we have $0 \geq 100$ which is not true.
\therefore Region for constraint (iii) is the half-plane again on the nonorigin side of the line $4 x+3 y=100$.

The shaded region in the figure is the feasible region determined by the system of constraints from (ii) to (iv).
The feasible region is unbounded.
Step III. The coordinates of the corner points A and C are $\left(\frac{80}{3}, 0\right)$ and $\left(0, \frac{100}{3}\right)$ respectively.
To find corner point B: Corner point B is the point of intersection of the boundary lines

$$
3 x+6 y=80 \quad \text { and } \quad 4 x+3 y=100
$$

First Eqn. $-2 \times$ Second eqn. gives

$$
3 x+6 y-8 x-6 y=80-200
$$

or

$$
-5 x=-120 \Rightarrow x=\frac{-120}{-5}=24
$$

Putting $x=24$ in $3 x+6 y=80$, we have
$72+6 y=80 \Rightarrow 6 y=8 \Rightarrow y=\frac{8}{6}=\frac{4}{3}$
$\therefore \quad$ Corner point B is $\left(24, \frac{4}{3}\right)$.
Step IV. Now, we evaluate Z at each corner point.

Corner Point	$\mathrm{Z}=4 x+6 y$
$\mathrm{~A}\left(\frac{80}{3}, 0\right)$	$\frac{320}{3}$
$\mathrm{~B}\left(24, \frac{4}{3}\right)$	$104=m$
$\mathrm{C}\left(0, \frac{100}{3}\right)$	200

From this table, we find that 104 is the smallest value of Z at the corner B $\left(24, \frac{4}{3}\right)$.
Step V. Since the feasible region is unbounded, 104 may or may not be the minimum value of Z . To decide this, we graph the inequality $\mathrm{Z}<m$ i.e., $4 x+6 y<104$.
Table of values for the line $4 x+6 y=104$ (of constraint $Z<m$ i.e., $4 x+6 y<104)$

x	0	26
y	$\frac{52}{3}$	0

Let us draw the dotted line joining the points $\left(0, \frac{52}{3}\right)$ and $(26,0)$. $[(26,0)$ not being marked in the graph because it is very close to the point $\left(\frac{80}{3}, 0\right)=(26.7,0)$ already marked and $(26,0)$ is slightly to the left of $\left(\frac{80}{3}, 0\right)$]
The line is shown dotted because equality sign is absent in the constraint $\mathrm{Z}<m$.
Let us test for origin $(x=0, y=0)$ in constraint $Z<m$ i.e., $4 x+6 y<104$, we have $0<104$ which is true.
\therefore Region for constraint $\mathrm{Z}<m$ i.e., $4 x+6 y<104$ is the origin side of the line $4 x+6 y=104$

We observe that the half plane determined by $\mathrm{Z}<m$ has no point in common with the feasible region. Hence $m=104$ is the minimum value of Z attained at the point $\mathrm{B}\left(24, \frac{4}{3}\right)$.
$\therefore \quad$ Minimum cost is $₹ 104$ when 24 units of food F_{1} are mixed with $\frac{4}{3}$ units of food F_{2}.
10. There are two types of fertilisers F_{1} and $F_{2} . F_{1}$ consists of 10% nitrogen and $\mathbf{6 \%}$ phosphoric acid and F_{2} consists of 5% nitrogen and 10% phosphoric acid. After testing the soil conditions, a farmer finds that she needs atleast 14 kg of nitrogen and 14 kg of phosphoric acid for her crop. If F_{1} costs $₹ 6 / \mathrm{kg}$ and F_{2} costs $₹ 5 / \mathrm{kg}$, determine how much of each type of fertiliser should be used so that nutrient requirements are met at minimum cost. What is the minimum cost?
Sol. Step I. Mathematical formulation of L.P.P.
Suppose the farmer uses $x \mathrm{~kg}$ of fertiliser F_{1} and $y \mathrm{~kg}$ of fertiliser F_{2}. The given data is condensed in the following table.

Fertiliser	Quantity (kg)	Nitrogen content	Phosphoric acid content	Cost (₹/kg)
F_{1}	x	10%	6%	6
$\mathrm{~F}_{2}$	y	5%	10%	5

Total cost $=6 x+5 y$
Let $\mathrm{Z}=6 x+5 y$
We have the following mathematical model for the given problem:
Minimise $Z=6 x+5 y$
subject to the constraints:

$$
\frac{10}{100} x+\frac{5}{100} y \geq 14
$$

[Given: She needs at least i.e., $\geq 14 \mathrm{~kg}$ of nitrogen for her crops] Multiplying by 100 and dividing by 5 ,

$$
\begin{aligned}
2 x+y & \geq 280 \\
\frac{6}{100} x+\frac{10}{100} y & \geq 14
\end{aligned}
$$

[Given: She needs at least 14 kg of phosphoric acid for her crops] Multiplying by 100 and dividing by 2,

$$
\begin{equation*}
3 x+5 y \geq 700 \quad \text { (Phosphoric acid constraint) } \tag{iii}
\end{equation*}
$$

$$
\begin{equation*}
x, y \geq 0 \tag{iv}
\end{equation*}
$$

(\because Quantity of Nitrogen and Phosphoric acid can't be negative)
Step II. Constraint (iv) $x, y \geq 0$.
\Rightarrow Feasible region is in first quadrant.

Table of values for the line $2 x+y=280$ of constraint (ii)

x	0	140
y	280	0

Let us draw the line joining the points $(0,280)$ and $(140,0)$.
Let us test for origin ($x=0, y=0$) in constraint (ii) $2 x+y \geq 280$, we have $0 \geq 280$ which is not true.
\therefore Region for constraint (ii) is the half-plane not containing the origin i.e., region on the non-origin side of the line $2 x+y=280$.
Table of values for the line $3 \boldsymbol{x}+5 \boldsymbol{y}=\mathbf{7 0 0}$ corresponding to constraint (iii)

x	0	$\frac{700}{3}$
y	140	0

Let us draw the line joining the points $(0,140)$ and $\left(\frac{700}{3}, 0\right)$.
Let us test for origin ($x=0, y=0$) in constraint (iii) $3 x+5 y \geq 700$, we have $0 \geq 700$ which is not true.
\therefore Region for constraint (iii) is again on the non-origin side of the line $3 x+5 y=700$.
The shaded region in the figure is the feasible region determined by the system of constraints from (ii) to (iv). The feasible region is unbounded.
Step III. The coordinates of the corner points. A and C are $\left(\frac{700}{3}, 0\right)$ and $(0,280)$ respectively.
To find corner point B: Let us solve the equations of bounding lines $2 x+y=280$ and $3 x+5 y=700$ for x and y.

Second eqn. $-5 \times$ first eqn. gives
$\begin{aligned} & 3 x+5 y-10 x-5 y=700-1400 \\ \Rightarrow \quad & -7 x=-700 \Rightarrow x=\frac{-700}{-7}=100\end{aligned}$
Putting $x=100$ in $2 x+y=280$, we have
$200+y=280 \Rightarrow y=80 \quad \therefore$ Corner point B is $(100,80)$.
Step IV. Now, we evaluate Z at each corner point.

Corner Point	$\mathrm{Z}=6 x+5 y$
$\mathrm{~A}\left(\frac{700}{3}, 0\right)$	1400
$\mathrm{~B}(100,80)$	$1000=m$
$\mathrm{C}(0,280)$	1400

From this table, we find that 1000 is the smallest value of Z at the corner $B(100,80)$. Since the feasible region is unbounded, 1000 may or may not be the minimum value of Z.
Step V. To decide this, we graph the inequality $\mathrm{Z}<m$
i.e., $\quad 6 x+5 y<1000$.

Table of values for the line $6 x+5 y=1000$ (for constraint $Z<m$ i.e., $6 x+5 y<1000$)

x	0	$\frac{500}{3}$
y	200	0

Let us draw the dotted line joining the points $(0,200)$ and $\left(\frac{500}{3}, 0\right)$
The line is drawn dotted because equality sign is absent in the constraint $\mathrm{Z}<m$.
We observe that the half-plane determined by $\mathrm{Z}<m$ has no point in common with the feasible region. Hence, $m=1000$ is the minimum value of Z attained at the point $B(100,80)$.
\therefore Minimum cost is ₹ 1000 when the farmer uses 100 kg of fertiliser F_{1} and 80 kg of fertiliser F_{2}.
11. The corner points of the feasible region determined by the following system of linear inequalities:
$2 x+y \leq 10, x+3 y \leq 15, x, y \geq 0$ are (0,0), (5, 0), (3, 4) and $(0,5)$. Let $Z=p x+q y$, where $p, q>0$. Condition on p and q so that the maximum of Z occurs at both $(3,4)$ and $(0,5)$ is
(A) $\boldsymbol{p}=\boldsymbol{q}$
(B) $p=2 q$
(C) $p=3 q$
(D) $q=3 p$.

Sol. We evaluate Z at each corner point.
$\left.\begin{array}{|c|c|}\hline \text { Corner Point } & \begin{array}{c}\mathrm{Z}=p x+q y, \\ p>0, q>0\end{array} \\ \hline(0,0) & 0 \\ (5,0) & 5 p \\ (3,4) & 3 p+4 q \\ (0,5) & 5 q\end{array}\right) \leftarrow \mathrm{M}, \quad \leftarrow$ Maximum
$\because \quad$ Maximum of Z occurs at both $(3,4)$ and $(0,5)$ (given)
$\therefore \quad 3 p+4 q=5 q$
$\therefore \quad q=3 p$
Hence, the correct option is (D).

